吉林省长春市东北师大附中2015届高考数学三模试卷(文科)
- 格式:doc
- 大小:313.50 KB
- 文档页数:16
吉林省长春市普通高中高三质量监测(三)数 学(文科)一、选择题1. 已知集合{11}A x x =-≤≤,{02}B x x =≤≤,则A B = ( )A. [1,0]-B. [1,2]-C. [0,1]D. (,1][2,)-∞+∞ 2. 设复数1z i =+(i 是虚数单位),则2z=( ) A. 1i - B. 1i +C. 1i --D. 1i -+3. 已知1,==a b ,且⊥a b ,则||+a b 为( )C. 2D. 4. 已知△ABC 中,内角A ,B ,C 的对边分别为,,a b c ,222a b c bc =+-,4bc =,则△ABC 的面积为( )A. 12B. 1 5. 2x <是2320x x -+<成立的( )A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件6. 已知双曲线222211x y a a-=-(0)a >a 的值为( )A. 12 C. 137. 阅读如图所示的程序框图,运行相应的程序. 若输出的S 为1112,则判断框中填写的内容可以是( )A. 6n =B. 6n <C. 6n ≤D. 8n ≤8. 如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的体积为( )A. 323B. 64 D. 6439. 函数()2cos()(0)f x x ωϕω=+≠对任意x 都有()()44f x f x ππ+=-,则()4f π等于( )A. 2或0B. 2-或2C. 0D. 2-或010. 在平面直角坐标系中,若(,)P x y 满足44021005220x y x y x y -+⎧⎪+-⎨⎪-+⎩≤≤≥,则2x y +的最大值是( )A. 2B. 8C. 14D. 1611. 已知抛物线:C x y 42=的焦点为F,直线1)y x -与C 交于,(A B A 在x 轴上方)两点. 若AF mFB =,则m 的值为( )B. 32C. 2D. 312. 对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为M 函数:(i) 对任意的[0,1]x ∈,恒有()0f x ≥;(ii) 当12120,0,1x x x x +≥≥≤时,总有1212()()()f x f x f x x ++≥成立. 则下列三个函数中不.是M 函数的个数是( ) ① 2()f x x = ② 2()1f x x =+ ③ ()21x f x =- A. 0 B. 1 C. 2 D. 3 二、填空题13.函数1sin 2y x x =([0,]2x π∈)的单调递增区间是__________.14. 将高一9班参加社会实践编号为:1,2,3,…,48的48名学生,采用系统抽样的方法抽取一个容量为4的样本,已知5号,29号,41号学生在样本中,则样本中还有一名学生的编号是 .15. 已知定义在R 上的偶函数()f x 在[0,)+∞上单调递增,且(1)0f = ,则不等式(2)0f x -≥的解集是 .16. 底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥. 如图,半球内有一内接正四棱锥S ABCD -,该四棱锥的体,则该半球的体积为 .三、解答题17. 等差数列}{n a 的前n 项和为n S ,且满足299,9971-=-=+S a a .⑴ 求数列}{n a 的通项公式;⑵ 设nn S b 21=,数列}{n b 的前n 项和为n T ,求证:43->n T .18. 某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10⑴ ;⑵ 在本次训练中,从两班中分别任选一个同学,比较两人的投中次数,求甲班同学投中次数高于乙班同学投中次数的概率.19. 如图,在四棱锥P-ABCD 中,底面ABCD 是菱形,∠DAB =60 ,PD ⊥平面ABCD ,PD=AD=1,点,E F 分别为为AB 和PD 中点. ⑴ 求证:直线//AF 平面PEC ; ⑵ 求三棱锥P BEF 的表面积.A BCDP FE20、椭圆)0(1:2222>>=+b a by a x E 的焦距为32,且经过点)21,3((Ⅰ)求椭圆E 的方程;(Ⅱ)经过点)0,2(-P 分别作斜率为1k 、2k 的两条直线,两直线分别交椭圆E 交于M 、N 两点,当直线MN 与y 轴垂直是,求21k k ⋅的值。
一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知集合}111|{≥-+=x x x M ,集合}032|{>+=x x N ,则=⋂N M C R )(( ) A .(-1,23) B .(-1,23] C . 2.已知α是第二象限角,且sin(53)-=+απ,则tan2α的值为( ) A .54 B .723- C .724- D .924- 3.下列函数中,在其定义域是减函数的是( )A. 12)(2++-=x x x f B. xx f 1)(=C. ||)41()(x x f = D. )2ln()(x x f -= 4. 下列函数中,最小正周期为π,且图象关于直线x=3π对称的函数是( ) A .y=2sin(2x+3π) B .y=2sin(2x-6π)C .y=2sin(32π+x ) D .y=2sin(2x-3π) 5. 函数xx x f 2)1ln()(-+=的零点所在的大致区间是( ) A .(3,4) B .(2,e ) C .(1,2) D .(0,1) 6.已知二次函数4)(2+-=ax x x f ,若)1(+x f 是偶函数,则实数的值为( ) A. -1B. 1C. -2D. 27. 2||,0)(sin(πϕωϕω<>+=x y )的图象的一部分图形如图所示,则函数的解析式为( ) A .y=sin(x+3π) B .y=sin(x-3π) C .y=sin(2x+3πD .y=sin(2x-3π)8. 设a 为实数,函数f (x )=x 3+ax 2+(a -2)x 的导数是)('x f ,且)('x f 是偶函数,则曲线y =f (x )在原点处的切线方程为( )A .y =-2xB .y =3xC .y =-3xD .y =4x9. 将函数y=sin(2x+4π)的图象向左平移4π个单位,再向上平移2个单位,则所得图象的函数解析式是( )A .y=2cos 2(x+8π) B .y=2sin 2(x+8π)C .y=2-sin(2x-4π) D .y=cos2x10.已知函数⎩⎨⎧≤<+-<≤---=)10(1)01(1)(x x x x x f ,则1)()(->--x f x f 的解集为( )A .(-∞,-1)∪(1,+∞) B. C .(-∞,0)∪(1,+∞) D. ∪(0,1)11.对于任意的实数a 、b ,记max{a,b}=⎩⎨⎧<≥)()(b a b b a a .若F(x)=max{f(x),g(x)}(x ∈R),其中函数y=f(x)(x ∈R)是奇函数,且在x=1处取得极小值-2,函数y=g(x) (x ∈R)是正比例函数,其图象与x ≥0时的函数y=f(x)的图象如图所示,则下列关于函数y=F(x)的说法中,正确的是( ) A .y=F(x)为奇函数 B .y=F(x)有极大值F(-1)C .y=F(x)的最小值为-2,最大值为2D .y=F(x)在(-3,0)上为增函数12.设函数⎪⎩⎪⎨⎧<-≥-=)2(1)21()2()2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .(-∞,2)B .(-∞,813]C .(0,2)D .[813,2)二.填空题:(本大题共4小题,每小题5分。
东北师范大学附属中学2014—2015学年度高三年级周考【第27周】数学试题(文科)一、选择题(本大题共12小题,每小题5分,共计60分)1.设集合I ={―2,―1,0,1,2},A ={1,2},B ={―2,―1,2},则A (C I B )=( )A .{0,1,2}B .{1,2}C .{2}D .{1}2.函数2lg(1)()2x f x -=+的定义域是 ( )A .),31(+∞-B .)1,31(-C .)31,31(-D .)31,(--∞3.若p :|x +1|>2,q :x >2,,则┐p 是┐q 成立的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 设a >1,函数f (x )=a |x|的图像大致是 ( )5.如图是一个几何体的三视图,则此三视图所描述几何体的表面积为 ( ) A .π)3412(+ B .20π C .π)3420(+D .28π6.已知a =(1,2),b =(3,-1)且a +b 与a -λb 互相垂直,则实数的λ值为 ( ) A .-116B .-611 C .116 D .6117.过点(3,-2)的直线l 经过圆x 2+y 2-2y =0的圆心,则直线l 的倾斜角大小为( ) A .150° B . 60° C .30° D . 120°8.在△ABC 中,已知a =2b cos C ,那么这个三角形一定是 ( ) A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形9.⎪⎩⎪⎨⎧≤+->=)1(2)24()1()(x x ax a x f x 是R 上的单调递增函数,则实数a 的取值范围为 ( )A .(1,+∞)B .[4,8]C .(4,8)D .(1,8)10.2008年3月份开始实施的《个人所得税法》规定:全月总收入不超过2000元的免征个人工资、薪金所得税,超过2000元的部分需征税,设全月总收入金额为x 元,前三级税率如下表:当全月总收入不超过4000元时,计算个人所得税的一个算法框图如上所示,则输出①,输出②分别为 ( ) A .0.05x,0.1x B .0.05x, 0.1x -225C .0.05x -100, 0.1xD .0.05x -100, 0.1x -22511.若不等式组5003x y y a x -+≥⎧⎪≥⎨⎪≤≤⎩表示的平面区域是一个三角形,则a 的取值范围是( )A .5a <B .8a ≥C .5a <或8a ≥D .58a ≤<12.对于任意实数x ,符号[x ]表示x 的整数部分,即[x ]是不超过x 的最大整数,例如[2]=2;[1.2]=2;[2.2-]=3-, 这个函数[x ]叫做“取整函数”,它在数学本身和生产实践中有广泛的应用。
