晶体结构的周期性和点阵
- 格式:pdf
- 大小:4.25 MB
- 文档页数:124
第21卷 第6期大学化学2006年12月关于晶体学的一些概念周公度(北京大学化学与分子工程学院 北京100871) 大学化学编辑部约我写篇文章,讨论一些晶体学的基本概念和表述方法。
我想藉此机会写一些学习体会,和读者交流,就教于读者。
1 晶体的周期结构和点阵 晶体是由原子或分子按照一定的周期性在空间排列形成的固体。
在晶体内部三维空间中,原子的排列按周期规律隔一定距离重复出现,每个重复的单位具有相同的化学组成、相同的化学结构、相同的空间取向和相同的周围环境。
这种重复的基本结构内容叫结构基元。
为了研究晶体中结构基元排列的周期性,将每个结构基元抽象成一个几何上的点表示,而不考虑结构基元的内容和结构,这些点形成点阵。
点阵是在空间任意方向上均为周期排列的无限个全同点的集合。
每个点阵点都有相同的周围环境。
晶体结构可用晶胞表示,将晶胞并置堆积即成晶体。
点阵可用通过点阵点的平行六面体的点阵单位表示。
晶胞和点阵单位是相互对应的。
晶胞参数a,b,c,α,β,γ表达了晶胞的大小和形状,同样它也是表达点阵单位的点阵参数。
将点阵单位用直线划出平行六面体,或将直线通过点阵点外延成格子,称晶格。
点阵和晶格都是从实际晶体结构中抽象出来的,都是表示晶体周期性结构规律的一种抽象的图像。
点阵和晶格在英文中是同一个词(lattice)。
点阵强调的是结构基元在空间的周期排列,它反映的周期排列方式是惟一的;晶格强调的是按点阵单位划出来的格子,由于晶胞和点阵单位的划分有一定的灵活性,所以不是惟一的。
下面通过实例描述晶体周期性结构的重复内容及其点阵。
图1示出α2Se的分子结构、晶体结构和点阵的投影。
α2Se为三重螺旋形的长链分子, Se—Se键长232pm,如图1(a)所示。
在晶体中,这些螺旋长链分子互相平行地堆积在一起,平行螺旋轴的投影结构示于图1(b)。
晶体属D3232点群,实验测得这个三方晶系晶体的晶胞参数a=435.52pm,c=494.95pm,晶胞中包含3个Se原子。
晶体的点阵类型晶体的点阵类型晶体是由原子、离子或分子组成的周期性排列的结构,具有一定的对称性和规则性。
晶体的点阵类型是指其原子、离子或分子在空间中的排列方式和对称性。
本文将介绍晶体的点阵类型,包括简单立方晶系、面心立方晶系、体心立方晶系、六方最密堆积晶系、菱面体最密堆积晶系等。
一、简单立方晶系简单立方晶系是最简单的一种点阵类型,其原子在空间中沿着三个互相垂直的轴线上等距排列。
每个原子周围都有六个相邻原子,形成一个六面体。
该点阵类型具有三条相互垂直的轴线和四个三重旋转轴,对称性为正方形。
二、面心立方晶系面心立方晶系是由简单立方晶系变形而来,其每个顶点处都有一个原子,并在每个面心处增加了一个原子。
该点阵类型具有四条三重旋转轴和三条四重旋转轴,对称性为正四面体。
三、体心立方晶系体心立方晶系是由简单立方晶系变形而来,其每个顶点处都有一个原子,并在晶体的中心增加了一个原子。
该点阵类型具有四条三重旋转轴和三条四重旋转轴,对称性为正八面体。
四、六方最密堆积晶系六方最密堆积晶系是由六边形最密堆积和立方最密堆积两种点阵类型组合而成的。
其原子在空间中沿着六边形的对角线上等距排列。
该点阵类型具有一个六重旋转轴和一个二十四重旋转轴,对称性为正六面体。
五、菱面体最密堆积晶系菱面体最密堆积晶系是由菱形最密堆积和立方最密堆积两种点阵类型组合而成的。
其原子在空间中沿着菱形的对角线上等距排列。
该点阵类型具有一个四重旋转轴和一个二十四重旋转轴,对称性为正八面体。
结语以上介绍了常见的几种晶体的点阵类型,不同的点阵类型具有不同的对称性和规则性,在实际应用中也有着不同的应用。
了解晶体的点阵类型有助于我们更好地理解晶体的结构和性质,对于材料科学、化学、物理等领域的研究都有重要意义。
第一篇 X射线衍射分析(15万字)1 晶体学基础1.1 晶体结构的周期性与点阵晶体是由原子、离子、分子或集团等物质点在三维空间内周期性规则排列构成的固体物质,这种周期性是三维空间的。
晶体中按周期重复的原子、分子或离子团称为结构基元,也就是重复单元。
为了描述晶体内部原子排列的周期性,总是把一个结构基元抽象地看成为一个几何点,而不考虑它的实际内容(指原子、离子或分子)。
