2018全国高中数学联赛模拟试题13
- 格式:pdf
- 大小:260.27 KB
- 文档页数:4
2018年全国高中数学联赛浙江省预赛高三数学试题一、填空题1 1= 一-;—1 .已知a 为正实数,且 “1是奇函数,则⑷的值域为.1111 1 1 ― --- ----------- =- - + f (x )=--— 由小)为奇函数可知a - + 19「+ 1,解得a= 2,即 22、由此得f (x )的值域为। 2 2'.2018「2%1.3 ) 鼻二1 3- 5a +1£ 南满足]一 ,n*i- a (n=1, 2,…),则 n = 1520198077【答案】16 16 【解析】【详解】1 / 八■ +[二5皆十1小二1+『5阿+1=%由4" 4"56故答案为:.2.设数列所以 2018V Lu1<-2c201S=不5 +5 +... + S20185x c 2018 1t=—行 口-162018 S 2019£07 71616(3n \小 4风0 E —cos(a + p)=3.已知 '4",56I 4.J 13,则【解析】【详解】%£ E (彳再)孙3 +位二Mi 7Tcos\p + —I = cos (a + 所以 sin(a + B)——,得.J71 a—4亡叫cr 一: 6二 - 13, 5665【解析】【详解】加索-34.在八个数字2, 4, 6, 7, 8, 11, 12, 13中任取两个组成分数.这些分数中有个既约分数.【答案】36【解析】【详解】在7, 11, 13中任取一个整数与在2, 4, 6, 8, 12中任取一个整数构成既约分数,共有3 5 种;在7, 11, 13中任取两个整数也构成既约分数,共有A3,6中.合计有36种不同的既约分数./ 1 ^2018 + (1/01S _5,已知虚数z满足P+1=Q,则上』H .【答案】I【解析】【详解】1 2018 上r , 3^72 2.1 之上[/ 1 \2018 + ( 1 JOIS _ 工 ,1 _(Z)- _ . . I _ 1I? - 1 l z _ 1 _ t2,2018 - t3,1345 _ z-所以^ .6.设明=1。
⎫ ⎩ ⎭⎪ + 2高中联赛模拟试题 1一试部分考试时间:80 分钟满分:120 分一、填空题(每小题 8 分,共 64 分)1. 设集合 A = {x -2 ≤ x < 5}, B = ⎧x 3a > 1.若 A B ≠∅ ,则实数 a 的取值范围是.⎨ x - 2a ⎬2.已知甲、乙两只盒子中装有相同规格的乒乓球,其中,甲盒中有三个白球和三个红球,乙盒中仅有三 个白球.若从甲盒中任取三个放入乙盒中,则从乙盒中任取一个是红球的概率是.2 c os 2⎛ 1 x - 1 ⎫- x 3.函数f ( x ) = ⎝ 2 2 ⎭ 的对称中心的坐标为 .x - 1V + V 4.已知四棱锥 S - ABCD 的底面 ABCD 是平行四边形,O 是四棱锥内任意一点.则 四面体OSAB 四面体OSCD=V 四面体OSBC + V 四面体OSDA.5.在椭圆 x 2 = 1(a > b > 0) 中,记右顶点、上顶点、右焦点分别为 A , B , F .若 ∠AFB = ∠BAF + 90 ,a b则椭圆的离心率为 .6.平面上 n 个三角形最多把平面分成 部分.sin2π ⋅ sin 8π7.计算: 15 15 = .cos π ⋅ cos 2π ⋅ cos4π 5 5 58. 设复数 α, β ,γ , z 满足 α + β + γ = αβ + βγ + γα = αβγ = 1.则 α - z + β - z + γ - z 的最小值为 .2y 2BB 1CC 1( )二、解答题(第 9 小题 16 分,第 10、11 小题 20 分,共 56 分)9.已知动直线 l 过定点 A (2, 0) 且与抛物线 y = x 2+ 2 交于不同的两点B ,C .设 B , C 在 x 轴上的射影分别为 B 1 ,C 1 . P 为线段 BC 上的点,且满足 PC ,求 ∆POA 的重心的轨迹方程.10. 