三甘醇脱水系统.
- 格式:ppt
- 大小:800.00 KB
- 文档页数:3
天然气三甘醇脱水一体化集成装置工艺运行参数优化前言三甘醇溶剂吸收法进行天然气脱水,是天然气工业中应用较为广泛的脱水方法。
通过对脱水工艺流程各参数优化,制定定量和变量进行分析、模拟,在满足外输天然气气质要求的前提下,优选出最佳运行参数,达到降本增效、绿色运行的目的。
1、三甘醇脱水系统工艺流程在天然气进入三甘醇脱水装置脱水前,游离水经前端分离器分离,基本完成分离,三甘醇脱水的主要目的是将天然气中的饱和水脱除,使得天然气达到外输水露点要求。
1.1三甘醇脱水流程含饱和水的湿天然气从三甘醇吸收塔下部进入,与从塔顶下来的三甘醇贫液逆流接触,以脱除天然气中的饱和水,脱水后的净化气经塔顶丝网除雾除去大于5μm的三甘醇液滴后由塔顶部出塔。
干天然气出塔后,经过套管式气液换热器与进塔前的热贫甘醇换热,降低贫三甘醇进塔温度。
1.2三甘醇再生部分贫三甘醇由塔上部进入吸收塔,由上而下与由下而上的湿天然气充分接触,吸收天然气饱和水,形成三甘醇富液。
三甘醇富液从吸收塔下部流出,经三甘醇循环泵进入精馏柱换热盘管,加热至35~60℃后进入闪蒸罐,闪蒸分离出溶解在富液中的烃气体。
三甘醇从闪蒸罐下部流出,依次进入滤布过滤器和活性炭过滤器。
通过滤布过滤器除去富甘醇中5μm以上的固体杂质;通过活性炭过滤器吸附掉富液中的部分重烃及三甘醇再生时的降解物质。
经过滤后的三甘醇富液进入贫富液换热器,与三甘醇贫液换热升温至130℃~160℃后进入精馏柱。
在精馏柱中,通过精馏段、塔顶回流及塔底重沸的综合作用,使三甘醇富液中的水份及很小部分烃类分离出塔。
塔底重沸温度为190℃~204℃,三甘醇重量百分比浓度可达98.5%~99.0%。
重沸器中的三甘醇贫液经贫液汽提柱,溢流至重沸器下部三甘醇缓冲罐,在贫液汽提柱中可由引入汽提柱下部的热干气对贫液进行汽提,经过汽提后的贫甘醇重量百分比浓度可达99.8%。
三甘醇贫液经过缓冲罐外壁的冷却,温度降至170℃左右出缓冲罐,进入贫富液换热器,与三甘醇富液换热,温度降至55~65℃左右进三甘醇循环泵,由三甘醇循环泵增压后进套管换热器与外输气换热至25~45℃进入吸收塔循环利用。
第22卷第4期2008年8月全面腐蚀控制TOTAL CORROSION CONTROLVol.22 No.4Aug. 20081概述水是天然气从采出至消费的各个处理加工步骤中最常见的杂质组分,且其含量经常达到饱和。
冷凝水的局部积累将限制管道中天然气的流率,降低输气量,而且水的存在使输气过程增加了不必要的动力消耗;液相水与CO2或H2S接触后会生成具有腐蚀性的酸,H2S不仅导致常见的电化学腐蚀,它溶于水生成的HS-还会促使阴极放氢加快, HS-阻止原子氢结合为分子氢,从而造成大量原子态氢积聚在钢材表面,导致钢材氢鼓泡、氢脆及硫化合物应力腐蚀开裂(SSC;湿天然气中经常遇到的另一个麻烦问题是,其中所含水分和小分子气体及其混合物可在较高的压力和温度高于0℃的条件下,形成一种外观类似于冰的固体水合物。
因此,天然气一般都应先经脱水处理,使之达到规定的指标后才能进入输气干线。
我国强制性国家标准规定:在天然气交接点的温度和压力条件下,天然气的水露点应比最低环境温度低5℃。
在CO2或H2S存在的情况下,目前海洋工程设计过程中认为只有当水露点比最低操作温度低10℃时介质不具有腐蚀性。
甘醇类化合物具有很强的吸湿性,其水溶液冰点较低,故广泛应用于天然气脱水。
最初应用于工业的是二甘醇(DEG,上世纪50年代后主要采用三甘醇(TEG,其热稳定性更好,容易再生,蒸气压也更低,且相同质量浓度下TEG可达到更大的露点降,而且TEG的毒性很轻微,沸点较高,常温下基本不挥发,故使用时不会引起呼吸中毒,与皮肤接触也不会造成伤害。
因此,TEG 脱水方法是天然气工业中应用最普遍的方法。
2 TEG脱水系统的工艺流程如图1[1]所示,TEG脱水装置主要包括2部分:天然气在压力和常温下脱水;富TEG溶液在低压和高温下再生(提浓。
此图所示流程包括了若干优化操作方面的考虑,如以气体—TEG换热器调节吸收塔顶温度,以分流(或全部富液换热的方式控制进入闪蒸罐的富液温度,以干气汽提提高贫TEG的浓度,以及设置多种过滤器等。