东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2015届高考数学一模试卷(文科)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求.1.(5分)已知集合A={0,b},B={x∈Z|x2﹣3x<0},若A∩B≠∅,则b等于()A.1B.2C.3D.1或22.(5分)复数=()A.i B.﹣i C.2(+i)D.1+i3.(5分)△ABC的内角A、B、C的对边分别为a、b、c,则“a>b”是“cos2A<cos2B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)向量,满足||=1,||=,(+)⊥(2﹣),则向量与的夹角为()A.45°B.60°C.90°D.120°5.(5分)实数m是[0,6]上的随机数,则关于x的方程x2﹣mx+4=0有实根的概率为()A.B.C.D.6.(5分)已知三棱锥的三视图,则该三棱锥的体积是()A.B.C.D.7.(5分)椭圆两个焦点分别是F1,F2,点P是椭圆上任意一点,则的取值范围是()A.[1,4]B.[1,3]C.[﹣2,1]D.[﹣1,1]8.(5分)半径为1的球面上有四个点A,B,C,D,球心为点O,AB过点O,CA=CB,DA=DB,DC=1,则三棱锥A﹣BCD的体积为()A.B.C.D.9.(5分)已知数列{a n}满足•••…•=(n∈N*),则a10=()A.e26B.e29C.e32D.e3510.(5分)执行如图所示的程序框图,要使输出的S的值小于1,则输入的t值不能是下面的()A.8B.9C.10 D.1111.(5分)若函数f(x)=2x3﹣3mx2+6x在区间(2,+∞)上为增函数,则实数m的取值范围是()A.(﹣∞,2)B.(﹣∞,2]C.(﹣∞,)D.(﹣∞,]12.(5分)函数f(x)=lg(|x|+1)﹣sin2x的零点个数为()A.9B.10 C.11 D.12二.填空题(本大题共4小题,每小题5分.)13.(5分)若等差数列{a n}中,满足a4+a6+a2010+a2012=8,则S2015=.14.(5分)若变量x,y满足约束条件则z=x+2y的最小值为.15.(5分)已知双曲线C:﹣=1,点P与双曲线C的焦点不重合,若点P关于双曲线C的上、下焦点的对称点分别为A、B,点Q在双曲线C的上支上,点P关于点Q的对称点P1,则|P1A|﹣|P1B|=.[来源:Z#xx#]16.(5分)若函数f(x)满足:(Ⅰ)函数f(x)的定义域是R;(Ⅱ)对任意x1,x2∈R,有f(x1+x2)+f(x1﹣x2)=2f(x1)f(x2);(Ⅲ)f(1)=,则下列命题正确的是(只写出所有正确命题的序号)①函数f(x)是奇函数;②函数f(x)是偶函数;③对任意n1,n2∈N,若n1<n2,则f(n1)<f(n2);④对任意x∈R,有f(x)≥﹣1.三.解答题(解答应写出文字说明,证明过程或演算步骤)17.(12分)已知△ABC的面积为2,且满足0<•≤4,设和的夹角为θ.(1)求θ的取值范围;(2)求函数f(θ)=2sin2(+θ)﹣cos2θ的取值范围.18.(12分)空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.1月某日某省x个监测点数据统计如下:空气污染指数(单位:μg/m3)[0,50](50,100](100,150](150,200]监测点个数15 40 y 10(Ⅰ)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;(Ⅱ)若A市共有5个监测点,其中有3个监测点为轻度污染,2个监测点为良.从中任意选取2个监测点,事件A“其中至少有一个为良”发生的概率是多少?19.(12分)如图,多面体ABCDEF中,底面ABCD是菱形,∠BCD=60°,四边形BDEF是正方形且DE⊥平面ABCD.(Ⅰ)求证:CF∥平面ADE;(Ⅱ)若AE=,求多面体ABCDEF的体积V.20.(12分)在平面直角坐标系xOy中,已知动圆过点(2,0),且被y轴所截得的弦长为4.(Ⅰ)求动圆圆心的轨迹C1的方程;(Ⅱ)过点P(1,2)分别作斜率为k1,k2的两条直线l1,l2,交C1于A,B两点(点A,B异于点P),若k1+k2=0,且直线AB与圆C2:(x﹣2)2+y2=相切,求△PAB的面积.21.(12分)已知a是实常数,函数f(x)=xlnx+ax2.(1)若曲线y=f(x)在x=1处的切线过点A(0,﹣2),求实数a的值;[来源:Z_xx_] (2)若f(x)有两个极值点x1,x2(x1<x2),①求证:﹣<a<0;②求证:f(x2)>f(x1)>﹣.二、请考生在第22,23,24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,在△ABC中,∠ABC=90°,以AB为直径的圆O交AC于点E,点D是BC边上的中点,连接OD交圆O与点M.(1)求证:DE是圆O的切线;(2)求证:DE•BC=DM•AC+DM•AB.【选修4-4:坐标系与参数方程】23.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA|•|PB|=1,求实数m的值.【选修4-5:不等式选讲】24.设函数f(x)=|2x﹣1|﹣|x+2|.(Ⅰ)解不等式f(x)>0;(Ⅱ)若∃x0∈R,使得f(x0)+2m2<4m,求实数m的取值范围.东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2015届高考数学一模试卷(文科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求.1.(5分)已知集合A={0,b},B={x∈Z|x2﹣3x<0},若A∩B≠∅,则b等于()A.1B.2C.3D.1或2考点:交集及其运算.专题:集合.分析:解不等式求出集合B,进而根据A∩B≠∅,可得b值.解答:解:∵集合B={x∈Z|x2﹣3x<0}={1,2},集合A={0,b},若A∩B≠∅,则b=1或b=2,故选:D.点评:本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5分)复数=()A.i B.﹣i C.2(+i)D.1+i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则即可得出.解答:解:复数==i,故选:A.点评:本题考查了复数的运算法则,属于基础题.[来源:学.科.网]3.(5分)△ABC的内角A、B、C的对边分别为a、b、c,则“a>b”是“cos2A<cos2B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:在三角形中,结合正弦定理,利用充分条件和必要条件的定义进行判断.解答:解:在三角形中,cos2A<cos2B等价为1﹣2sin2A<1﹣2sin2B,即sinA>sinB.若a>b,由正弦定理,得sinA>sinB.充分性成立.若sinA>sinB,则正弦定理,得a>b,必要性成立.所以,“a>b”是“sinA>sinB”的充要条件.即a>b是cos2A<cos2B成立的充要条件,故选C.点评:本题主要考查了充分条件和必要条件的应用,利用正弦定理确定边角关系,注意三角形中大边对大角的关系的应用.4.(5分)向量,满足||=1,||=,(+)⊥(2﹣),则向量与的夹角为()A.45°B.60°C.90°D.120°考点:平面向量数量积的运算.专题:平面向量及应用.分析:设向量与的夹角为θ.利用(+)⊥(2﹣),可得(+)•(2﹣)=+=0,即可解出.解答:解:设向量与的夹角为θ.∵(+)⊥(2﹣),∴(+)•(2﹣)=+==0,化为cosθ=0,∵θ∈[0,π],∴θ=90°.故选:C.点评:本题考查了数量积运算性质、向量垂直与数量积的关系,属于基础题.5.(5分)实数m是[0,6]上的随机数,则关于x的方程x2﹣mx+4=0有实根的概率为()A.B.C.D.考点:几何概型.专题:概率与统计.分析:根据几何概型计算公式,首先求出方程有实根的m的范围,然后用符合题意的基本事件对应的区间长度除以所有基本事件对应的区间长度,即可得到所求的概率.解答:解:∵方程x2﹣mx+4=0有实根,∴判别式△=m2﹣16≥0,∴m≤﹣4或m≥4时方程有实根,∵实数m是[0,6]上的随机数,区间长度为6,[4,6]的区间长度为2,∴所求的概率为P==.故选:B.点评:本题着重考查了几何概型计算公式及其应用的知识,给出在区间上取数的事件,求相应的概率值.关键是明确事件对应的是区间长度或者是面积或者体积.6.(5分)已知三棱锥的三视图,则该三棱锥的体积是()考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:如图所示,AB=BC=CA=2,点P在侧面ABC的射影为O,OP=2.利用三棱锥的体积计算公式即可得出.解答:解:如图所示,AB=BC=CA=2,点P在侧面ABC的射影为O,OP=2.∴该三棱锥的体积V===.故选:B.点评:本题考查了三棱锥的三视图及其体积计算公式,属于基础题.7.(5分)椭圆两个焦点分别是F1,F2,点P是椭圆上任意一点,则的取值范围是()A.[1,4]B.[1,3]C.[﹣2,1]D.[﹣1,1]考点:直线与圆锥曲线的关系;平面向量数量积的运算;椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求出椭圆的焦点坐标,设P(2cosθ,sinθ)(θ∈∈[0,2π)).利用向量的数量积运算和余弦函数的单调性即可得出.解答:解:椭圆的焦点坐标F1(,0),F2(,0).设P(2cosθ,sinθ)(θ∈∈[0,2π)).∴═(﹣﹣2cosθ,﹣sinθ)•(﹣2cosθ,﹣sinθ)=4cos2θ﹣3+sin2θ=3cos2θ﹣2,∵0≤cos2θ≤1,∴﹣2≤3cos2θ﹣2≤1.即的最大值与最小值分别是1,﹣2.故选:C.点评:本题考查了椭圆的标准方程与性质、向量的数量积运算、余弦函数的单调性等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.8.(5分)半径为1的球面上有四个点A,B,C,D,球心为点O,AB过点O,CA=CB,DA=DB,DC=1,则三棱锥A﹣BCD的体积为()考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:画出图形,连结OD,OC判断棱锥的特征,求解体积即可.解答:解:由题意可知图形如图:AB过点O,CA=CB,DA=DB,三角形ABD与ACB 都是等腰直角三角形,半径为1的球面上有四个点A,B,C,D,球心为点O,∴AD=BD=AC=BC=,DC=1,OD=0C=1,AB⊥OD,AB⊥OC,几何体的体积为:×S△OCD•(AO+OB)==故选:A.点评:本题考查球的内接体知识,几何体的体积的求法,空间想象能力以及计算能力.9.(5分)已知数列{a n}满足•••…•=(n∈N*),则a10=()A.e26B.e29C.e32D.e35考点:数列递推式;数列的求和.专题:等差数列与等比数列.分析:利用已知条件,得到通项公式,然后求解a10.解答:解:数列{a n}满足•••…•=(n∈N*),可知•••…•=,两式作商可得:==,可得lna n=3n+2.a10=e32.故选:C.点评:本题考查数列递推关系式的应用,数列的通项公式的求法,考查计算能力.10.(5分)执行如图所示的程序框图,要使输出的S的值小于1,则输入的t值不能是下面的()A.8B.9C.10 D.11考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,可得程序框图的功能是计算并输出S=sin+s in+…+sin,k∈Z的值,观察规律可得sin的值以6为周期,且sin+sin+…+sin=0,依次验证选项即可得解.解答:解:模拟执行程序框图,可得程序框图的功能是计算并输出S=sin+sin+…+sin,k∈Z的值,∵sin的值以6为周期,且sin+sin+…+sin=0,∴当t=8时,S=sin+sin+…+sin=sin+sin+sin=>1,故A符合要求;当t=9时,S=sin+sin+…+sin+sin=sin+sin+sin+sin=<1,故B不符合要求;当t=10时,S=sin+sin+…+sin+sin+sin=sin+sin+sin+sin+sin=0<1,故C不符合要求;当t=11时,S=sin+sin+…+sin+sin+sin+sin=0<1,故D不符合要求;故选:A.