设 f ( x ) = sin x .已知当 x ∈[0,π ]时,有 sin x + 1 ≥ 2x + cos x .证明: f ⎛ π ⎫ + f ⎛ 2π ⎫ + + f ⎛ (n + 1)π ⎫ 2n + 1⎪ 2n + 1⎪ 2n + 1 ⎪ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭p11. 已知 p 为大于 3 的素数.求 ∏ k 2 + k + 1 除以 p 的余数.k =1高中联赛模拟试题 1加试部分考试时间:150 分钟满分:180 分一、(本题满分 40 分)已知a, b, c∈,且+ c = 0 .证明:a = b = c = 0二、(本题满分 40 分)a2b2 b2c2 c2 a2 31)已知正实数a, b, c满足a2 + b2 + c2 = 1.证明:++≥.abc + c4abc + a4abc + b4 2三、(本题满分 50 分)已知圆Γ 内有两定点A 、B ,过A 作一动弦CD ,延长CB 、DB ,与圆Γ 分别交于点E 、F .证明:弦EF 通过一个与C 、D 无关的定点.四、(本题满分 50 分)在80 座城市之间执行如下两种方式的飞行航线:(1)任意一座城市至少与七座城市有直航;(2)任意两座城市可以通过有限次直航来连接.求最小的正整数n ,使得无论如何安排满足条件的航线,任意一座城市到其他城市均最多可以经过n 次直航到达.C 3 3高中联赛模拟试题 1解答一试部分考试时间:80 分钟满分:120 分一、填空题(每小题 8 分,共 64 分)1. 0 < a < 5或 -1 < a < 0 .2解析:由题意可知 B = {x 2a < x < 5a , a > 0}⋃{x 5a < x < 2a , a < 0}. 又因为 A ⋂ B ≠ ∅ , ⇒ 0 < 2a < 5或 - 2 < 2a < 0 .2.1 .4C k C 3-k 解析:由题设知乙盒中红球个数的可能值 ξ =0,1,2,3 .故 P (ξ = k ) = 3 3(k = 0,1, 2,3).从而得出6P ( A ) = ∑P (ξ = k )P ( A ξ = k ) = 1.k =04 3.(1, -1) .解析:由题设知 f ( x ) = cos ( x -1) - 1 .因为 g ( x ) = cos x为奇函数,其对称中心为 (0, 0) ,故 f ( x ) 的对称中心为 (1, -1) .x -1 x4.1.解析:延长 SO 与底面 ABCD 交于点 X .由底面 ABCD 是平行四边形,⇒ S ∆XAB + S ∆XCD = S ∆XBC + S ∆XDA ⇒ V 四面体OSAB + V 四面体OSCD = V 四面体OSBC + V 四面体OSDA5.5 -1 .2解析:设左焦点为 F '.则由 ∠AFB = ∠BAF + 90 ⇒ ∠AF ' B + ∠BAF ' = 90 ⇒ AB ⊥ BF ' .又 AB 2= a 2 + b 2 , BF ' 2= a 2 , AF ' 2= (a + c )2.由勾股定理知 a 2 + b 2 + a 2 = (a + c )2,由此, ⇒ c = a6.3n 2 - 3n + 2 .解析:设 n 个三角形最多把平面分成 S n 个部分. S 1 = 2 .因为任意一个三角形与另一个三角形至多有 6 个交点,这些交点将该三角形的周长分成至多 6(n - 1)1 12 2 0 0⎨ BB 1 CC 1 AB 1 AC 1 1 , ⎝ ⎭段,每一段将其所在平面一分为二,增加了 6(n - 1) 个部分.从而 S n - S n -1 = 6(n - 1)(n ≥ 2) .7.-2 . 解析:sin 2π ⋅ sin 8π8sin πsin 2π sin 8π4sin π ⎛cos 2π - cos 2π ⎫2⎛sin 3π - sin π ⎫ + 2sin π15 15515 15 5 5 3⎪ 5 5 ⎪5 cos π ⋅ cos 2π ⋅ cos 4π= cos 8π⎝ ⎭ = cos 8π ⎝ ⎭ . sin 8π5 5 555 58.1 +解析:注意到 α, β ,γ 为一元三次方程 x 3 - x 2 + x -1 = 0 的根,从而可令α = i , β = -i ,γ = 1.