1、晶体特征和空间点阵
- 格式:ppt
- 大小:7.84 MB
- 文档页数:101
第七章晶体结构第一节晶体的点阵结构一、晶体及其特性晶体是原子(离子、分子)或基团(分子片段)在空间按一定规律周期性重复地排列构成的固体物质。
晶体中原子或基团的排列具有三维空间的周期性,这是晶体结构的最基本的特征,它使晶体具有下列共同的性质:(1)自发的形成多面体外形晶体在生长过程中自发的形成晶面,晶面相交成为晶棱,晶棱会聚成顶点,从而出现具有几何多面体外形的特点。
晶体在理想环境中应长成凸多面体。
其晶面数(F)、晶棱数(E)、顶点数(V)相互之间的关系符合公式:F+V=E+2 八面体有8个面,12条棱,6个顶点,并且在晶体形成过程中,各晶面生长的速度是不同的,这对晶体的多面体外形有很大影响:生长速度快的晶面在晶体生长的时候,相对变小,甚至消失,生长速度小的晶面在晶体生长过程中相对增大。
这就是布拉维法则。
(2)均匀性:晶体中原子周期性的排布,由于周期极小,故一块晶体各部分的宏观性质完全相同。
如密度、化学组成等。
(3)各向异性:由于晶体内部三维的结构基元在不同方向上原子、分子的排列与取向不同,故晶体在不同方向的性质各不相同。
如石墨晶体在与它的层状结构中各层相平行方向上的电导率约为与各层相垂直方向上电导率的410倍。
(4)晶体有明显确定的熔点二、晶体的同素异构由于形成环境不同,同一种原子或基团形成的晶体,可能存在不同的晶体结构,这种现象称为晶体的同素异构。
如:金刚石、石墨和C60是碳的同素异形体。
三、晶体的点阵结构理论1、基本概念(1)点阵:伸展的聚乙烯分子具有一维周期性,重复单位为2个C原子,4个H 原子。
如果我们不管其重复单位的内容,将它抽象成几何学上的点,那么这些点在空间的排布就能表示晶体结构中原子的排布规律。
这些没有大小、没有质量、不可分辨的点在空间排布形成的图形称为点阵。
构成点阵的点称为点阵点。
点阵点所代表的重复单位的具体内容称为结构基元。
用点阵来研究晶体的几何结构的理论称为点阵理论。
(2)直线点阵:根据晶体结构的周期性,将沿着晶棱方向周期的重复排列的结构单元,抽象出一组分布在同一直线上等距离的点列,称直线点阵。
第1章晶体学基础1.1复习笔记一、空间点阵1.晶体特征和空间点阵概述(1)晶体特征晶体的一个基本特征是具有周期性。
(2)空间点阵空间点阵是指用来描述晶体中原子或原子集团排列的周期性规律的在空间有规律分布的几何点的集合。
2.晶胞、晶系和点阵类型(1)晶胞①晶胞的定义空间点阵可以看成是由最小的单元——平行六面体沿三维方向重复堆积(或平移)而成。
这样的平行六面体称为晶胞。
②点阵常数a.描述晶胞的大小:三条棱的长度a,b和c;b.描述晶胞的形状:棱之间的夹角α,β和γ。
③选取晶胞的条件a.能反映点阵的周期性;b.能反映点阵的对称性;c.晶胞的体积最小。
(2)晶系按照晶胞的大小和形状的特点,或按照6个点阵常数之间的关系和特点,可以将各种晶体归为7种晶系。
表1-1 7种晶系(3)点阵类型①简单三斜点阵(如图1-1(1)所示);②简单单斜点阵(如图1-1(2)所示);③底心单斜点阵(如图1-1(3)所示);④简单斜方点阵(如图1-1(4)所示);⑤底心斜方点阵(如图1-1(5)所示);⑥体心斜方点阵(如图1-1(6)所示);⑦面心斜方点阵(如图1-1(7)所示);⑧六方点阵(如图1-1(8)所示);⑨菱方点阵(三角点阵)(如图1-1(9)所示);⑩简单正方(或四方)点阵(如图1-1(10)所示);⑪体心正方(或四方)点阵(如图1-1(11)所示);⑫简单立方点阵(如图1-1(12)所示);⑬体心立方点阵(如图1-1(13)所示);⑭面心立方点阵(如图1-1(14)所示)。