点评:本题主要考察了循环结构的程序框图,考查了正弦函数的周期性,模拟执行程序框图正确得到程序框图的功能是解题的关键,属于基本知识的考查.11.(5分)若函数f(x)=2x3﹣3mx2+6x在区间(2,+∞)上为增函数,则实数m的取值范围是()A.(﹣∞,2)B.(﹣∞,2]C.(﹣∞,)D.(﹣∞,]考点:二次函数的性质.专题:函数的性质及应用;导数的综合应用.分析:先求f′(x)=6x2﹣6mx+6,根据题意可知f′(x)≥0在(2,+∞)上恒成立,可设g(x)=6x2﹣6mx+6,所以讨论△的取值,从而判断g(x)≥0是否在(2,+∞)上恒成立:△≤0时,容易求出﹣2≤m≤2,显然满足g(x)≥0;△<0时,m需要满足,这样求出m的范围,和前面求出的m范围求并集即可.解答:解:f′(x)=6x2﹣6mx+6;由已知条件知x∈(2,+∞)时,f′(x)≥0恒成立;设g(x)=6x2﹣6mx+6,则g(x)≥0在(2,+∞)上恒成立;∴(1)若△=36(m2﹣4)≤0,即﹣2≤m≤2,满足g(x)≥0在(2,+∞)上恒成立;(2)若△=36(m2﹣4)>0,即m<﹣2,或m>2,则需:;解得;∴;∴综上得;∴实数m的取值范围是(﹣∞,].故选D.点评:考查函数单调性和函数导数符号的关系,熟练掌握二次函数的图象,以及判别式△的取值情况和二次函数取值的关系.12.(5分)函数f(x)=lg(|x|+1)﹣sin2x的零点个数为()A.9B.10 C.11 D.12考点:函数零点的判定定理.专题:计算题;作图题;函数的性质及应用.分析:函数f(x)=lg(|x|+1)﹣sin2x的零点个数即y=lg(|x|+1)与y=sin2x的图象的交点的个数,作图并利用三角函数的图象特征求解.解答:解:函数f(x)=lg(|x|+1)﹣sin2x的零点个数即y=lg(|x|+1)与y=sin2x的图象的交点的个数,作函数y=lg(|x|+1)与y=sin2x的图象如下,[来源:学科网ZXXK]结合图象及三角函数的最值知,图象在y轴左侧有6个交点,在y轴右侧有5个交点,在y轴上有一个交点;故选D.点评:本题考查了函数的图象的应用及函数的零点的个数的判断,属于基础题.二.填空题(本大题共4小题,每小题5分.)13.(5分)若等差数列{a n}中,满足a4+a6+a2010+a2012=8,则S2015=4030.考点:等差数列的前n项和.专题:等差数列与等比数列.分析:利用等差数列的通项公式性质及其前n项和公式即可得出解答:解:∵a2012+a4=a6+a2010=a1+a2015,a4+a6+a2010+a2012=8,∴2(a1+a2015)=8,∴a1+a2015=4,∴S2015==4030.故答案为:4030.点评:本题考查了等差数列的通项公式性质及其前n项和公式,属于基础题.14.(5分)若变量x,y满足约束条件则z=x+2y的最小值为﹣6.考点:简单线性规划.专题:计算题.分析:在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,把目标函数z=x+2y变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,求出两条直线的交点坐标,代入目标函数得到最小值.解答:解:在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,目标函数z=x+2y,变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,由y=x﹣9与2x+y=3的交点得到A(4,﹣5)∴z=4+2(﹣5)=﹣6故答案为:﹣6.点评:本题考查线性规划问题,考查根据不等式组画出可行域,在可行域中,找出满足条件的点,把点的坐标代入,求出最值.15.(5分)已知双曲线C:﹣=1,点P与双曲线C的焦点不重合,若点P关于双曲线C的上、下焦点的对称点分别为A、B,点Q在双曲线C的上支上,点P关于点Q的对称点P1,则|P1A|﹣|P1B|=﹣16.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:设双曲线的上下焦点分别为F,F',连接QF,QF'.运用对称和三角形的中位线定理,结合双曲线的定义,即可得到结论.解答:解:设双曲线的上下焦点分别为F,F',连接QF,QF'.由点P关于双曲线C的上、下焦点的对称点分别为A、B,则F为PA的中点,F'为PB的中点,由点Q在双曲线C的上支上,点P关于点Q的对称点P1,则Q为PP1的中点,由中位线定理可得,|P1A|=2|QF|,|P1B|=2|QF'|,由双曲线的定义可得|QF'|﹣|QF|=2a=8,则|P1A|﹣|P1B|=2(|QF|﹣|QF'|)=﹣2×8=﹣16.故答案为:﹣16.点评:本题考查双曲线的定义,考查三角形的中位线定理的运用,考查运算能力,属于基础题.16.(5分)若函数f(x)满足:(Ⅰ)函数f(x)的定义域是R;(Ⅱ)对任意x1,x2∈R,有f(x1+x2)+f(x1﹣x2)=2f(x1)f(x2);(Ⅲ)f(1)=,则下列命题正确的是②③④(只写出所有正确命题的序号)①函数f(x)是奇函数;②函数f(x)是偶函数;③对任意n1,n2∈N,若n1<n2,则f(n1)<f(n2);④对任意x∈R,有f(x)≥﹣1.考点:抽象函数及其应用.专题:函数的性质及应用.分析:根据抽象函数的定义和关系式结合函数奇偶性的定义即可判断①②,利用赋值法可以判断③④.解答:解:令x1=1,x2=0,f(1+0)+f(1﹣0)=2f(1)f(0),即2f(1)=2f(1)f(0),∵f(1)=,∴f(0)=1.令x1=0,x2=x,则f(x)+f(﹣x)=2f(0)f(x)=2f(x),则f(﹣x)=f(x),故函数f(x)为偶函数,故②正确,①错误.∵f(1)=,∴f(1+1)+f(1﹣1)=2f(1)f(1),即f(2)=2f2(1)﹣f(0)=2×()2﹣1=,f(2+1)+f(1)=2f(1)f(2),即f(3)=2f(1)f(2)﹣f(1)=2××﹣=,同理f(4)=,[来源:学+科+网]由归纳推理得对任意n1,n2∈N,若n1<n2,则f(n1)<f(n2)正确;故③正确,令x1=x2=x,则由f(x1+x2)+f(x1﹣x2)=2f(x1)f(x2)得f(2x)+f(0)=2f(x)f(x)=2f2(x),即f(2x)+1=2f2(x)≥0,∴f(2x)+1≥0,即f(2x)≥﹣1.[来源:学科网ZXXK]∴对任意x∈R,有f(x)≥﹣1.故④正确.点评:本题主要考查抽象函数的应用,利用赋值法结合函数奇偶性的定义是解决本题的关键.综合性较强,有一定的难度.三.解答题(解答应写出文字说明,证明过程或演算步骤)17.(12分)已知△ABC的面积为2,且满足0<•≤4,设和的夹角为θ.(1)求θ的取值范围;(2)求函数f(θ)=2sin2(+θ)﹣cos2θ的取值范围.考点:两角和与差的正弦函数;数量积表示两个向量的夹角;三角函数的最值.专题:三角函数的求值.分析:(1)由数量积和三角形的面积公式可得tanθ的范围,进而可得θ的取值范围;(2)化简可得f(θ)=1+2sin(2θ﹣),由θ的范围和三角函数公式可得.解答:解:(1)由题意可得•=cbcosθ,∵△ABC的面积为2,∴bcsinθ=2,变形可得cb=,∴•=cbcosθ==,由0<•≤4,可得0<≤4解得tanθ≥1,又∵0<θ<π,∴向量夹角θ的范围为[,);(2)化简可得f(θ)=2sin2(+θ)﹣cos2θ=2×﹣cos2θ=1+sin2θ﹣cos2θ=1+2sin(2θ﹣)∵由(1)知θ∈[,),∴2θ﹣∈[﹣,),∴sin(2θ﹣)∈[﹣,1],∴1+sin(2θ﹣)∈[,2],∴f(θ)的取值范围为:[,2]点评:本题考查两角和与差的三角函数公式,涉及向量的数量积和三角函数的值域,属中档题.18.(12分)空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.1月某日某省x个监测点数据统计如下:空气污染指数(单位:μg/m3)[0,50](50,100](100,150](150,200]监测点个数15 40 y 10(Ⅰ)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;(Ⅱ)若A市共有5个监测点,其中有3个监测点为轻度污染,2个监测点为良.从中任意选取2个监测点,事件A“其中至少有一个为良”发生的概率是多少?考点:频率分布直方图;列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:(Ⅰ)根据频率分布直方图,利用频率=,求出x、y的值,计算直方图中各小进行对应的高,补全频率分布直方图;(Ⅱ)利用列举法求出基本事件数,计算对应的概率即可.解答:解:(Ⅰ)根据频率分布直方图,得;0.003×50=,∴x=100;又∵15+40+y+10=100,∴y=35;…(2分)∴直方图中(50,100]对应矩形的高为=0.008,(100,150]对应矩形的高为=0.007,(150,200]对应矩形的高为=0.002;补全频率分布直方图,如图所示;…(5分)(Ⅱ)设A市空气质量状况属于轻度污染3个监测点为1,2,3,空气质量状况属于良的2个监测点为4,5,从中任取2个的基本事件分别为(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种,…(8分)其中事件A“其中至少有一个为良”包含的基本事件为(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)共7种,…(10分)所以事件A“其中至少有一个为良”发生的概率是P(A)=.…(12分)点评:本题考查了频率分布直方图的应用问题,也考查了用列举法求古典概型的概率问题,是基础题目.19.(12分)如图,多面体ABCDEF中,底面ABCD是菱形,∠BCD=60°,四边形BDEF 是正方形且DE⊥平面ABCD.(Ⅰ)求证:CF∥平面ADE;(Ⅱ)若AE=,求多面体ABCDEF的体积V.考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:空间位置关系与距离.分析:(Ⅰ)由已知得AD∥BC,DE∥BF,从而平面ADE∥平面BCF,由此能证明CF∥平面ADE.(Ⅱ)连结AC,交BD于O,由线面垂直得AC⊥DE,由菱形性质得AC⊥BD,从而AC⊥平面BDEF,进而多面体ABCDEF的体积V=2V A﹣BDEF,由此能求出多面体ABCDEF的体积V.解答:(Ⅰ)证明:∵底面ABCD是菱形,∴AD∥BC,∵四边形BDEF是正方形,∴DE∥BF,∵BF∩BC=B,∴平面ADE∥平面BCF,[来源:学+科+网Z+X+X+K]∵CF⊂平面BCF,∴CF∥平面ADE.(Ⅱ)解:连结AC,交BD于O,∵四边形BDEF是正方形且DE⊥平面ABCD.∴DE⊥平面ABCD,又AC⊂平面ABCD,∴AC⊥DE,∵底面ABCD是菱形,∴AC⊥BD,又BD∩DE=D,∴AC⊥平面BDEF,∵AE=,∠BCD=60°,∴AD=DE=BD=1,∴AO=CO=,∴多面体ABCDEF的体积:V=2V A﹣BDEF=2×=2×=.点评:本题考查线面平行证明,考查多面体的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.(12分)在平面直角坐标系xOy中,已知动圆过点(2,0),且被y轴所截得的弦长为4.