在复平面上,⎫令 α, β ,γ 分别对应于点 A (0,1), B (0, -1),C (1, 0) .当 z 取到 ∆ABC 的费马点⎪ 时取值最小. ⎪ ⎝ ⎭二、解答题(第 9 小题 16 分,第 10、11 小题 20 分,共 56 分)9. 当 l ⊥ x 轴时,直线 l 与抛物线不可能有两个交点. 故设直线l : y = k ( x - 2). 与抛物线的方程联立得: x 2 - kx + 2k + 2 = 0 .(1) 由 ∆ > 0 ⇒ k > 4 + 2 6或k < 4 - 2)设 B ( x , y ),C ( x , y ), P ( x , y ) .则 ⎧x 1 + x 2 = k , (3)令 λ =CP= = = 2 - x 1 2 - x 2⎩x 1 x 2 = 2k + 2.(4)⎧ ⎪⎪x = 设重心 G ( x , y ) .则 ⎨ (2 + x 0 ), 3 .将式(2),(3),(4)代入,并注意到 y = k ( x- 2)得: 0 0⎪ y = y .⎪⎩ 3 0⎧x = 4 - 4k ⎪⎪ 3(4 - k ) ⎨⇒ 12x - 3y - 4 = 0 .从而得 k = 4 y ,代入(2)式得: ⎪ y = ⎪⎩-4k 4 - k y - 44 y < 4 或 4 < y < 4 G 的轨迹方程为:3 3⎛ 12x - 3y - 4 = 0 4 -y < 4或4 < y < 4 . 3 3 ⎪1- ,故⎝ ⎭3 ( ) ( ) 10. 由已知条件 ⇒ sin x - cos x ≥ 2 x -1 ⇒ ⎛ x - π ⎫ ≥ 2x -1 .又当1 ≤ k ≤ n + 1时,0 ≤k π + π ≤ π . π 4 ⎪ π 2n +1 4⎝ ⎭而 2 sin k π ≥ 2 ⎛ k π + π ⎫ -1 = 2k 12n + 1 π 2n +1 4 ⎪2n +1 2⎛ π ⎫ ⎛ 2π ⎫ ⎛ (n + 1)π ⎫⎤ n +1 ⎛ 2k 1 ⎫ 3(n + 1) f ⎪ + f ⎪ + + f⎪⎥ ≥ ∑ - ⎪ = ⎢⎣ ⎝ 2n + 1 ⎭ ⎝ 2n + 1 ⎭ ⎝ 2n + 1 ⎭⎥⎦ k =1 ⎝ 2n + 1 2 ⎭ 2 (2n +1)⎛ π ⎫ ⎛ 2π ⎫⎛ (n + 1)π ⎫ n + 1) f ⎪ + f ⎪ + + f⎪ ≥ . ⎝ 2n + 1⎭ ⎝ 2n + 1⎭ ⎝ 2n + 1 ⎭ 4(2n +1)11. 注意到 k ≠ 1时, k 2 + k + 1 =k-1 .而当 k 取遍 2,3, , p 时,分母 k -1 取遍1, 2, , p -1. k -1由费马小定理, x p -1 ≡ 1(mod p ) 在1 ≤ x ≤ p 恰有 p -1 个解.(1)当 p ≡ 1(mod3 )时, x 3 -1 为 x p -1 -1 的因子,于是 x 3 -1 ≡ 0(mod p )在1 ≤ x ≤ p 内恰有三个解.于 是当 k 取遍 2,3, , p 时,分子 k 3 -1 中恰有两项为 p 的倍数,而分母不含 p 的因子. p故 ∏ k 2 + k + 1 ≡ 0(mod p ) .k =1(2)当 p ≡ 2(mod 3)时,3 与 p -1 互素,于是存在整数 a ,b 使得 3a + ( p - 1)b = 1. 假设有一个 2 ≤ k ≤ p 满足k 3 ≡ 1(mod p ) .由费马小定理得 k ≡ k 3a +( p -1)b≡ 1(mod p ),矛盾. 因此, x 3 -1≡ 0(mod p )只有 x ≡ 1(mod p ) 这一个解.故当 k 取遍1, 2, , p 时, k 3 除以 p 的余数两两不同,正好也取遍1, 2, , p .