图1-1 14种空间点阵(4)布拉维点阵与复式点阵①布拉维点阵:由等同点构成的点阵;②复式点阵:由几个布拉维点阵穿插而成的复杂点阵。
二、晶面指数和晶向指数1.晶面指数和晶向指数(1)晶面指数将截距的倒数化成三个互质的整数h,k,l,则(hkl)称为待标晶面的晶面指数。
(2)晶向指数将晶向上除原点以外的任一点的坐标x,y,z化成互质整数u,v,w,得到晶向指数[uvw]。
1 空间点阵与晶体结构的异同空间点阵晶体结构人为的、抽象的几何图形客观的具有具体的物质内容,其基本的单元是结构单元(原子或离子)组成空间点阵的结点是没有物质内容的几何点结构单元与结点在空间排列的周期是一致的,或者说它们具有同样的T矢量;抽象的空间点阵不能脱离具体的晶体结构而单独存在,所以它不是一个无物质基础的纯粹的几何图形。
这种抽象能更深入地反映事物的本质与规律,因此是一个科学的抽象。
空间点阵只是一个几何图形,它不等于晶体内部具体的格子构造,是从实际晶体内部结构中抽象出来的无限的几何图形。
虽然对于实际晶体来说,不论晶体多小,它们所占的空间总是有限的,但在微观上,可以将晶体想象成等同点在三维空间是无限排列的。
2 在同一行列中结点间距是相等的;在平行的行列上结点间距是相等的;不同的行列,其结点间距一般是不等的(某些方向的行列结点分布较密;另一些方向行列结点的分布较疏。
)3 面网密度:面网上单位面积内结点的数目面网间距:任意2个相邻面网的垂直距离相互平行的面网的面网密度和面网间距相等面网密度大的面网其面网间距也大4 宏观晶体中对称要素的集合,包含了宏观晶体中全部对称要素的总和以及它们相互之间的组合关系(1)对称变换的集合——对称变换群(2)对称要素的集合——对称要素群合称对称群在宏观晶体中所存在的对称要素都必定通过晶体的中心,因此不论对称变换如何,晶体中至少有一个点是不变的,所以将对称型称为点群,该点称为点群中心5 点阵几何元素的表示法☆坐标系的确定任一点阵结点------------坐标原点单位平行六面体的三个互不平行的棱---坐标轴点阵常数a、b、c所代表的三个方向---x、y、z轴坐标单位:a、b、c ☆结点的位置表示法以它们的坐标值来表示的。
6 晶向的表示法晶向—空间点阵中由结点连成的结点线和平行于结点线的方向晶向指数uvw—通过原点作一条直线与晶向平行,将这条直线上任一点的坐标化为没有公约数的整数。
第1章晶体学基础1.1复习笔记一、空间点阵1.晶体特征和空间点阵概述(1)晶体特征晶体的一个基本特征是具有周期性。
(2)空间点阵空间点阵是指用来描述晶体中原子或原子集团排列的周期性规律的在空间有规律分布的几何点的集合。
2.晶胞、晶系和点阵类型(1)晶胞①晶胞的定义空间点阵可以看成是由最小的单元——平行六面体沿三维方向重复堆积(或平移)而成。
这样的平行六面体称为晶胞。
②点阵常数a.描述晶胞的大小:三条棱的长度a,b和c;b.描述晶胞的形状:棱之间的夹角α,β和γ。
③选取晶胞的条件a.能反映点阵的周期性;b.能反映点阵的对称性;c.晶胞的体积最小。
(2)晶系按照晶胞的大小和形状的特点,或按照6个点阵常数之间的关系和特点,可以将各种晶体归为7种晶系。
表1-1 7种晶系(3)点阵类型①简单三斜点阵(如图1-1(1)所示);②简单单斜点阵(如图1-1(2)所示);③底心单斜点阵(如图1-1(3)所示);④简单斜方点阵(如图1-1(4)所示);⑤底心斜方点阵(如图1-1(5)所示);⑥体心斜方点阵(如图1-1(6)所示);⑦面心斜方点阵(如图1-1(7)所示);⑧六方点阵(如图1-1(8)所示);⑨菱方点阵(三角点阵)(如图1-1(9)所示);⑩简单正方(或四方)点阵(如图1-1(10)所示);⑪体心正方(或四方)点阵(如图1-1(11)所示);⑫简单立方点阵(如图1-1(12)所示);⑬体心立方点阵(如图1-1(13)所示);⑭面心立方点阵(如图1-1(14)所示)。