(Ⅰ)求动圆圆心的轨迹C1的方程;(Ⅱ)过点P(1,2)分别作斜率为k1,k2的两条直线l1,l2,交C1于A,B两点(点A,B异于点P),若k1+k2=0,且直线AB与圆C2:(x﹣2)2+y2=相切,求△PAB的面积.[来源:学_科_网]考点:直线与圆锥曲线的综合问题.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)设动圆圆心坐标为(x,y),半径为r,利用点(2,0)在圆上及被y轴所截得的弦长为4,计算即可;(Ⅱ)设直线l1的斜率为k,通过将点P(1,2)代入抛物线y2=4x并与直线l1联立,计算可得直线AB的斜率,不妨设l AB:y=﹣x+b,利用直线AB与圆C相切可得b=3或1,分b=3、b=1两种情况讨论即可.解答:解:(Ⅰ)设动圆圆心坐标为(x,y),半径为r,由题可知,∴动圆圆心的轨迹方程为:y2=4x;(Ⅱ)设直线l1的斜率为k,则l1:y﹣2=k(x﹣1),l2:y﹣2=﹣k(x﹣1),点P(1,2)在抛物线y2=4x上,联立,消去x得:ky2﹣4y+8﹣4k=0,设A(x1,y1),B(x2,y2),△>0恒成立,即(k﹣1)2>0,有k≠1,∴y1y P=,∵y P=2,∴y1=,代入直线方程可得:,同理可得:x2=,,k AB===﹣1,不妨设l AB:y=﹣x+b,∵直线AB与圆C相切,∴=,解得b=3或1,当b=3时,直线AB过点P,舍去,当b=1时,由,可得x2﹣6x+1=0,此时△=32,∴|AB|==8,∴P到直线AB的距离d=,△PAB的面积为=4.点评:本题是一道直线与圆锥曲线的综合题,考查运算求解能力,考查分类讨论的思想,注意解题方法的积累,属于中档题.21.(12分)已知a是实常数,函数f(x)=xlnx+ax2.(1)若曲线y=f(x)在x=1处的切线过点A(0,﹣2),求实数a的值;(2)若f(x)有两个极值点x1,x2(x1<x2),①求证:﹣<a<0;②求证:f(x2)>f(x1)>﹣.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的极值.专题:导数的概念及应用;导数的综合应用;不等式的解法及应用.分析:(1)求出f(x)的导数,求得切线的斜率和切点,由点斜式方程可得切线方程,代入点(0,﹣2),即可解得a;(2)①依题意:f′(x)=0 有两个不等实根x1,x2(x1<x2),设g(x)=lnx+2ax+1,求出导数,讨论当a≥0时,当a<0时,求得函数g(x)的单调性,令极大值大于0,解不等式即可得证;②由①知:f(x),f′(x)变化,求得f(x)的增区间,通过导数,判断x1∈(0,1),设h (x)=(xlnx﹣x)(0<x<1),求得h(x)的单调性,即可得证.解答:(1)解:由已知可得,f′(x)=lnx+1+2ax(x>0),切点P(1,a),f(x)在x=1处的切线斜率为k=1+2a,切线方程:y﹣a=(2a+1)(x﹣1),把(0,﹣2)代入得:a=1;(2)证明:①依题意:f′(x)=0 有两个不等实根x1,x2(x1<x2),设g(x)=lnx+2ax+1 则:g′(x)=+2a(x>0)当a≥0时,有g′(x)>0,所以g(x)是增函数,不符合题意;当a<0时:由g′(x)=0得:x=﹣>0,列表如下:x (0,﹣)﹣(﹣,+∞)g′(x)+ 0 ﹣g(x)↗极大值↘依题意:g(﹣)=ln(﹣)>0,解得:﹣<a<0,综上可得,﹣<a<0得证;②由①知:f(x),f′(x)变化如下:x (0,x1) x1(x1,x2)x2(x2,+∞)f′(x)﹣0 + 0 ﹣f(x)↘↗↘由表可知:f(x)在[x1,x2]上为增函数,所以:f(x2)>f(x1)又f′(1)=g(1)=1+2a>0,故x1∈(0,1),由(1)知:ax1=,f(x1)=x1lnx1+ax12=(x1lnx1﹣x1)(0<x1<1)设h(x)=(xlnx﹣x)(0<x<1),则h′(x)=lnx<0成立,所以h(x)单调递减,故:h(x)>h(1)=﹣,也就是f(x1)>﹣综上所证:f(x2)>f(x1)>﹣成立.点评:本题考查导数的运用:求切线方程和单调区间、极值,主要考查导数的几何意义和分类讨论的思想方法,注意函数的单调性的运用,属于中档题.二、请考生在第22,23,24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,在△ABC中,∠ABC=90°,以AB为直径的圆O交AC于点E,点D是BC边上的中点,连接OD交圆O与点M.(1)求证:DE是圆O的切线;(2)求证:DE•BC=DM•AC+DM•AB.考点:与圆有关的比例线段;圆的切线的判定定理的证明.专题:推理和证明.分析:(1)连接BE,OE,由已知得∠ABC=90°=∠AEB,∠A=∠A,从而△AEB∽△ABC,进而∠ABE=∠C,进而∠BEO+∠DEB=∠DCE+∠CBE=90°,由此能证明DE是圆O的切线.(2)DM=OD﹣OM=(AC﹣AB),从而DM•AC+DM•AB=(AC﹣AB)•(AC+AB)=BC2,由此能证明DE•BC=DM•AC+DM•AB.解答:证明:(1)连接BE,OE,∵AB是直径,∴∠AEB=90°,∵∠ABC=90°=∠AEB,∠A=∠A,∴△AEB∽△ABC,∴∠ABE=∠C,∵BE⊥AC,D为BC的中点,∴DE=BD=DC,∴∠DEC=∠DCE=∠ABE=∠BEO,∠DBE=∠DEB,∴∠BEO+∠DEB=∠DCE+∠CBE=90°,∴∠OEE=90°,∴DE是圆O的切线.(2)证明:∵O、D分别为AB、BC的中点,∴DM=OD﹣OM=(AC﹣AB),∴DM•AC+DM•AB=DM•(AC+AB)[来源:学+科+网Z+X+X+K]=(AC﹣AB)•(AC+AB)=(AC2﹣AB2)=BC2=DE•BC.∴DE•BC=DM•AC+DM•AB.点评:本题考查DE是圆O的切线的证明,考查DE•BC=DM•AC+DM•AB的证明,是中档题,解题时要认真审题,注意弦切角定理的合理运用.【选修4-4:坐标系与参数方程】[来源:学*科*网]23.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA|•|PB|=1,求实数m的值.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(1)曲线C的极坐标方程是ρ=2cosθ,化为ρ2=2ρcosθ,利用可得直角坐标方程.直线L的参数方程是(t为参数),把t=2y代入+m消去参数t即可得出.(2)把(t为参数),代入方程:x2+y2=2x化为:+m2﹣2m=0,由△>0,得﹣1<m<3.利用|PA|•|PB|=t1t2,即可得出.解答:解:(1)曲线C的极坐标方程是ρ=2cosθ,化为ρ2=2ρcosθ,可得直角坐标方程:x2+y2=2x.直线L的参数方程是(t为参数),消去参数t可得.(2)把(t为参数),代入方程:x2+y2=2x化为:+m2﹣2m=0,由△>0,解得﹣1<m<3.∴t1t2=m2﹣2m.∵|PA|•|PB|=1=t1t2,∴m2﹣2m=1,解得.又满足△>0.∴实数m=1.点评:本题考查了极坐标方程化为直角坐标方程、参数方程的应用,考查了推理能力与计算能力,属于中档题.【选修4-5:不等式选讲】24.设函数f(x)=|2x﹣1|﹣|x+2|.(Ⅰ)解不等式f(x)>0;(Ⅱ)若∃x0∈R,使得f(x0)+2m2<4m,求实数m的取值范围.考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:(Ⅰ)不等式f(x)>0,即|2x﹣1|>|x+2|,平方后解一元二次不等式求得它的解集.(Ⅱ)根据f(x)的解析式,求出f(x)的最小值为f(),再根据f()+2m2<4m,求得m的范围.解答:解:(Ⅰ)不等式f(x)>0,即|2x﹣1|>|x+2|,即4x2﹣4x+1>x2+4x+4,即3x2﹣8x+3>0,求得它的解集为{x|x<﹣,或x>3}.(Ⅱ)f(x)=|2x﹣1|﹣|x+2|=,故f(x)的最小值为f()=﹣,根据∃x0∈R,使得f(x0)+2m2<4m,可得4m﹣2m2>﹣,即4m2﹣8m﹣5<0,求得﹣<m<.点评:本题主要考查绝对值不等式的解法,带有绝对会的函数,函数的能成立问题,体现了等价转化和分类讨论的数学思想,属于中档题.。
高三文科数学阶段质量检查试题(第2周) (考试时间:120分钟 满分100分) 拟题人:冯维丽 审题人:杨艳昌 2014.8.8一、选择题(本大题共10小题,每小题5分,共50分.每小题中只有一项符合题目要求)1、下列函数为偶函数的是( )A .sin y x =B .3y x =C .x y e = D.y =2、幂函数()f x x α=的图像经过点)21,4(,则1()4f 的值为( )A .4B .3C .2D .13、函数1()ln(1)f x x =++ ( )A .[2,0)(0,2]-B .(1,0)(0,2]-C .[2,2]-D .(1,2]-4、已知函数3log ,0()2,0xx x f x x >⎧=⎨≤⎩,则1(())9f f =( ) A.4 B.14 C.4- D.14- 5、函数()2xf x e x =+-的零点所在的一个区间是( )A .(2,1)--B .(1,0)-C .(0,1)D .(1,2)6、函数⎪⎩⎪⎨⎧≥-<=)0(12)0(2x x x y x 的图象大致是( )7、设2131og a =,3.02)21(3log ==c b ,,则( ) A. a<b<c B. a<c<b C. b<c<a D. b<a<c8、利用计算器,列出自变量和函数值的对应值如下表:那么方程的一个根位于下列区间的( ).A.(0.6,1.0)B.(1.4,1.8)C.(1.8,2.2)D.(2.6,3.0) 9、已知函数()f x 是(,)-∞+∞上的偶函数,若对于0x ≥,都有(2()f x f x +=),且当[0,2)x ∈时,2()log (1f x x =+),则(2011)(2012)f f -+的值为( ) A .2- B .1- C .1 D .210、设0x 是方程3log 3x x =-的根,且0(,1)x k k ∈+,则k =( )A .(0,1)B .(1,3)C .(3,4)D .(4,+∞)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)11、已知函数3,1,(),1,x x f x x x ⎧≤=⎨->⎩若()2f x =,则x = .12、若函数()()2ln 1f x x ax =++是偶函数,则实数a 的值为 .13、若函数()() y f x x R =∈满足()()2f x f x +=且[]1,1x ∈-时,()21f x x =-;函数()lg g x x = ,则函数()()()h x f x g x =-在区间[]5,5-内的零点的个数为____14、已知()f x 为偶函数,且(1)(3),20,()3x f x f x x f x +=--≤≤=当时,则=)2011(f三、解答题(本大题共4小题,共50分,解答应写出文字说明、证明过程或演算步骤)15、(10分)计算: (1)0021)51(1212)4(2---+-+-(2)91log 161log 25log 532∙∙16、(13分)已知定义域为R 的函数ab x f x x+-=22)(是奇函数。
2015年吉林市普通高中高三复习第三次调研测试卷数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24小题,共150分,考试时间120分钟。
