不确定度
- 格式:ppt
- 大小:849.00 KB
- 文档页数:36
什么是不确定度?从技术角度讲,不确定度是指测量的不确定性或者具有特殊含义的检测结果的不确定性。
它是一个与测量结果相联系(比如校验或者检测)的参数,定义了所得值的范围,可能跟检测数量有关。
当评定不确定度并以特定方式给出报告时,它即指落在规定的不确定区间范围内的数值的置信水平。
不确定度的产生原因?任何测量都是非理想性的,部分是因为温度、湿度和气压或者测量者的操作变动性等因素在短期内的波动等这些随机效应。
有了这些随机效应的影响,重复测量就可以显示出数值的变化。
其它非理想性因素是由于对系统效应的修正产生的实际限制,比如测量仪器的误差,两次校验之间的性质偏移,个人读取量数的偏差或者参考标准值的不确定性。
不确定度之所以重要的原因?T不确定度是结果质量的定量性指标,它回答了以下问题,即结果如何恰当地代表测量的量值?它允许结果的用户评定其可靠性,比如为了比对来源不同的结果或者与参考值进行比对。
对结果相似性的置信水平能够降低贸易壁垒。
通常,一个结果要与标准或者规定中的一个设定限值相比较。
这种情况下,不确定度就能显示出结果是否正好落在可接受范围内或者仅为临界值。
有时候一个结果如此之接近限值,以至于与被测量性质的可能性有关的风险不会落在限值内。
一旦不确定度被认可,则必须予以考虑。
假设一个客户在一个以上的实验室内做完同样的检测,可能检测一个样品,更可能是检测相同产品的相同样品。
我们会期待实验室获得同一个结果吗?只有在限值内我们才能这么回答,但是当结果与标准值接近时,也许一个实验室指示出错,而另一个则显示通过检测。
有时,认证机构必须调查与这些差别有关的错误。
对各方来说这会牵涉许多时间和精力,如果客户已经了解结果的不确定度,大多数情况下就可以避免时间和精力的浪费。
测量不确定度初学者指南测量及测量不确定度(一)1.测量1. 1什么是测量?测量告知我们关于某物的属性。
它可以告诉我们某物体有多重,或者有多热,或者有多长。
测量就赋予这种属性一个数。
质量不确定度的计算公式主要包括以下两种:
1. A类不确定度计算公式:uA=S/sqrt(n),其中S是观测列的标准差,n是观测列的长度。
这个公式通过统计分析的方法来评定标准不确定度,所得到的相应标准不确定度称为A类不确定度分量,用符号uA表示。
2. B类不确定度计算公式:ub=a/k,其中a是根据有关的信息或经验判断被测量值的可能值区间,k是根据概率分布和要求的概率p确定的系数。
这个公式通过判断被测量值的可能值区间来评定标准不确定度,所得到的相应标准不确定度称为B类不确定度分量,用符号ub表示。
以上信息仅供参考,如有需要,建议您咨询专业人士。
不确定度评定方法
不确定度是指合理的赋予被测量之值的分散性与测量结果相联系的参数。
不确定度可以是诸如标准偏差或其倍数,或说明了置信水准的区间的半宽度。
不确定度由多个分量组成,对每一分量都要求评定标准不确定度。
评定方法分为A 类和B 类。
A 类评定是用对观测列进行统计分析的方法,以试验标准偏差表征。
B 类以估计的标准偏差表示。
各标准不确定度分量的合成称合成标准不确定度,它是测量结果的标准偏差的估计值。
不确定的来源:1、对被测量的定义不完整或不完善,2、实现被测量定义的方法不够理想,3、取样的代表性不够,不能代表所定义的被测量。
4、对被测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善。
5、对模拟仪器的读数存在人为偏差。
6、测量仪器的分辨力或鉴别力不够7、赋予测量标准和标准物的值不准。
8、用于数据计算的常量或其他参量不准。
9、参量方法和参量程序的近似性和假定性。
不确定度的评定
1、测量模型的建立:在实际的参量过程中,被测量值Y 不能直接测得,而是由N 个其他量X1,X2……Xn 通过函数关系f 确定。
这种函数关系称为测量模型。
X 的不确定度是Y 的不确定度来源。
可从测量仪器、人员、方法等方面考虑。
基本方法(单次测量结果实验标准差与平均值实验标准差)
对被测量X ,在重复条件下或复现性条件下时行n 次独立重复观测,观测值为xi (i=1,2,…,n )。
求其算术平均值
S(xi)为单次测量的实验标准差
2
211()n
n i i i i i v x x ==-∑∑。