图1-1 14种空间点阵(4)布拉维点阵与复式点阵①布拉维点阵:由等同点构成的点阵;②复式点阵:由几个布拉维点阵穿插而成的复杂点阵。
二、晶面指数和晶向指数1.晶面指数和晶向指数(1)晶面指数将截距的倒数化成三个互质的整数h,k,l,则(hkl)称为待标晶面的晶面指数。
(2)晶向指数将晶向上除原点以外的任一点的坐标x,y,z化成互质整数u,v,w,得到晶向指数[uvw]。
1 空间点阵与晶体结构的异同空间点阵晶体结构人为的、抽象的几何图形客观的具有具体的物质内容,其基本的单元是结构单元(原子或离子)组成空间点阵的结点是没有物质内容的几何点结构单元与结点在空间排列的周期是一致的,或者说它们具有同样的T矢量;抽象的空间点阵不能脱离具体的晶体结构而单独存在,所以它不是一个无物质基础的纯粹的几何图形。
这种抽象能更深入地反映事物的本质与规律,因此是一个科学的抽象。
空间点阵只是一个几何图形,它不等于晶体内部具体的格子构造,是从实际晶体内部结构中抽象出来的无限的几何图形。
虽然对于实际晶体来说,不论晶体多小,它们所占的空间总是有限的,但在微观上,可以将晶体想象成等同点在三维空间是无限排列的。
2 在同一行列中结点间距是相等的;在平行的行列上结点间距是相等的;不同的行列,其结点间距一般是不等的(某些方向的行列结点分布较密;另一些方向行列结点的分布较疏。
)3 面网密度:面网上单位面积内结点的数目面网间距:任意2个相邻面网的垂直距离相互平行的面网的面网密度和面网间距相等面网密度大的面网其面网间距也大4 宏观晶体中对称要素的集合,包含了宏观晶体中全部对称要素的总和以及它们相互之间的组合关系(1)对称变换的集合——对称变换群(2)对称要素的集合——对称要素群合称对称群在宏观晶体中所存在的对称要素都必定通过晶体的中心,因此不论对称变换如何,晶体中至少有一个点是不变的,所以将对称型称为点群,该点称为点群中心5 点阵几何元素的表示法☆坐标系的确定任一点阵结点------------坐标原点单位平行六面体的三个互不平行的棱---坐标轴点阵常数a、b、c所代表的三个方向---x、y、z轴坐标单位:a、b、c☆结点的位置表示法以它们的坐标值来表示的。
6 晶向的表示法晶向—空间点阵中由结点连成的结点线和平行于结点线的方向晶向指数uvw—通过原点作一条直线与晶向平行,将这条直线上任一点的坐标化为没有公约数的整数。
1空间点阵与晶体结构的异同空间点阵与晶体结构是固体材料中两个非常关键的概念。
它们描述了物质在空间中的排列方式以及它们的性质。
虽然这两个概念有一些相似之处,但它们也有一些重要的不同之处。
首先,空间点阵是指通过一组基(basis)向量的平移操作得到的无限排列的点集合。
每个点可以看作是基向量的线性组合,这样可以构成空间中离散的格点。
格点可以是一维、二维或三维的。
它们可以是规则的,也可以是不规则的。
例如,方阵、正方形、六边形和三角形都可以是二维点阵的例子。
空间点阵中的每个点都具有同样的环境,即它们的周围环境是完全一样的。
晶体结构是指物质中原子、分子或离子的排列方式。
与空间点阵不同的是,晶体结构描述的是真实物质中存在的特定的排列方式。
晶体结构可以通过X射线衍射、电子显微镜、扫描隧道显微镜等实验方法来确定。
晶体结构描述了物质中原子或离子的种类、数量、空间位置以及它们之间的相互作用。
晶体结构可以是简单的、周期的,也可以是错位的或无序的。
晶体结构的确定对于研究物质的性质非常重要,例如电导性、力学性质、光学性质等。
虽然空间点阵和晶体结构有一些不同之处,但它们也有一些重要的相似之处。