注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集*=N U ,集合},,,{98632=,A ,集合,|{*3>=x x x B 分所表示的集合是(A )}{2 (B )}{32, (C )},{321,(D )},{986,2.已知i 为虚数单位,则=+12ii- (A )25 (B )25 (C )217 (D )210 3. 已知命题R :∈∀x p ,0>2x ,则 (A )R :∉∃⌝x p ,0≤2x (B )R :∈∃⌝x p ,0≤2x (C )R :∈∃⌝x p ,0<2x(D )R :∉∃⌝x p ,0>2x4.某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为150的样本,已知从学生中抽取的人数为135,那么该学校的教师人数是 (A )15(B )200(C )240(D )21605.已知α是第四象限角,且43-=αtan ,则=αsin (A )53-(B )53(C )54 (D )54-6.已知实数y x 、满足⎪⎩⎪⎨⎧0≥2-+20≤3--32≤y x y x y ,则目标函数y x z +3=的最大值为(A )2(B )3(C )7(D )82+=-xx e e y ,②2-=-x x e e y ,③7.现有三个函数:①xxx x ee e e y --+-=的图象则按照从左到右图象对应的函数序号安排正确的一组是 (A )①②③(B )③①②(C )③②①(D )②①③8.已知执行如下左图所示的程序框图,输出的485=S ,则判断框内的条件是 (A(B )?5≤k (C )?7>k (D )?6≤k9.一个几何体的三视图如上右图,则其体积为 (A )320(B )6 (C )316 (D )5(第8题图)(第9题图)10.已知m ,n 是两条不同的直线,γβα,,是三个不同的平面,则下列命题正确的是 (A )若γα⊥,γβ⊥,则βα//(B )若α////m n m ,,则α//n(C )若n =βα ,α//m ,β//m ,则n m // (D )若α⊥m ,n m ⊥,则α//n11.边长为4的正方形ABCD 的中心为O ,以O 为圆心,1为半径作圆,点M 是圆O 上的任意一点,点N 是边AB 、BC 、CD 上的任意一点(含端点),则⋅的取值范围是(A )][1818-, (B )][1616-, (C )][1212-, (D )][88-,12.若存在直线l 与曲线1C 和曲线2C 都相切,则称曲线1C 和曲线2C 为“相关曲线”,有下列三个命题:①有且只有两条直线l 使得曲线4=+221y x C :和曲线0=4+2+4-+222y x y x C : 为“相关曲线”;②曲线1=-4221x y C :和曲线1=4-222y x C :是“相关曲线”; ③曲线:1C x y ln =和曲线:2C x x y -=2为“相关曲线”. 其中正确命题的个数为 (A )0(B )1(C )2(D )3第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二.填空题:本大题共4个小题,每小题5分。
吉林省东北师范大学附属中学2015届高三数学总复习阶段测试卷4 文第Ⅰ卷一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合M ={-1,0,1},N ={x|x2≤x},则M ∩N =( ) A .{0} B .{0,1} C .{-1,1} D .{-1,0,1} 2.命题p :0∀>x ,都有sinx ≥-1,则( )A .p ⌝:0∃>x ,使得sin 1x <- B. p ⌝:0∀>x ,都有sinx<-1 C. p ⌝:0∃>x ,使得sin 1x >- D. p ⌝:0x ∀>,都有sinx ≥-1 3.已知向量)0,3(),1,2(-=-=b a ,则a 在b 方向上的投影为( )A .5-B .5C .-2D .24.在等差数列{an}中,已知a4+a8=16,则a2+a10=( ) A.12 B.16 C.20 D.245. 设a ∈R ,则“a =1”是“直线l1:ax +2y -1=0与直线l2:x +(a +1)y +4=0平行”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 6.同时具有性质:①最小正周期是π;②图像关于直线3π=x 对称;③在]3,6[ππ-上是增函数的一个函数是( )A .)62sin(π+=x y B .)32cos(π+=x y C .)62sin(π-=x y D .cos()26x y π=- 7.双曲线)0(122≠=-mn n y m x 的离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .38B .83C .316D .1638.已知函数32()22f x x x =-+有唯一零点,则下列区间必存在零点的是( )A .3(2,)2-- B .3(,1)2--C .1(1,)2-- D .1(,0)2-9. 与直线04=--y x 和圆02222=-++y x y x 都相切的半径最小的圆的方程是( )A.22(1)(1)2x y B. 22(1)(1)4x yC. 2)1()1(22=++-y xD.4)1()1(22=++-y x 10. 已知)(x f ,)(x g 都是定义在R 上的函数,且满足以下条件:①)(x f =x a ·)(x g (1,0≠>a a );②)(x g 0≠; ③)()()()(x g x f x g x f ⋅'>'⋅;若25)1()1()1()1(=--+g f g f ,则a 等于( )A .21B .2C .45D .2或2111.已知()2sin(+)f x x ωϕ= , (ω>0 ,22πϕπ<<-) , A 、B 为图象上两点,B 是图象的最高点,C 为B 在x 轴上射影,且点C 的坐标为),0,12(π则AB ·BC =( ).A. 4π4+B. 4π4-C. 4D. 4- 12.已知定义在R 上的奇函数()f x 满足()()4f x f x -=-,且[]0,2x ∈时,()()2log 1f x x =+,甲,乙,丙,丁四位同学有下列结论:甲:()31f =;乙:函数()f x 在[]6,2--上是增函数;丙:函数()f x 关于直线4x =对称;丁:若()0,1m ∈,则关于x 的方程()0f x m -=在[]8,8-上所有根之和为-8,其中正确的是( )A.甲,乙,丁B.乙,丙C.甲,乙,丙D.甲,丁第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.已知圆x2+y2-6x -7=0与抛物线y2=2px (p>0)的准线相切,则此抛物线的焦点坐标是___________。
哈尔滨师大附中 2015年高三第一次联合模拟考试 文科数学试卷东北师大附中辽宁省实验中学本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共150分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项: 1.答题前,考生务必先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第I卷(选择题,共60分) 一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求) 1.已知集合若,则b等于 A.1 B.2 C.3 D.1或2 2.复数 A.i B.-i C.D.1 + i 3.ΔABC的内角A、B、C的对边分别为a、b、c,则“a > b”是“cos2A < cos2B”的 A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.向量a,b满足,,,则向量a与b的夹角为 A.45° B.60° C.90° D.120° 5.实数m是区间上的随机数,则关于x 的方程有实根的概率为 A.B.C.D.6.已知三棱锥的三视图,则该三棱锥的体积是 A.B.C.D.7.椭圆两个焦点分别是F1、F2圆上任意一点,则的取值范围是 A.B.C.D.8.半径为1的球面上有四个点A、B、C、D,O为球心,AB过点O,CA=CB,DA=DB,DC=1,则三棱锥A - BCD的体积为 A.B.C.D.9.已知数列满足(),则a10=A.e26 B.e29 C.e32 D.e35 10.执行如图所示的程序框图,要使输出的S值小于1,则输入的t值不能是下面的 A.8 B.9 C.10 D.11 11.若函数在区间上为增函数,则实数m的取值范围是 A.B.C.D.12.函数的零点个数为 A.9 B.10 C.11 D.12 第II卷(非选择题,共90分) 本卷包括必考题和选考题两部分。
2015年东北三省三校第一次高考模拟考试文科数学参考答案13.4030 14.-6 15.-16 16.②③④三、解答题 17.解:(1)设ΔABC 中,角A 、B 、C 的对边分别为 a 、b 、c ,则由已知:1sin 22bc θ=,0cos 4bc θ<≤, ……4分可得,tan 1θ≥,所以:[,)42ππθ∈ ……6分(2)2()2sin ()[1cos(2)]42f ππθθθθθ=+=-+(1sin 2)sin 212sin(2)13πθθθθθ=+=+=-+ ……8分∵[,)42ππθ∈,∴22[,)363πππθ-∈,∴π22sin(2)133θ≤-+≤即当512πθ=时,max ()3f θ=;当4πθ=时,min ()2f θ= 所以:函数()f θ的取值范围是[2,3] ……12分 18.(本小题满分12分) 解:(1)150.00350100x x⨯=∴= 15401010035y y +++=∴= ……2分 400.00810050=⨯ 350.00710050=⨯ 100.00210050=⨯DCBAFE……5分(2)设A 市空气质量状况属于轻度污染3个监测点为1,2,3,空气质量状况属于良的2个监测点为4,5,从中任取2个的基本事件分别为(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种, ……8分 其中事件A“其中至少有一个为良”包含的 基本事件为(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)共7种, ……10分所以事件A“其中至少有一个为良”发生的概率是7()10P A =. ……12分 19.(本小题满分12分)(1)证明: ABCD 是菱形,//BC AD ∴. 又⊄BC 平面ADE ,AD ⊂平面ADE ,//BC ∴平面ADE . ……2分 又BDEF 是正方形,//BF DE ∴.BF ⊄平面ADE ,DE ⊂平面ADE ,//BF ∴平面ADE . ……4分 BC ⊂平面BCF ,BF ⊂平面BCF BC BF B =,∴平面BCF //平面AED .由于CF ⊂平面BCF ,知//CF 平面AED . ……6分 (2)解:连接AC ,记AC BD O =. ABCD 是菱形,AC ⊥BD ,且AO = BO .由DE ⊥平面ABCD ,AC ⊂平面ABCD ,DE AC ⊥.DE ⊂平面BDEF ,BD ⊂平面BDEF ,DE BD D =,∴AC ⊥平面BDEF 于O ,即AO 为四棱锥A BDEF-的高. ……9分由ABCD 是菱形,60BCD ∠=,则ABD ∆为等边三角形,由AE ,则(3/g m μ)1AD DE ==,2AO =,1BDEF S =,136BDEF BDEF V S AO =⋅=,23BDEF V V ==. ……12分 20.