三甘醇天然气脱水装置技术改造及效果解析1. 引言1.1 三甘醇天然气脱水装置技术改造及效果解析在天然气生产过程中,脱水是一个非常重要的环节,而三甘醇天然气脱水装置是目前广泛使用的一种技术。
随着技术的不断进步和设备的老化,现有装置在运行过程中可能存在一些问题,导致效率不高或者能耗较大。
对三甘醇天然气脱水装置进行技术改造成为必不可少的一步。
本篇文章将对三甘醇天然气脱水装置技术改造及效果进行深入解析。
首先将对现有装置存在的问题进行分析,包括运行不稳定、设备老化等方面。
接着将介绍改造方案的设计与实施过程,包括选用新材料、优化设备结构等内容。
然后将评估改造后的效果,分析技术指标的提升情况以及节能减排效果。
最后将总结三甘醇天然气脱水装置技术改造的实际效果,并展望未来的发展趋势,为行业的进步提供参考。
2. 正文2.1 现有装置存在问题分析1. 能耗高:传统的三甘醇天然气脱水装置在运行过程中消耗大量的能源,尤其是热能和电能的使用量明显偏高,导致能源浪费严重。
2. 操作复杂:现有装置的操作流程繁琐,需要多个工序的紧密配合,操作人员需要具备较高的技术水平,操作难度较大。
3. 产品质量不稳定:现有装置在运行过程中存在产品质量波动较大的情况,造成产品出口质量不稳定,影响了企业的经济效益。
4. 耐久性差:现有装置存在部件损耗快、设备寿命短的问题,需要频繁更换维修,增加了企业的运营成本。
5. 环保要求不达标:传统的三甘醇天然气脱水装置对环境污染较严重,废气排放量较大,无法满足当今环保政策的要求。
2.2 改造方案设计与实施在进行三甘醇天然气脱水装置技术改造时,首先需要对现有装置存在的问题进行全面分析,以明确改造的目标和重点。
接下来,根据问题分析的结果,制定出合理的改造方案,并在实施过程中注意把控好实施的关键节点,确保改造效果能够达到预期的目标。
在改造方案设计阶段,需要首先确定改造的具体内容和范围,例如是否需要更换设备或优化工艺流程。
关于三甘醇脱水工艺的分析为了满足油气田工作的需要,进行三甘醇脱水系统的建立是必要的,因为天然气的内部存在水蒸气,在天然气的压力及其温度影响下,其会形成水化物,如果任由这种水化物的存在,其不利于天然气的有效集输及其深加工。
因此,有必要进行天然气的水蒸气脱除工作。
保证油气田的天然气脱水技术的应用,保证溶剂吸收法及其固体干燥剂吸附法的应用。
目前来说,天然气的脱水方法是非常的多,比如溶液吸收法、直接冷却法、化学反应法等。
标签:天然气;工艺计算;工艺流程;三甘醇;脱水系统前言在天然气脱水的应用实践中,水蒸气的脱水方法非常多,比较常见的就是固體干燥吸附法及其溶剂吸收法,在溶剂吸收法应用过程中,其需要进行甘醇化合物的应用,这涉及到二甘醇、三甘醇等的应用。
通过对天然气三甘醇脱水系统工艺技术的优化,更有利于实现三甘醇脱水系统内部工艺体系的建立,实现其内部各个环节的协调。
这就需要我们进行三甘醇脱水工艺设备的应用,进行脱水注意事项的分析,进行工艺计算步骤的应用,保证现实脱水系统方案的优化,满足实际工作的要求。
1 三甘醇脱水系统应用策略分析(1)通过对天然气脱水环节的优化,更有利于进行天然气集输效益的提升,避免其液态水的渗出,避免其水合物的形成,从而进行管道及其设备腐蚀的控制。
甘醇脱水技术具备良好的应用,其在世界上的应用范围也是比较大的。
通过对甘醇脱水法的应用,可以保证其良好的净化效果,其处理量比较大,其自动化程度非常高,在进行脱水的同时也进行脱油。
三甘醇的获取需要进行乙二醇及其环氧乙烷的共同作用。
在天然气三甘醇脱水系统应用过程中,进行三甘醇加热炉、三甘醇吸收塔、水冷器等的应用,从而提升天然气的脱水效益,满足现实工作的要求,从而保证油气田工作的良好作业。
这就需要我们重视到天然气三甘醇脱水系统的主要应用设备,比如三甘醇循环泵等。
对待那些湿净化天然气需要进行三甘醇吸收塔的进入,这里涉及到吸收塔设备的应用,将其三甘醇贫液进行塔内的逆流接触,从而保证天然气的饱和水三甘醇贫液的吸收应用,保证天然气的良好脱水性,保证其干净,这需要做好三甘醇的吸收塔应用分析工作,进行重力分离、调压、计量等分析工作,保证吸收塔的三甘醇富液的排出,这个过程中需要进行分离器的应用。