不确定度计算公式不确定度是一个衡量测量结果与真实值之间差异的指标,用来表示测量结果的可靠程度。
在科学实验或工程测量中,不确定度的计算对于数据的正确解释和有效应用至关重要。
不确定度的计算需要考虑多个因素,如测量仪器的精确度、测量方法的误差、环境因素的影响等。
根据国际标准ISO5725-1中的定义,不确定度是测量结果的一个参数,该参数表征了测量结果与被测量值的偏差的范围。
不确定度的计算涉及到数理统计的理论和方法。
根据统计学的原理,不确定度可以通过标准偏差、置信区间和扩展不确定度等方法进行计算。
下面分别介绍这些方法。
1.标准偏差:标准偏差是一种常用的不确定度度量指标,用来描述测量结果的离散程度。
它通过计算测量数据集合的平均值与每个数据值之间的差异,并取平均值的平方根得到。
标准偏差越小,表示测量结果越稳定、可靠。
标准偏差的计算公式如下:s=√(∑(x-x̄)²/(n-1))其中,s为标准偏差,x为每个测量数据值,x̄为数据集合的平均值,n为数据集合的样本数量。
2.置信区间:置信区间是一种常用的不确定度度量方法,用来描述测量结果的范围。
置信区间表示了测量结果与真实值之间的差异可能存在的范围。
通常以置信水平来表示,如95%的置信区间表示在95%的概率下真实值位于置信区间内。
置信区间的计算公式如下:CI=x̄±t*(s/√n)其中,CI为置信区间,x̄为数据集合的平均值,t为t分布的临界值,s为标准偏差,n为数据集合的样本数量。
3.扩展不确定度:扩展不确定度是一种常用的不确定度度量方法,用来描述测量结果的范围。
扩展不确定度首先计算标准偏差,再乘以一个覆盖系数,将标准偏差扩展到一定的置信水平下的区间范围内。
扩展不确定度的计算公式如下:U=k*s其中,U为扩展不确定度,k为覆盖系数,s为标准偏差。
上述的计算公式是一种简单的不确定度计算方法,对于特定的测量数据集合和测量需求,可能需要考虑更复杂的数学模型和统计方法。
不确定度的计算方法在科学和测量领域中,精确度和准确度是非常重要的概念。
然而,由于各种因素的存在,我们无法完全避免测量结果的不确定性。
因此,计算不确定度成为了一项关键任务。
本文将介绍几种常见的不确定度计算方法。
一、直接平均法直接平均法是最简单、最常用的不确定度计算方法。
它适用于多次测量同一物理量的情况。
假设我们进行了n次测量,得到结果x1、x2、...、xn。
首先计算这些结果的平均值x的表达式如下:x = (x1 + x2 + ... + xn) / n接下来计算每次测量结果与平均值的离差d1、d2、...、dn,离差的计算公式为:di = xi - x然后,计算离差的平均值D,即:D = (d1 + d2 + ... + dn) / n最后,计算不确定度u,即离差的平均值的平均偏差,公式为:u = (Σ|di - D|) / n二、标准偏差法标准偏差法是一种较为精确的不确定度计算方法,用于衡量数据的离散程度。
同样,假设我们进行了n次测量,得到结果x1、x2、...、xn。
首先计算这些结果的平均值x,然后计算每次测量结果与平均值的离差,即d1、d2、...、dn。
接下来,计算离差的平方,即(d1)^2、(d2)^2、...、(dn)^2。
然后,计算离差平方的平均值D,即:D = ( (d1)^2 + (d2)^2 + ... + (dn)^2 ) / n最后,计算标准偏差u,即离差平方的平均值的平方根,公式为:u = √D三、最大误差法最大误差法是一种保守估计不确定度的方法,它假设测量误差最大的结果对整个测量结果的影响最大。
该方法适用于测量结果相差较大的情况。
假设我们进行了n次测量,得到的结果为x1、x2、...、xn。
然后,计算这些结果的最大值max和最小值min,并计算它们之差Δ,即:Δ = max - min最后,计算不确定度u,即Δ除以2的平方根,公式为:u = Δ / 2综上所述,本文介绍了三种常见的不确定度计算方法:直接平均法、标准偏差法和最大误差法。
不确定度概念及评定1. 不确定度概念不确定度就是表征被测量的真值所处的量值范围的评定。
它是对测量结果受测量误差影响不确定程度的科学描述。
具体地说,不确定度定量地表示了随机误差和未定系统误差的综合分布范围,它可以近似地理解为一定置信概率下的误差限值。
分类:一是用统计学方法计算的A 类标准不确定度A u ,它可以用实验标准误差来表征;另一类是其它非统计学方法(或者说经验的方法)评定的B 类标准不确定度B u 。