(本小题满分12分)解:(1)设动圆圆心坐标为(,)x y ,半径为r ,由题可知2222222(2)42x y r y x x r⎧-+=⎪⇒=⎨+=⎪⎩; ∴动圆圆心的轨迹方程为24y x = ……4分(2)设直线1l 斜率为k ,则12:2(1);:2(1).l y k x l y k x -=--=-- 点P (1,2)在抛物线24y x =上22448402(1)y xky y k y k x ⎧=∴⇒-+-=⎨-=-⎩ 设1122(,),(,)A x y B x y ,0>∆恒成立,即(),012>-k 有1≠k118442,2,,P P kky y y y kk--∴==∴=代入直线方程可得212(2)k x k -= ……6分同理可得 2222(2)42,k kx y k k++==- ……7分 212221242421(2)(2)ABk ky y k k k k k x x k +----===-+--- ……9分 不妨设:AB l y x b =-+. 因为直线AB 与圆C=解得3b =或1, 当3b =时, 直线AB 过点P ,舍当1b =时, 由2216104y x x x y x=-+⎧⇒-+=⎨=⎩;32,||8AB ∆===P 到直线AB 的距离为d =PAB 的面积为 ……12分21.解:(1)由已知:()ln 12(0)f x x ax x '=++>,切点(1,)P a ……1分 切线方程:(21)(1)y a a x -=+-,把(0,2)-代入得:a = 1 ……3分 (2)(I )依题意:()0f x '=有两个不等实根设()ln 21g x x ax =++,则:1()2(0)g x a x x'=+> ①当0a ≥时:()0g x '>,所以()g x 是增函数,不符合题意; ……5分 ②当0a <时:由()0g x '=得:102x a=->依题意:11()ln()022g a a -=->,解得:102a -<< 综上所求:102a -<<,得证; ……8分(注:以下证明为补充证明此问的充要性,可使其证明更严谨,以此作为参考,学生证明步骤写出上述即可)方法一:当0>x 且0→x 时-∞→x ln ,112→+ax ,∴当0>x 且0→x 时-∞→)(x g)(x g ∴在1(0,)2a-上必有一个零点. 当a x 21->时,设x x x h -=ln )(,xx x x x h 22211)(/-=-=4>∴x 时,024ln )4()(<-=<h x h 即x x <ln 4>∴x 时,1221ln )(++<++=ax x ax x x g设x t =,12122++=++t at ax x 由0a <,+∞→x 时,0122<++t at0)(<∴x g )(x g ∴在1(,)2a-+∞上有一个零点 综上,函数)(x f y =有两个极值点时021<<-a ,得证.方法二2ln )(ax x x x f +=有两个极值点,即/()ln 12(0)f x x ax x =++>有两个零点,即xx a 1ln 2+=-有两不同实根. 设x x x h 1ln )(+=,2/ln )(x xx h -=,当0)(/>x h 时,10<<x ;当0)(/<x h 时,1>x当1=x 时)(x h 有极大值也是最大值为1)1(=f 12<-∴a ,2->a 0)1(=eh ,故)(x h 在()1,0有一个零点当1>x 时,01ln 0ln >+∴>x x x 且011ln lim lim ==++∞→+∞→xx x x x 1>∴x 时1)1()(0=<<h x h0,02<∴>-∴a a综上函数)(x f y =有两个极值点时021<<-a ,得证.② 证明:由①知:/(),()f x f x 变化如下:由表可知:()f x 在12[,]x x 上为增函数,又/(1)(1)210f g a ==+> ,故211x x << (10)分所以:21)1()(,)1()(21->=><=<a f x f a f x f 即1()0f x <,21()2f x >-. ……12分22.选修4-1:几何证明选讲证明:(1)连结OE ,∵点D 是BC 的中点,点O 是AB 的中点,∴ OD 平行且等于12AC ,∴∠A =∠BOD , ∠AEO = ∠EOD , ∵OA = OE ,∴∠A = ∠AEO ,∴∠BOD = ∠EOD ……3分 在ΔEOD 和ΔBOD 中,∵OE = OB ,∠BOD= ∠EOD ,OD = OD , ∴ΔEOD ≌ ΔBOD ,∴∠OED = ∠OBD = 90°,即OE ⊥BD∵是圆O 上一点,∴DE 是圆O 的切线 ……5分 (II )延长DO 交圆O 于点F ∵ΔEOD ≌ ΔBOD ,∴DE = DB ,∵点D 是BC 的中点,∴BC = 2DB , ∵DE 、DB 是圆O 的切线,∴DE = DB ,∴DE ·BC = DE ·2DB = 2DE 2 ……7分 ∵AC = 2OD ,AB = 2OF ∴DM · AC + DM · AB = DM · (AC + AB ) = DM · (2OD + 2OF ) = 2DM · DF ∵DE 是圆O 的切线,DF 是圆O 的割线, ∴DE 2 = DM · DF ,∴DE · BC = DM · AC + DM · AB ……10分 23.选修4-4: 坐标系与参数方程FC D MO BEA解:(1)由 2cos ρθ=,得:22cos ρρθ=,∴ 222x y x +=,即22(1)1x y -+=, ∴曲线C 的直角坐标方程为22(1)1x y -+= ……3分由12x m y t ⎧=+⎪⎪⎨⎪=⎪⎩,得x m +,即0x m -=, ∴直线l的普通方程为0x m -= ……5分(2)将12x m y t ⎧=+⎪⎪⎨⎪=⎪⎩代入22(1)1x y -+=,得:221112m t ⎫⎛⎫+-+=⎪ ⎪⎪⎝⎭⎝⎭,整理得:221)20t m t m m -+-=,由0∆>,即223(1)4(2)0m m m --->,解得:-1 < m < 3设t 1、t 2是上述方程的两实根,则121)t t m +=-,2122t t m m =- ……8分 又直线l 过点(,0)P m ,由上式及t 的几何意义得212|||||||2|1PA PB t t m m ⋅==-=,解得:1m =或1m =,都符合-1 < m < 3, 因此实数m 的值为1或11 ……10分24.选修4-5: 不等式选讲解:(1)当x < -2时,()|21||2|1223f x x x x x x =--+=-++=-+,()0f x >,即30x -+>,解得3x <,又2x <-,∴2x <-; 当122x -≤≤时,()|21||2|12231f x x x x x x =--+=---=--, ()0f x >,即310x -->,解得13x <-,又122x -≤≤,∴123x -≤<-; 当12x >时,()|21||2|2123f x x x x x x =--+=---=-, ()0f x >,即30x ->,解得3x >,又12x >,∴3x >. ……3分 综上,不等式()0f x >的解集为1,(3,)3⎛⎫-∞-+∞ ⎪⎝⎭. ……5分(2)3,21()|21||2|31,2213,2x x f x x x x x x x ⎧⎪-+<-⎪⎪=--+=---≤≤⎨⎪⎪->⎪⎩ ∴min 15()22f x f ⎛⎫==- ⎪⎝⎭. ……8分 ∵0x R ∃∈,使得20()24f x m m +<,∴2min 542()2m m f x ->=-, 整理得:24850m m --<,解得:1522m -<<,因此m 的取值范围是15(,)22-.……10分。
长春市普通高中2015届高三质量监测(三)数学(文)试题一.选择题:本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一项是符合要求的. 1。
已知集合{11}A x x ≤≤=-,{02}B x x ≤≤=,则A B =()A. [1,0]-B. [1,2]-C. [0,1] D 。
(,1][2,)-∞+∞【答案】C. 【解析】试题分析:∵[0,2]B =,∴A B =[0,1],故选C .考点:集合的运算。
2。
设复数1z i =+(i 是虚数单位),则2z=( )A. 1i - B 。
1i + C 。
1i --D.1i -+【答案】A 。
【解析】 试题分析:由i iz-=+=1122,故选A .考点:复数的计算。
3.已知1,||2a b ==|| ,且a b ⊥,则||a b +为( )A 。
2 B 。
3 C 。
2 D 。
22【答案】B 。
【解析】试题分析:∵a b ⊥,∴0a b ⋅=,于是由22223a ba ab b +=+⋅+=,于是可求得3a b +=,故选B .考点:平面向量数量积。
4。
已知ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,222ab c bc =+-,4bc =,则ABC ∆的面积为( )A. 12B. 1 C 。
3D. 2【答案】C.考点:余弦定理。
5。
2x <是2320xx -+<成立的( )A 。
必要不充分条件 B. 充分不必要条件 C. 充要条件 D. 既不充分也不必要条件 【答案】A 。
【解析】 试题分析:由2320xx -+<解得21<<x ,再根据已知条件易知选A .考点:1.一元二次不等式;2.充分必要条件。
6.已知双曲线222211x y a a-=-(0)a >2a 的值为()A. 12B. 22 C. 13 D. 3【答案】C. 【解析】试题分析:∵[0,2]B =,∴A B =[0,1],故选C .考点:双曲线的离心率。
吉林省长春市东北师大附中2015届高考数学三模试卷(文科)一、选择题,共60分1.(5分)已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x﹣3)>0},则A∩B=()A.(﹣∞,﹣1)B.(﹣1,)C.﹙,3﹚D.(3,+∞)2.(5分)命题“∀x∈R,x2≠x”的否定是()A.∀x∉R,x2≠x B.∀x∈R,x2=x C.∃x∉R,x2≠x D.∃x∈R,x2=x3.(5分)下列函数中,定义域是R且为增函数的是()A.y=e﹣x B.y=x C.y=lnx D.y=|x|4.(5分)函数的图象()A.关于y轴对称B.关于x轴对称C.关于原点对称D.关于直线y=x对称5.(5分)已知条件p:x>1或x<﹣3,条件q:x>a,且q是p的充分而不必要条件,则a 的取值范围是()A.a≥1 B.a≤1 C.a≥﹣3 D.a≤﹣36.(5分)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.47.(5分)已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若,则sinC=()A.0B.2C.1D.﹣18.(5分)若b<a<0,则下列不等式中正确的是()A.>B.|a|>|b| C.+>2 D.a+b>ab9.(5分)函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则该函数的表达式为()A.B.C.D.10.(5分)已知等比数列{a n}是递增数列,S n是数列{a n}的前n项和,若a1,a3是方程x2﹣5x+4=0的两个根,则S5等于()A.15 B.31 C.32 D.5111.(5分)设函数f(x)是定义在R上的奇函数,且∀x∈∈R,f(x)=f(x+4).当x∈∈(﹣2,0)时,f(x)=2x,则f﹣f的值为()A.