这些几何点按结构周期排列,这种几何点的集合就称为点阵,将点阵中的每个点叫阵点。
要构成点阵,必须具备三个条件:(1)点阵点数无限多;(2)各点阵点所处的几何环境完全相同;(3)点阵在平移方向的周期必须相同。
凡是能够抽取出点阵的结构可称为点阵结构或晶体点阵。
点阵中每一阵点对应于点阵结构中的一个结构基元,在晶体中则是一些组成晶体的实物粒子,即原子、分子或离子等,或是这些微粒的集团。
这样,晶体结构与晶体点阵是两个不同的概念,其关系如图1-1所示,晶体结构可以表示为:晶体结构= 晶体点阵+ 结构基元图1-1晶体结构与点阵的关系根据点阵的性质,把分布在同一直线上的点阵称为直线点阵或一维点阵,分布在同一平面内的点阵称为平面点阵或二维点阵,分布在三维空间中的点阵称为空间点阵或三维点阵。
1.1.1 一维周期性结构与直线点阵图1-2(a)是聚乙烯分子链的结构示意图,具有一维周期结构,其结构基元(CH2CH2)周期性地排列在一个方向上。
每一个结构基元的等同位置抽象成一个几何点,可形成一条直线点阵,是等距离分布在一条直线上的无限点列,如图1-2(b)所示。
取任一阵点作为原点O ,A 为相邻的阵点,则矢量a=OA 表示重复的大小和方向,称为初基(单位)矢量或基矢,若以单位矢量a 进行平移,必指向另一阵点,而矢量的长度a a =ρ称为点阵参数。
图1-2晶体结构与点阵的关系(a )聚乙烯分子链的结构示意图;(b )等效的一维直线点阵直线点阵中任何两阵点的平移矢量称为矢径,可表示为T p = p a (0, ±1, ±2……)矢径T p 完整而概括地描述了一维结构基元排列的周期性。
名词解释弗伦克尔缺陷:在晶格热振动时,一些能量足够大的原子离开平衡位置后,挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位。
这种缺陷称为弗伦克尔缺陷。
肖特基缺陷:如果正常格点上的原子,热起伏过程中活的能量离开平衡位置迁移到晶体的表面,在晶体内正常格点上留下空位,这即是肖特基缺陷。
刃型位错:伯格斯矢量b与位错线垂直的位错称为刃型位错。
螺形位错:位错线和滑移方向(伯格斯矢量b)平行,由于位错线垂直的平行面不是水平的,而是像螺旋形的,故称螺旋位错。
类质同晶:物质结晶时,其晶体结构中原有离子或原子的配位位置被介质中部分类质类似的它种离子或原子占存,共同结晶成均匀的,单一的混合晶体,但不引起键性。
同质多晶:化学组成相同的物质,在不同的热力学条件下结晶或结构不同的晶体。
正尖晶石:二价阳离子分布在1/8四面体空隙中,三价阳离子分布在1/2八面体空隙的尖晶石。
反尖晶石:如果二价阳离子分布在八面体空隙中,而三价阳离子一半在四面体空隙中,另一半在八面体空隙中的尖晶石。
晶子学说:硅酸盐玻璃是由无数“晶子”组成,“晶子”的化学性质取决于玻璃的化学组成。
所谓“晶子”不同于一般微晶,而是带有晶格变形的有序区域,在“晶子”中心质点排列较有规律,愈远离中心则变形程度愈大。
“晶子”分散在无定形部分的过渡是逐步完成的,两者之间无明显界线。
晶子学说的核心是结构的不均匀性及进程有序性。
无规则网络学说:凡是成为玻璃态的物质和相应的晶体结构一样,也是由一个三度空间网络所构成。
这种网络是由离子多面体(三角体或四面体)构筑起来的。
晶体结构网是由多面体无数次有规律重复构成,而玻璃中结构多面体的重复没有规律性。
分化过程:架状[SiO4]断裂称为熔融石英的分化过程。
缩聚过程:分化过程产生的低聚化合物相互发生作用,形成级次较高的聚合物,次过程为缩聚过程。
网络形成剂:正离子是网络形成离子,单键强度大于335?kJ/mol,能单独形成玻璃的氧化物。
晶体结构与空间点阵的区别
晶体结构是指晶体中原子的排列和有序构成方式。
晶体具有很高
的有序性和周期性。
晶体结构包括原胞和晶格两个方面,原胞是晶体
内最小的结构单元,是由若干个原子组成,而晶格则是指原胞的周期
性堆积方式。
空间点阵是指在三维空间中,由一组平移向量构成的离散的点群。
空间点阵的基本要素包括点群、晶系和晶格参数。
空间点阵是描述晶
体结构的重要工具,可以用于描述晶体的对称性和晶面的取向等方面。
因此,晶体结构和空间点阵都是描述晶体性质和结构的概念,但
是它们描述的方面略有不同。
晶体结构主要关注原子的有序排列和构
成方式,而空间点阵则更侧重于描述晶体的对称性和晶面取向。