从而当 k 取遍 2,3, , p 时, k 3 -1 除以 p 的余数取遍1, 2, , p -1.p3p p3故 ∏ k -1 ≡ 1(mod p ) ⇒ ∏ (k 2 + k + 1) ≡ 3 ∏ k -1≡ 3(mod p ) .k =2 k -1 k =1 k =2 k -1p综上, ∏ k 2 + k + 1 除以 p 的余数为 0 或 3.k =1(( ) ( ) ( )) ( )t1一、(本题满分 40 分)加试部分考试时间:150 分钟满分:180 分显然, a , b , c 中有一个为 0,则其余两个也为 0. 下面假设 a , b , c 均不为 0.易证明:若 a , b , c 均为非 0 + c = 0 ;(1)d ,e ,f 均为非 0 有理数,且+ f = 0 ,则 a = b = c .d e f(1+ 3a = 0 ;(1)式两边同时乘以+ 33b= 0 . 于是, b = c = 3a= k .(2)c 3a 3b由 a , b , c 均为非 0 有理数知其中必有两个同号.结合(2)式,知 a , b , c 同号.从而(1)式左边不为 0,矛盾. ⇒ a = b = c = 0 .二、(本题满分 40 分)x 2 y 2 z 2令 a 2= yz ,b 2= zx , c 2= xy .则 xy + yz + zx = 1.原式左边 = + x + yz y + zx z + xy.由柯西不等式得:⎛ x 2y 2 z 2 ⎫ 2+ + ⎪x + yz + y + zx + z + xy ≥ x + y + z ⎝ x + yz y + zx z + xy ⎭x 2 y 2 z 2( x + y + z )2( x + y + z )2⇒ + + ≥ = x + yz y + zx z + xy x + y + z + ( yz + zx + xy ) . x + y + z + 1 由 ( x + y + z )2≥ 3( x y + yz + zx ) ⇒ x + y + z ≥t = x + y + z2 因为 f (t ) = (t + 1) + 2 ,在区间) 上单调递增,所以:t + 1 t + 1 331)原式左边 ≥ f (t ) ≥.2三、(本题满分 50 分)连结 AB 并延长与圆 Γ 交于点 G , H ,与弦 EF 交于点 P . 设 ∠ECD = ∠EFD = α,∠CDF = ∠CEF = β .由 S ∆ABC ⋅ S ∆PBF ⋅ S ∆ABD ⋅ S ∆PBE = 1 ,得AC ⋅ BC sin α ⋅ PB ⋅ FB ⋅ AD ⋅ BD sin β ⋅ PB ⋅ EB = 1.S ∆PBF S ∆ABD S ∆PBE S ∆ABC PF ⋅ BF sin α AB ⋅ DB PE ⋅ BE sin β AB ⋅ C B 整理得 PB 2 ⋅ AC ⋅ AD = AB 2 ⋅ PE ⋅ PF .在圆 Γ 中,由相交弦定理得:PB 2 ⋅ AG ⋅ AH = AB 2⋅ PG ⋅ PH .(1) 设 AB = a , PB = b , BG = c > a , BH = d > b ,其中, a , c , d 为常数, b 未定.则(1)式 ⇔ b 2 (c - a )(d + a ) = a 2 (d - b )(c + b ) . 整理得 ((c - a )d + ac )b 2 + a 2 (c - d )b - a 2cd = 0 .该二次方程的二次项系数与常数项符号相反,因此有且仅有一个正数解.故 b 是定值.即 BP 是定值. 从而无论 C , D 如何选取, EF 总是与 AB 交于一个固定点 P .四、(本题满分 50 分)n 的最小值为 27. 若两座城市可以通过有限次直航来连接,称这两个城市”通航”. 首先证明: n ≤ 27 .反证法:若 n ≥ 28 ,不妨设有两座城市 A 1 到 A 29 间至少经过 28 次到达.设城市 A 1 到 A 29 的一个最短连 接路线为 A 1 → A 2 → → A 29 .