﹣B.0C.D.112.(5分)已知直线y=k(x+1)(k>0)与函数y=|sinx|的图象恰有四个公共点A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4)其中x1<x2<x3<x4,则有()A.s inx4=1 B.s inx4=(x4+1)cosx4C.s inx4=kcosx4D.s inx4=(x4+1)tanx4二、填空题(本题共4小题,每小题5分,共20分)13.(5分)sin15°+cos15°=.14.(5分)已知数列{a n}中,a1=2,当n≥2时,a n﹣a n﹣1=n+1,则a99=.15.(5分)已知x>0,y>0,lg2x+lg8y=lg2,则+的最小值是.16.(5分)在平面直角坐标系中,横、纵坐标均为整数的点叫格点,若某函数f(x)图象恰好经过n个格点,则称此函数为n阶格点函数,给出以下函数:①f(x)=x2,②f(x)=In|x|;③;④.其中所有满足二阶格点函数的序号是.三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知数列{a n}前n项和为S n,且S n=n2,(1)求{a n}的通项公式(2)设,求数列{b n}的前n项和T n.18.(12分)若函数f(x)=cosxsin(x+).(Ⅰ)求函数f(x)的最小正周期及最大值;(Ⅱ)写出函数f(x)在[0,π]上的单调区间.19.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,A=2B,.(Ⅰ)求cosA及sinC的值;(Ⅱ)若b=2,求△ABC的面积.20.(12分)某单位用2560万元购得一块空地,计划在这块地上建造一栋至少12层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥12)层,则每平方米的平均建筑费用为520+50x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?每平方米的平均综合费用的最小值为多少元?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)21.(12分)已知双曲线C的中心在坐标原点,焦点在x轴上,离心率e=,虚轴长为2.(Ⅰ)求双曲线C的标准方程;(Ⅱ)若直线l:y=kx+m与双曲线C相交于A,B两点(A,B均异于左、右顶点),且以AB 为直径的圆过双曲线C的左顶点D,求证:直线l过定点,并求出该定点的坐标.22.(12分)设函数f(x)=lnx﹣ax2﹣bx(a≤0).(Ⅰ)若x=1是f(x)的极大值点,求a的取值范围;(Ⅱ)当a=0,b=﹣1时,函数g(x)=mx2﹣f(x)有唯一零点,求实数m的取值范围.吉林省长春市东北师大附中2015届高考数学三模试卷(文科)参考答案与试题解析一、选择题,共60分1.(5分)已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x﹣3)>0},则A∩B=()A.(﹣∞,﹣1)B.(﹣1,)C.﹙,3﹚D.(3,+∞)考点:一元二次不等式的解法;交集及其运算.专题:集合.分析:求出集合B,然后直接求解A∩B.解答:解:因为B={x∈R|(x+1)(x﹣3)>0﹜={x|x<﹣1或x>3},又集合A={x∈R|3x+2>0﹜={x|x},所以A∩B={x|x}∩{x|x<﹣1或x>3}={x|x>3},故选:D.点评:本题考查一元二次不等式的解法,交集及其运算,考查计算能力.2.(5分)命题“∀x∈R,x2≠x”的否定是()A.∀x∉R,x2≠x B.∀x∈R,x2=x C.∃x∉R,x2≠x D.∃x∈R,x2=x考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题,利用特称命题写出命题的否定命题.解答:解:根据全称命题的否定是特称命题,∴命题的否定是:∃x0∈R,=x0.故选:D.点评:本题考查了全称命题的否定,要注意命题的否定与命题的否命题是两个完全不同的命题,全称命题的否定是特称命题.3.(5分)下列函数中,定义域是R且为增函数的是()A.y=e﹣x B.y=x C.y=lnx D.y=|x|考点:函数单调性的判断与证明.专题:函数的性质及应用.分析:根据函数单调性的性质和函数成立的条件,即可得到结论.解答:解:A.函数的定义域为R,但函数为减函数,不满足条件.B.函数的定义域为R,函数增函数,满足条件.C.函数的定义域为(0,+∞),函数为增函数,不满足条件.D.函数的定义域为R,在(0,+∞)上函数是增函数,在(﹣∞,0)上是减函数,不满足条件.故选:B.点评:本题主要考查函数定义域和单调性的判断,比较基础.4.(5分)函数的图象()A.关于y轴对称B.关于x轴对称C.关于原点对称D.关于直线y=x对称考点:奇偶函数图象的对称性.专题:函数的性质及应用.分析:将函数进行化简,利用函数的奇偶性的定义进行判断.解答:解:因为═,所以f(﹣x)=2﹣x+2x=2x+2﹣x=f(x),所以函数f(x)是偶函数,即函数图象关于y轴对称.故选A.点评:本题主要考查函数奇偶性和函数图象的关系,利用函数奇偶性的定义判断函数的奇偶性是解决本题的关键.5.(5分)已知条件p:x>1或x<﹣3,条件q:x>a,且q是p的充分而不必要条件,则a 的取值范围是()A.a≥1 B.a≤1 C.a≥﹣3 D.a≤﹣3考点:必要条件、充分条件与充要条件的判断.专题:综合题;简易逻辑.分析:把充分性问题,转化为集合的关系求解.解答:解:∵条件p:x>1或x<﹣3,条件q:x>a,且q是p的充分而不必要条件∴集合q是集合p的真子集,q⊊P即a≥1故选:A点评:本题考察了简易逻辑,知识融合较好.6.(5分)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.4考点:等差数列的通项公式.专题:计算题.分析:设数列{a n}的公差为d,则由题意可得2a1+4d=10,a1+3d=7,由此解得d的值.解答:解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B.点评:本题主要考查等差数列的通项公式的应用,属于基础题.7.(5分)已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若,则sinC=()A.0B.2C.1D.﹣1考点:正弦定理.专题:计算题.分析:根据已知三内角的关系,利用内角和定理可求出B的度数,进而求出sinB和cosB 的值,由a,b及cosB的值,利用余弦定理列出关于c的方程,求出方程的解得到c的值,然后再由b,c及sinB的值,利用正弦定理求出sinC的值即可.解答:解:由A+C=2B,且A+B+C=π,得到B=,所以cosB=,又a=1,b=,根据余弦定理得:b2=a2+c2﹣2ac•cosB,即c2﹣c﹣2=0,因式分解得:(c﹣2)(c+1)=0,解得c=2,c=﹣1(舍去),又sinB=,b=,根据正弦定理=得:sinC===1.故选C点评:此题考查了正弦定理,余弦定理以及特殊角的三角函数值,根据已知角度的关系,利用三角形内角和定理求出B的度数是本题的突破点,熟练掌握定理是解本题的关键.8.(5分)若b<a<0,则下列不等式中正确的是()A.>B.|a|>|b| C.+>2 D.a+b>ab考点:不等关系与不等式.专题:常规题型.分析:利用不等式的基本性质,两个负数取倒数或去绝对值不等式方向应该改变,得到AB 不正确,在根据均值不等式得到C是正确的,对于显然知道a+b<0而ab>0故D也不正确.解答:解:∵b<a<0∴取倒数后不等式方向应该改变即<,故A不正确∵b<a<0∴两边同时乘以﹣1后不等式方向应该改变﹣b>﹣a>0即|a|<|b|,故B不正确∵b<a<0根据均值不等式知:+>2故C正确∵b<a<0∴a+b<0,ab>0∴a+b<ab故D不正确故选C点评:本题考查了不等式的基本性质,属于基础题.9.(5分)函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则该函数的表达式为()A.B.C.D.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:由题意可知,A、T利用T求出ω,利用()再求φ即可.解答:解:由图象可知,A=2,,T=π,所以ω=2函数y=Asin(ωx+φ)=2sin(2x+φ),当x=时,y=2,因为2sin(+φ)=2,|φ|<,所以φ=故选C.点评:本题考查由函数y=Asin(ωx+φ)的部分图象确定解析式,考查学生分析问题和解决问题的能力,是基础题.10.(5分)已知等比数列{a n}是递增数列,S n是数列{a n}的前n项和,若a1,a3是方程x2﹣5x+4=0的两个根,则S5等于()A.15 B.31 C.32 D.51考点:等比数列的前n项和.专题:等差数列与等比数列.分析:解一元二次方程由题意可得a1=1,a3=4,公比q=2,由等比数列的求和公式可得.解答:解:解方程x2﹣5x+4=0可得两个根为1和4,由题意得a1=1,a3=4,公比q=2,∴,故选:B点评:本题考查等比数列的求和公式,涉及一元二次方程的解法,属基础题.11.(5分)设函数f(x)是定义在R上的奇函数,且∀x∈∈R,f(x)=f(x+4).当x∈∈(﹣2,0)时,f(x)=2x,则f﹣f的值为()A.﹣B.0C.D.1考点:函数奇偶性的性质.专题:计算题;函数的性质及应用.分析:由题意得周期T=4,可得f﹣f=f(﹣1)﹣f(1)=2f(﹣1),运用已知区间上的解析式即可求解.解答:解:∀x∈∈R,f(x)=f(x+4)可得周期T=4,f﹣f=f(﹣1+4×504)﹣f(1+4×503)=f(﹣1)﹣f(1),由f(x)是定义在R上的奇函数,则f(﹣1)﹣f(1)=2f(﹣1),由于x∈(﹣2,0)时,f(x)=2x,则f(﹣1)=2﹣1=,即有f﹣f=2×=1.故选D.点评:本题考查函数的奇偶性和周期性的运用:求函数值,考查运算能力,属于基础题.12.(5分)已知直线y=k(x+1)(k>0)与函数y=|sinx|的图象恰有四个公共点A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4)其中x1<x2<x3<x4,则有()A.s inx4=1 B.s inx4=(x4+1)cosx4C.s inx4=kcosx4D.s inx4=(x4+1)tanx4考点:正弦函数的图象.专题:综合题;导数的概念及应用.分析:依题意,在同一坐标系中作出直线y=k(x+1)(k>0)与函数y=|sinx|的图象,利用导数的几何意义可求得切线的斜率,从而将切点坐标代入直线方程(即切线方程)即可求得答案.解答:解:∵直线y=k(x+1)(k>0)与函数y=|sinx|的图象恰有四个公共点,如图:当x∈(π,2π)时,函数y=|sinx|=﹣sinx,y′=﹣cosx,依题意,切点坐标为(x4,y4),又切点处的导数值就是直线y=k(x+1)(k>0)的斜率k,即k=﹣cosx4,∴y4=k(x4+1)=﹣cosx4(x4+1)=|sinx4|=﹣sinx4,∴sinx4=(x4+1)cosx4,故选:B.点评:本题考查正弦函数的图象,着重考查导数的几何意义的应用,考查等价转化思想与数形结合思想的综合应用,考查作图能力与分析、运算能力,属于难题.二、填空题(本题共4小题,每小题5分,共20分)13.(5分)sin15°+cos15°=.考点:两角和与差的正弦函数.专题:三角函数的求值.