论文目录一.三甘醇脱水系统设计摘要及绪论----------------------------------------1二.工艺流程特点----------------------------------------------------------------3三.三甘醇吸收脱水的原理流程----------------------------------------------5四.三甘醇脱水的工艺参数选取----------------------------------------------8五.三甘醇脱水装置工艺计算-------------------------------------------------12一.分离器的选择与工艺计算---------------------------------------------12二.吸收塔的工艺计算------------------------------------------------------221.进塔贫甘醇溶液浓度的确定---------------------------------------222.吸收剂贫三甘醇溶液用量的确定---------------------------------233.吸收塔塔板数的确定------------------------------------------------254.甘醇吸收塔的选型和塔径以及各种参数计算------------------30三.换热器的设计------------------------------------------------------------40四.管道的设计---------------------------------------------------------------42五.流量计的设计------------------------------------------------------------44六.参考文献-----------------------------------------------------------------------45三甘醇脱水系统设计一.摘要及绪论1.摘要:天然气在离开油藏时或自地下储集层中采出的的天然气及脱硫后的天然气通常含有水蒸气,有些气还含有H2S和CO2,酸性气体会便管线和设备腐蚀,水蒸气在天然气的压力和温度改变时容易形成水化物,不符合天然气集输和深加工的要求,因此必须脱除天然气中的水蒸气、H2S和CO2。
三甘醇脱水流程及设备原理三甘醇脱水是指将三甘醇中的水分脱除,使其达到一定的干燥程度的过程。
三甘醇是一种重要的有机化工原料,广泛应用于化妆品、食品添加剂、医药、合成树脂等领域。
在许多应用中,要求三甘醇的含水量低于0.5%,因此进行脱水是必要的。
1.预处理:将原始的三甘醇经过过滤、脱色等预处理步骤,去除其中的杂质和颜色。
2.加热:将经过预处理的三甘醇加热至一定温度。
加热过程中,会将水分蒸发出来,使其与三甘醇分离。
3.蒸汽分离:将蒸发出的水分与部分三甘醇一起通过蒸汽分离器分离。
蒸汽分离器通常采用板式或塔式结构,水分和三甘醇在其中进行传质与相互分离。
4.冷却:将分离得到的三甘醇冷却至室温,使其凝结并收集。
加热器通常采用蒸汽加热的方式,通过蒸汽的热量将三甘醇加热至一定温度。
加热器内部通常采用管束或板式结构,使蒸汽与三甘醇充分接触,提高加热效果。
蒸汽分离器是三甘醇脱水过程中的关键设备。
其主要原理是利用蒸馏的原理,通过蒸汽的传质作用将水分从三甘醇中分离出来。
蒸汽分离器的结构通常是多级塔板或塔壁,其中包括上下塔头、塔板或塔壁间隔、塔板孔板等部件。
蒸汽分离器内部的结构设计和操作条件,如塔板孔板的孔径和排列方式、蒸汽和三甘醇的进出口位置等,对分离效果有重要影响。
冷却器用于将分离得到的三甘醇冷却至室温,并使其凝结为液体。
冷却器通常采用换热设备,如管壳式换热器或冷却塔,通过将三甘醇与冷却介质进行热量交换,使其温度降低。
此外,三甘醇脱水流程中还需要配套的控制系统,对加热温度、蒸汽流量、冷却介质温度等进行监测和调节,以保证脱水过程的稳定性和效果。
总之,三甘醇的脱水过程主要包括预处理、加热、蒸汽分离和冷却。
脱水设备主要包括加热器、蒸汽分离器和冷却器等。
脱水过程的效果和设备的设计与操作条件密切相关,需要经过一定的试验和优化,以实现高效的脱水效果。