首先,它们都描述了物质的排列方式。
无论是空间点阵还是晶体结构,它们都可以通过一组基向量进行描述。
其次,它们都具有周期性。
在空间点阵中,每个点都具有相同的环境;而在晶体结构中,原子或离子也具有相同的环境。
这种周期性使得物质具有一些特殊的性质,例如电导性、热导性、光学性质等。
与此同时,空间点阵和晶体结构也有一些重要的不同之处。
最重要的区别之一是晶体结构具有原子或离子的详细信息,而空间点阵只描述了格点的位置。
另一个重要的不同之处是晶体结构是真实物质中存在的实际排列方式,而空间点阵只是一种理想化的模型。
此外,空间点阵可以具有任何形式,而晶体结构受到物质的化学成分和物理性质的限制。
总之,空间点阵和晶体结构是描述物质排列方式的重要概念。
虽然它们有一些相似之处,例如周期性和基向量的使用,但它们也有一些重要的不同之处,例如晶体结构具有原子或离子的详细信息,而空间点阵只描述了格点的位置。
晶体结构和空间点阵的异同
晶体结构和空间点阵是固体物理学中两个基本概念。
虽然它们有联系,但仍有一些不同之处。
下面是它们的异同之处简要介绍:
一、异同
1.定义晶体结构指的是一个由周期性排列的原子、离子或分子组成的三维空间结构;而空间点阵指的是无限连续重复的平移对称性规律,即一组满足某些几何条件的无穷多点在空间中无限延伸的排列方式。
2.特征晶体结构是由一定数量的单元组成的三维连续排列,它们具有明确的界面,并且每个单元都具有相同的结构和化学组成,即呈现出高度的重复性。
而空间点阵则没有明确的界面,任何一部分的点都可以作为整个空间的代表。
它具有平移对称性,重复性强。
3.分类晶体结构可以分为14种布拉维格子以及其他非周期性结构。
每个晶体结构由一组指定的晶体轴和角度来描述。
而空间点阵也可以用类似的方式来进行分类。
在三维空间内,总共有17种不同的空间对称组,称为空间点群。
4.性质晶体结构具有晶体学的性质,例如各向同性、能带结构等。
而空间点阵则是对于一些物理问题求解的基础,比如电子、光子在周期性势场中的行为特征。
二、总结
晶体结构和空间点阵都是描述固体物理学基本概念。
晶体结构由周期性排列的原子、离子或分子组成,呈现高度的
重复性,通过指定晶体轴和角度来进行分类。
而空间点阵是无穷多点在空间中无限延伸的排列方式,具有平移对称性,通过分类后得到17种不同的空间对称组。
两者之间虽然存在联系,但仍有不同之处。
晶体结构与空间点阵的区别
晶体结构和空间点阵是固体物理学中两个重要的概念。
虽然它们都涉及到晶体的结构,但它们之间存在着明显的区别。
晶体结构是指晶体中原子、离子或分子的排列方式。
晶体结构的研究是固体物理学的重要分支之一。
晶体结构的研究可以帮助我们了解晶体的物理性质,例如热膨胀、热导率、电导率等。
晶体结构的研究也对材料科学和化学等领域有着重要的应用价值。
空间点阵是指空间中一组点的集合,这些点具有一定的对称性。
空间点阵是晶体结构的数学描述。
空间点阵可以用来描述晶体中原子、离子或分子的排列方式。
空间点阵的研究可以帮助我们了解晶体的对称性和周期性。
空间点阵的研究也对晶体的物理性质有着重要的影响。
晶体结构和空间点阵之间的区别在于,晶体结构是描述晶体中原子、离子或分子的排列方式,而空间点阵是描述空间中一组点的集合。
晶体结构是实际存在的物质,而空间点阵是数学上的概念。
晶体结构是由原子、离子或分子的性质决定的,而空间点阵是由对称性决定的。
晶体结构和空间点阵是固体物理学中两个重要的概念。
它们之间存在着明显的区别。
晶体结构是描述晶体中原子、离子或分子的排列方式,而空间点阵是描述空间中一组点的集合。
晶体结构和空间点
阵的研究对于了解晶体的物理性质和对称性有着重要的意义。