因为每一座城市至少和七座城市通航,所以, A 1 , A 29 与除去 A 2 A 28 以外的至少六座城市通航,城市 A 2A 28 与除去 A 1A 29 以外的至少五座城市通航.设 A = {A 1 , A 2 , , A 29 } .设分别与城市 A 1 , A 4 , A 7 , A 10 , A 13 , A 16 , A 19 , A 22 , A 25 , A 29 通航,且不属于 A 的所有城市 组成的集合为 X i (i = 0,1, , 9).易知, X 0 ≥ 6, X 9 ≥ 6, X i ≥ 5(i = 1, 2, ,8) . 又 X i ⋂ X j = ∅(i ≠ j ) ,否则,城市 A 1 , A 29 之间有更短的连接路线. 故 A ⋃ ( X 0 ⋃ X 1 ⋃ ⋃ X 9 ) ≥ 29 + 6 ⨯ 2 + 5 ⨯ 8 = 81 > 80 ,矛盾.从而 n ≤ 27 . 其次证明: n = 27 是可以的.事实上,取 28 座城市 A 1 , A 2 , , A 28 与城市集合 X i (i = 0,1, , 9). 当 i = 0, 9 时, X i = 6 ;当 i = 1, 2, ,8 时, X i = 5 ,且对于 0 ≤ i < j ≤ 9 , X i ⋂ X j = ∅ , X i 中不包含城市 A 1 , A 2 , , A 28 . 对于1 ≤ k ≤ 8 ,城市 A 3k , A 3k +1 , A 3k +2 与集合 X k 中所有的城市通航;城市 A 1 , A 2 与集合 X 0 中所有的城市通 航;城市 A 27 , A 28 与集合 X 9 中所有城市通航;集合 X i (0 ≤ i ≤ 9)中任意一座城市与上述的城市 A s 通航, 与且仅与集合 X i 中其余城市通航;城市 A i 与 A i +1 (i = 1, 2, , 27) 通航. 这样,城市 A 1 A 28 至少与七座城市通航,集合 X i 中任意一座城市均只与七座城市通航,且城市A 1A 28 至少经过 27 次直航来连接.因此, n = 27 .。
2018全国高中数学联赛某某赛区初赛试卷时间:120分钟 总分为:150分 某某:一、填空题〔此题共10小题,每一小题107分,总分为70分.要求直接将答案写在横线上.〕 1、函数cos cos2(R)y x x x =-∈的值域为__ __.2、2(i)34i a b +=+,其中,R a b ∈,i 是虚数单位,如此²²a b +的值为_ ___.3、圆心在抛物线²2x y =上,并且和该抛物线的准线与y 轴都相切的圆的方程为___ __.4、设函数14()2xxf x x -=-,如此不等式2(1)(57)0f x f x -+-<的解集为__ ___.5、等差数列{}n a 的前12项的和为60,如此1212a a a +++的最小值为__ ___.6、正四面体内切球的半径是1,如此该四面体的体积为___ __.7、在ABC ∆中,54AB AC ==,,且12=⋅AC AB ,设P 是平面ABC 上的一点,如此)(PC PB PA +⋅的最小值为_____.8、设()g n =∑=nk n k 1),(,其中*Nn ∈,(,)k n 表示k 与n 的最大公约数,如此(100)g 的值为=___ __.9、将1,2,3,4,5,6,7,8,9,这9个数随即填入3⨯3的方格中,每个小方格恰填写一个数,且所填的数各不一样,如此使每行、每列所填的数之和都是奇数的概率为__ __.10、在1,2,3,4,,1000中, 能写成²²1(N)a b a b -+∈,的形式,且不能被3整除的数有__ ____个.