分析:原式提取,利用特殊角的三角函数值及两角和与差的正弦函数公式化简,即可得到结果.解答:解:sin15°+cos15°=(sin15°+cos15°)=sin(15°+45°)=sin60°=.故答案为:点评:此题考查了两角和与差的正弦函数公式,以及特殊角的三角函数值,熟练掌握公式是解本题的关键.14.(5分)已知数列{a n}中,a1=2,当n≥2时,a n﹣a n﹣1=n+1,则a99=5049.考点:数列的求和.专题:计算题.分析:根据递推公式a1=2,当n≥2时,a n﹣a n﹣1=n+1,利用累加法和等差数列的前n项和公式求出a99的值.解答:解:由题意知,当n≥2时,a n﹣a n﹣1=n+1,所以a2﹣a1=3,a3﹣a2=4,a4﹣a3=5,…,a99﹣a98=100,上述各式相加得:a99﹣a1=3+4+5+ (100)又a1=2,则a99=2+3+4+5+…+100==5049,故答案为:5049.思路点拨由递推公式相加易得a99=2+3+4+5+…+100=5049.点评:本题考查数列的递推公式的应用,等差数列的前n项和公式,以及累加法求数列的项,难度不大.15.(5分)已知x>0,y>0,lg2x+lg8y=lg2,则+的最小值是4.考点:基本不等式在最值问题中的应用;对数的运算性质.专题:计算题.分析:由对数的运算性质,lg2x+lg8y=lg2x+lg23y=(x+3y)lg2,结合题意可得,x+3y=1;再利用1的代换结合基本不等式求解即可.解答:解:lg2x+lg8y=lg2x+lg23y=(x+3y)lg2,又由lg2x+lg8y=lg2,则x+3y=1,进而由基本不等式的性质可得,=(x+3y)()=2+≥2+2=4,当且仅当x=3y时取等号,故答案为:4.点评:本题考查基本不等式的性质与对数的运算,注意基本不等式常见的变形形式与运用,如本题中,1的代换.16.(5分)在平面直角坐标系中,横、纵坐标均为整数的点叫格点,若某函数f(x)图象恰好经过n个格点,则称此函数为n阶格点函数,给出以下函数:①f(x)=x2,②f(x)=In|x|;③;④.其中所有满足二阶格点函数的序号是2,4.考点:函数的图象.专题:新定义.分析:①当x=﹣2,0,2,…,f(x)=x2,有无数个格点;②只有x=±1时,f(x)=In|x|=0,满足横、纵坐标均为整数;③当x=0,﹣1,﹣2…,均为整数,及该函数有无数个格点;④=2+,只有x=1与x=3时,满足题意.解答:解:①当x=﹣2,0,2,…,f(x)=x2,有无数个格点,可排除A;对于f(x)=In|x|,只有x=±1时,f(x)=In|x|=0,满足横、纵坐标均为整数,故②为二阶格点函数;③当x=0,﹣1,﹣2…,均为整数,及该函数有无数个格点,故可排除C;对于④,=2+,显然只有x=1与x=3时,满足横、纵坐标均为整数,故④为二阶格点函数.故答案为:②④.点评:本题考查函数的图象,着重考查基本初等函数的性质,注重排除法与转化法的考查,属于中档题.三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知数列{a n}前n项和为S n,且S n=n2,(1)求{a n}的通项公式(2)设,求数列{b n}的前n项和T n.考点:数列的求和;等差数列的通项公式.专题:计算题.分析:(1)将S n=n2中的n用n﹣1代替仿写出一个新的等式,两个式子相减,即得到函数的通项公式.(2)将a n的值代入b n,将其裂成两项的差,利用裂项求和的方法求出数列{b n}的前n项和T n.解答:解:(1)∵S n=n2∴S n﹣1=(n﹣1)2两个式子相减得a n=2n﹣1;(2)=(故Tn=+++…+==点评:求数列的前n项和问题,应该先求出数列的通项,根据通项的特点选择合适的求和方法,常见的求和方法有:公式法、倒序相加的方法、错位相减法、裂项相消法、分组法.18.(12分)若函数f(x)=cosxsin(x+).(Ⅰ)求函数f(x)的最小正周期及最大值;(Ⅱ)写出函数f(x)在[0,π]上的单调区间.考点:三角函数中的恒等变换应用.专题:三角函数的图像与性质.分析:(Ⅰ)先化简f(x)=cosxsin(x+)=sin(2x+)+,由正弦函数的性质即可求函数f(x)的最小正周期及最大值;(Ⅱ)由2k≤2x+≤2k,可解得函数单调递增区间,由2k≤2x+≤2k,可解得函数单调递减区间,从而可求函数f(x)在[0,π]上的单调区间.解答:解:f(x)=cosxsin(x+)=cosx(sinx+cosx)=sin(2x+)+.(Ⅰ)由正弦函数的性质:f(x)的最小正周期为T==π;最大值为.(Ⅱ)∵由2k≤2x+≤2k,可解得函数单调递增区间为:[k,k],k∈Z,由2k≤2x+≤2k,可解得函数单调递减区间为:[k,k],k∈Z,∴函数f(x)在[0,π]上的单调区间:函数f(x)在[0,]和[,π]上单调递增,在[,]上单调递减.点评:本题主要考查了三角函数中的恒等变换应用,正弦函数的图象和性质,属于基础题.19.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,A=2B,.(Ⅰ)求cosA及sinC的值;(Ⅱ)若b=2,求△ABC的面积.考点:解三角形;三角形中的几何计算.专题:综合题.分析:(Ⅰ)根据cosA=cos2B=1﹣2sin2B,及,可求cosA及sinC的值;(Ⅱ)先计算sinA的值,再利用正弦定理,确定a的值,过点C作CD⊥AB于D,利用c=acosB+bcosA,即可求得三角形的面积.解答:解:(Ⅰ)因为A=2B,所以cosA=cos2B=1﹣2sin2B.…(2分)因为,所以cosA=1﹣=.…(3分)由题意可知,B,所以cosB=.…(5分)所以sinC=sin(A+B)=sinAcosB+cosAsinB=.…(8分)(Ⅱ)sinA=sin2B=2sinBcosB=因为,b=2,所以,所以a=.…(10分)由cosA=可知,A.过点C作CD⊥AB于D,所以c=acosB+bcosA=.…(12分)所以.…(13分)点评:本题考查二倍角公式,考查正弦定理的运用,解题的关键是搞清三角形中边角之间的关系.20.(12分)某单位用2560万元购得一块空地,计划在这块地上建造一栋至少12层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥12)层,则每平方米的平均建筑费用为520+50x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?每平方米的平均综合费用的最小值为多少元?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)考点:导数在最大值、最小值问题中的应用.专题:应用题;函数的性质及应用.分析:由题意可得平均综合费y=520+50x+,利用导数求出函数的最小值以及对应的x的值.解答:解:设楼房每平方米的平均综合费为y元,依题意得;y=520+50x+=520+50x+(x≥12,且x∈N*),当x≥12时,y′=50﹣,令y′=0,即50﹣=0,解得x=16;∴当x>16时,y′>0;当0<x<16时,y′<0;∴当x=16时,y取得极小值也是最小值,此时最小值为2120.答:为了使楼房每平方米的平均综合费最少,该楼房应建为16层,此时每平方米的平均综合费用的最小值为2120元.点评:本题考查了函数模型的应用问题,也考查了利用导数求函数最值的应用问题,是综合性题目.21.(12分)已知双曲线C的中心在坐标原点,焦点在x轴上,离心率e=,虚轴长为2.(Ⅰ)求双曲线C的标准方程;(Ⅱ)若直线l:y=kx+m与双曲线C相交于A,B两点(A,B均异于左、右顶点),且以AB 为直径的圆过双曲线C的左顶点D,求证:直线l过定点,并求出该定点的坐标.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(Ⅰ)由已知得:,2b=2,易得双曲线标准方程;(Ⅱ))设A(x1,y1),B(x2,y2),联立,得(1﹣4k2)x2﹣8mkx﹣4(m2+1)=0,以AB为直径的圆过双曲线C的左顶点D(﹣2,0),∴k AD k BD=﹣1,即,代入即可求解.解答:解:(Ⅰ)由题设双曲线的标准方程为,由已知得:,2b=2,又a2+b2=c2,解得a=2,b=1,∴双曲线的标准方程为.(Ⅱ)设A(x1,y1),B(x2,y2),联立,得(1﹣4k2)x2﹣8mkx﹣4(m2+1)=0,有,,以AB为直径的圆过双曲线C的左顶点D(﹣2,0),∴k AD k BD=﹣1,即,∴y1y2+x1x2+2(x1+x2)+4=0,∴,∴3m2﹣16mk+20k2=0.解得m=2k或m=.当m=2k时,l的方程为y=k(x+2),直线过定点(﹣2,0),与已知矛盾;当m=时,l的方程为y=k(x+),直线过定点(﹣,0),经检验符合已知条件.故直线l过定点,定点坐标为(﹣,0).点评:本题主要考查双曲线方程的求解,以及直线和圆锥曲线的相交问题,联立方程,转化为一元二次方程,利用根与系数之间的关系是解决本题的关键.综合性较强,运算量较大.22.(12分)设函数f(x)=lnx﹣ax2﹣bx(a≤0).(Ⅰ)若x=1是f(x)的极大值点,求a的取值范围;(Ⅱ)当a=0,b=﹣1时,函数g(x)=mx2﹣f(x)有唯一零点,求实数m的取值范围.考点:利用导数研究函数的极值;函数零点的判定定理.专题:导数的综合应用.分析:(Ⅰ)f′(x)=﹣ax+a﹣1=.此题需分a=0和a<0两种情况讨论;(Ⅱ)当a=0,b=﹣1时,函数g(x)=mx2﹣f(x)=mx2﹣x﹣lnx,可得g′(x)=(x>0).通过对m分情况讨论,利用导数研究函数的单调性极值,即可得到结果.解答:解:(Ⅰ)f(x)的定义域为(0,+∞),f′(x)=﹣ax﹣b,由f′(1)=0,得b=1﹣a.∴f′(x)=﹣ax+a﹣1=.当a=0时,f′(x)=,可得x=1是f(x)的极大值点,符合题意.当a<0时,由f′(x)=0,得x=1或x=﹣.∵x=1是f(x)的极大值点,∴﹣1,解得﹣1<a<0.综上:a的取值范围是﹣1<a≤0.(Ⅱ)当a=0,b=﹣1时,函数g(x)=mx2﹣f(x)=mx2﹣x﹣lnx,则g′(x)=(x>0).令h(x)=2mx2﹣x﹣1.(1)当m=0时,g′(x)=<0,则g(x)在(0,+∞)上为减函数.又=﹣+1>0,g(1)=﹣1<0,∴函数g(x)有唯一零点.(2)当m<0时,令h(x)=2mx2﹣x﹣1的图象对称轴为x=<0,且h(0)=﹣1<0,∴当x>0时,h(x)<0.∴函数g(x)在(0,+∞)上为减函数.当x→0时,g(x)→+∞,即∃x0>0,使g(x0)>0,而g(1)=m﹣1<0,∴函数g(x)存在唯一零点.(3)当m>0时,方程2mx2﹣x﹣1=0有两个不相等的实数根x1、x2,又x1x2=﹣<0,不妨设x1<0,x2>0.当0<x<x2时,h(x)<0;当x>x2时,h(x)>0.∴函数g(x)在(0,x2)上为减函数,在(x2,+∞)上为增函数,∴函数g(x)有最小值g(x)min=g(x2).要使g(x)=mx2﹣x﹣lnx存在唯一零点,应满足,即,消去m得2lnx2+x2﹣1=0.令u(x)=2lnx+x﹣1(x>0),则+1>0,∴h(x)在(0,+∞)上为增函数,又h(1)=0,所以h(x)=0有唯一的实根x=1,因此x2=1,代入方程组得m=1.综上可知,m≤0或m=1.点评:本题考查了利用导数研究函数的单调性极值与最值、二次函数的单调性、函数零点与函数单调性的关系,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于难题.。