二、解答题〔本大题共4小题,每一小题20分,共80分〕11、如图,在平面直角坐标系xoy 中,圆O 的方程为224x y +=,过点(0,1)P 的直线l 与圆O 交于,A B 两点,与x 轴交于点Q ,设PB QB PA QA μλ==,,求证:μλ+为定值.12、{}n a 是公差为(0)d d ≠的等差数列,且t a t a t a +=+=+33221, (1)某某数t d ,的值;(2)假如正整数满足0222r p =-=-=-rr pp mm t a t a t a m ,<<,求数组(,,)m p r 和相应的通项公式n a .13、如图,在圆内接四边形ABCD 中,对角线AC 与BD 交于点P ,ABD ∆与ABC ∆的内心分别为1I 和 2I ,直线21I I 分别与AC BD ,交于点,M N ,求证:PM PN =.14、从1,2,3,,2050这2050个数中任取2018个数组成集合A ,把A 中的每个数染上红色或蓝色,求证:总存在一种染色方法,是使得有600个红数与600个蓝数满足如下两个条件:①这600个红数的和等于这600个蓝数的和; ②这600个红数的平方和等于这600个蓝数的平方和.参考答案:〔1〕9[0,]8;〔2〕5;〔3〕221(1)()12x y±+-=;〔4〕(2,3);〔5〕60;〔6〕83;〔7〕658-;〔8〕520;〔9〕114;〔10〕501;〔11〕83;〔12〕①12t=-,38d=;②(,,)(1,3,4)m p r=,1(311)8na n=-;。
绝密★启用前2018年全国高中数学联赛湖南预赛(B)卷试题及详解一、填空题(本大题共10小题,每小题7分,满分70分)1.设集合{}23100A x x x =--≤,{}121B x m x m =+≤≤-,若A B B ⋂=,则实数m 的取值范围为 .2.如果函数()3cos 2y x ϕ=+的图像关于点4,03π⎛⎫⎪⎝⎭中心对称,那么ϕ的最为 .3. 如图,A 与P 分别是单位圆O 上的定点与动点,角x 的始边为 射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M , 将点M 到直线OP 的距离表示为x 的函数()f x ,则()f x = .4. 已知二面角l αβ--为60,动点P ,Q 分别在面α,β内,P 到β的距离为3,Q 到α的距离为23,则P ,Q 两点之间距离的最小值为 .5. 如图,将一个边长为1的正三角形分成四个全等的正三角形,第一次挖去中间的一个小三角形,将剩下的三个小正三角形,再分别从中间挖去一个小三角形,保留它们的边,重复操作以上做法,得到的集合为谢尔宾斯基缕垫.设n A 是第n 次挖去的小三角形面积之和(如1A 是第1次挖去的中间小三角形面积,2A 是第2次挖去的三个小三角形面积之和).则前n 次挖去的所有小三角形面积之和的值为 .6.若333sin cos 3x x +=,则20182018sincos x x +的值为 .7.如图放置的边长为1的正方形ABCD 沿x 轴正向滚动,即先以A 为中心顺时针旋转,当B 落在x 轴上时,再以B 为中心顺时针旋转,如此继续,当正方形ABCD 的某个顶点落在x 轴上时,则以该顶点为中心顺时针旋转.设顶点C 滚动时的曲线为()y f x =,则()f x 在[]2017,2018上的表达式为 .8.四个半径都为1的球放在水平桌面上,且相邻的球都相切(球心的连线构成正方形).有一个正方体,其下底与桌面重合,上底的四个顶点都分别与四个球刚好接触,则该正方体的棱长为 .9.设1a b +=,0b >,0a ≠,则21aa b+的最小值为 . 10.设,a b R ∈,a b <函数()()max a t bg x x t x R ≤≤=+∈(其中max a t b≤≤表示对于x R ∈,当[],t a b ∈时表达式x t +的最大值),则()g x 的最小值为 . 三、解答题 (本大题共4小题,共80分.11. 如图,四棱锥S ABCD -中,SD ⊥底面ABCD ,//AB DC ,AD DC ⊥,1AB AD ==,2DC SD ==,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(Ⅰ)证明:2SE EB =; (Ⅱ)求二面角A DE C --的大小.12. 棋盘上标有第0,1,2,,100站,棋子开始时位于第0站,棋手抛掷均匀硬币走跳棋游戏.若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到跳到第99站(胜利大本营)或第100站(失败集中营)时,游戏结束.设棋子跳到第n 站的概率为n P . (1)求3P 的值; (2)证明:()()1112992n n n n P P P P n +--=--≤≤; (3)求99P ,100P 的值.13. (1)已知P 是矩形ABCD 所在平面上的一点,则有2222PA PC PB PD +=+.试证明该命题;(2)将上述命题推广到P 为空间上任一点的情形,写出这个推广后的命题并加以证明; (3)将矩形ABCD 进一步推广到长方体1111ABCD A B C D -,并利用(2)得到的命题建立并证明一个新命题.14. 设曲线2:1625616C x y y -=-所围成的封闭区域为D . (1)求区域D 的面积;(2)设过点()0,16M -的直线与曲线C 交于两点P ,Q ,求PQ 的最大值.2018年全国高中数学联赛湖南预赛答案一、填空题1.3m ≤2.6π3.sin cos x x4.314n⎫⎛⎫-⎪ ⎪⎪⎝⎭⎝⎭6.17.()()504.4f x f x =-=8.23 9.1 10.2b a - 二、解答题11.解:以D 为坐标原点,射线DA ,DC ,DS 分别为x 轴,y 轴,z 轴,建立直角坐标系Dxyz ,设()1,0,0A =,则()1,1,0B ,()0,2,0C ,()0,0,2S .(1)证明:()0,2,2SC =-,()1,1,0BC =-,设平面SBC 的法向量为(),,n a b c =,由n SC ⊥,n BC ⊥,得到0n SC ⋅=,0n BC ⋅=,故0b c -=,0a b -+=,取1a b c ===,则()1,1,1n =,又设()0SE EB λλ=>,则2,,111E λλλλλ⎛⎫ ⎪+++⎝⎭,2,,111DE λλλλλ⎛⎫= ⎪+++⎝⎭,()0,2,0DC = 设平面CDE 的法向量为(),,m x y z =,由m DE ⊥,m DC ⊥,得到0m DE ⋅=,0m DC ⋅=,故20111x y zλλλλλ++=+++,20y =,令2x =,则()2,0,m λ=-,由平面DEC ⊥平面SBC ,得到m n ⊥,所以0m n ⋅=,20λ-=,2λ=,故2SE EB =.(2)解:由(1)知222,,333DE ⎛⎫=⎪⎝⎭,取DE 的中点F ,则111,,333F ⎛⎫= ⎪⎝⎭,211,,333FA ⎛⎫=-- ⎪⎝⎭,故0FA DE ⋅=,FA DE ⊥,又242,,333EC ⎛⎫=-- ⎪⎝⎭,故EC DE ⊥,因此向量FA 与EC 的夹角等于二面角A DE C --的平面角,于是()1cos ,2FA ECFA EC FA EC⋅==-,所以二面角A DE C --的大小为120.12.解:(1)棋子跳到第3站有以下三种途径:连续三次掷出正面,其概率为18;第一次掷出反面,第二次掷出正面,其概率为14;第一次掷出正面,第二次掷出反面,其概率为14,因此358P =. (2)易知棋子先跳到第2n -站,再掷出反面,其概率为212n P -;棋子先跳到第1n -站,再掷出正面,其概率为112n P -,因此有()1212n n n P P P --=+,即()11212n n n n P P P P ----=--,或即()()1112992n n n n P P P P n +--=--≤≤.(3)由(2)知数列{}()11n n P P n --≥为首项为1011122P P -=-=-,公比为12-的等比数列,因此有()()11101122nn n n nP P P P ---⎛⎫-=--=⎪⎝⎭.由此得到999899100111211=122232P ⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.由于若跳到第99站时,自动停止游戏,故有10098991111232P P ⎛⎫==+ ⎪⎝⎭. 13. (1)证明:如图1,设在直角坐标平面中,矩形ABCD 的顶点坐标为(),A a b --,(),B a b -,(),C a b ,(),D a b -,点(),P x y 是直角坐标平面上的任意一点,则()()()()()22222222222PA PC x a y b x a y b x y a b +=++++-+-=+++,()()()()()22222222222PB PD x a y b x a y b x y a b +=-+++++-=+++,故2222PA PC PB PD +=+.(2)推广命题:若棱锥P ABCD -的底面ABCD 是矩形,则有2222PA PC PB PD +=+.证明:如图2,设棱锥P ABCD -的底面ABCD 在空间直角坐标系的xOy 平面上,矩形ABCD 的顶点坐标为(),,0A a b --,(),,0B a b -,(),,0C a b ,(),,0D a b -,设P 点坐标为(),,P x y z ,则()()()()()()2222222200PA PC x a y b z x a y b z +=++++-+-+-+- ()222222x y a b z =++++()()()()()()2222222200PB PD x a y b z x a y b z +=-+++-+++-+- ()222222x y a b z =++++,故2222PA PC PB PD +=+.(3)再推广命题:设1111ABCD A B C D -是长方体,P 是空间上任意一点,则222222221111PA PC PB PD PB PD PA PC +++=+++.证明:如图3,由(2)中定理可得2222PA PC PB PD +=+和22221111PA PC PB PD +=+,所以222222221111PA PC PB PD PB PD PA PC +++=+++.14. 解:(1)由题设,有256160y -≥,因此1616y -≤≤.若221616x y x y -=-,则当016y ≤≤时,22161625616x y x y y -=-=-,2256x =,此时()16016x y =±≤≤,图像是两条直线段;当160y -≤≤,22161625616x y x y y -=-=+,()28832x y y =-≥-,对应于一段二次函数的图像;若221616x y y x -=-,则当016y ≤≤时,类似于前面的推导得2832x y =+,对应于二次函数图像的一段:()28832x y y =+≥; 当160y -≤<,22161625616x y y x y -=-=+,得到2256x =-,无解.综上所述,区域D 的集合为:()22,1616,883232x x D x y x y ⎧⎫⎪⎪=-≤≤-≤≤+⎨⎬⎪⎪⎩⎭,由区域D 上函数图像性质,知区域D 的面积为3216512S =⨯=.(2)设过点()0,16M -的直线为l ,为了求PQ 的最大值,由区域D 的对称性,只需考虑直线l 与D 在y 轴右侧图像相交部分即可.设过点()0,16M -的直线l 方程为16y kx =-,易知此时l 与D 相交时有1k ≤<∞.①当2k ≤<∞时,l 与D 分别相交于二次函数2832x y =-以及2832x y =+,两个交点分别为(()()216,161P k k -,(()()216,161Q k k -因此,16PQ =k 的递减函数.②当12k ≤≤时,直线l 与D 分别相交于二次函数2832x y =-以及直线16y =,从图形性质容易看出,随着k 从2变到1,PQ 的值逐步减少.综上,当l 经过直线16x =与二次函数2832x y =+曲线交点()16,16Q 时,PQ 的值最大,此时直线l 方程为:216y x =-,((()162,163P -,PQ 的值为=.当PQ 落在y 轴上时,24PQ =<,因此PQ 的最大值为。