2. 标准不确定度评定考虑正态分布,有)()(112--==∑=n n x x S u N I i X A3/A u B = (A 为仪器的仪器误差限,并认为它是均匀分布) 上式称为贝塞尔公式。
3. 合成标准不确定度c uA 类和B 类标准不确定度用方和根方法合成,得到直接测量结果的合成标准不确定度c u ,即22B A c u u u +=4. 扩展不确定度U在工程技术中,置信概率P 通常取较大值,此时的不确定度称为扩展不确定度。
常用标准不确定度的倍数表达,即c ku U = (32、=k )当k 取2,且对应不确定度分布为正态分布时,置信概率P 约为95%。
而当不确定度分布不明确时,我们不具体说它的置信概率是多少。
在实验教学中,统一用c u U 2=(我们认定总的不确定度符合正态分布)来对实验结果进行评定。
在此我们约定,用x x B A U u x u x u 、)、()、(分别表示某被测量的标准A 类、B 类、合成和扩展不确定度。
一般情况若我们不特别指明,不确定度均指扩展不确定度。
三、测量结果的表达1. 单次测量单次测量在实验中经常遇到,很显然,A 类不确定度无法由贝塞尔公式计算,但并不表示它不存在。
在教学实验中,我们可认为A u <<B u ,从而得到 3/A u u B c =≈其中A 为仪器误差限。
A 一般取仪器最小分度值。
对于电工仪表有两种情况:电表: A =量程×准确度等级(%)电阻箱、电桥、电势差计等可以近似取A =示值×准确度等级(%)因此,测量结果可表达为c u x x 3±=2. 多次直接测量设测量值分别为.,......,,21n x x x ,则 ∑==ni i x n x 11 )()(112--==∑=n n x x S u N I i X A3/A u B =22BA c u u u += 测量结果表示为: c u x x 2±= xu E c =(用百分数表示)试求其不确定度 ∑==101101I I D D =18.000 mm)(11010)(1012--=∑=I I A D D u =0.0013 mm mm A u B 0058.03/== =+=+=22220058.00013.0B D c u S D u )(0.006 mm 结果为0012.0000.18±=D mm%06.0=E用0.5级量程2.00V 的电压表测得电阻两端的电压值如下(单位:V )试计算出电压的不确定度)(U u c 。
不确定度的计算引言在实验测量中,我们经常会遇到不确定度的问题。
不确定度是指对于一个测量结果的不确定程度,用于描述测量值的精确程度。
在科学研究中,不确定度的计算是非常重要的,因为它可以提供对实验结果的合理评估,从而为准确的分析和判断提供依据。
本文将介绍不确定度的计算方法以及应用。
1. 确定误差和不确定度在开始讨论不确定度之前,首先需要明确什么是确定误差和不确定度。
确定误差是指测量结果与真实值之间的差异,可以通过准确度的提高来减小确定误差。
而不确定度是指对于一个测量值的范围估计,用于表示测量结果可能的变动范围,不确定度可以通过精度的提高来减小。
2. 不确定度的计算方法不确定度的计算方法主要有两种,分别是类型A不确定度和类型B不确定度。
下面将分别进行介绍。
2.1 类型A不确定度类型A不确定度是指基于一系列测量得到的数据进行统计分析得出的不确定度。
它采用统计学方法,通过对重复测量数据进行处理,计算数据的平均值和标准偏差,从而得出不确定度。
具体计算步骤如下:1.对一组重复测量数据进行测量。
2.计算数据的平均值和标准偏差。
3.通过标准偏差的一定倍数来估计不确定度。
2.2 类型B不确定度类型B不确定度是指基于其他因素进行评估的不确定度,它不依赖于统计处理。
常用的方法有:•根据设备的分辨率和引导书提供的具体值进行估计。
•根据厂家提供的数据手册进行估计。
2.3 不确定度的合成在实际测量中,往往需要将类型A和类型B的不确定度进行合成,得到最终的不确定度。
合成不确定度的计算方法有两种,即加法合成和乘法合成。
•加法合成:对于不相关的不确定度,可以直接将其平方和开根号,得到合成不确定度。
•乘法合成:对于相关的不确定度,需要进行相关系数的计算,并应用合成法则进行计算。
3. 不确定度的应用不确定度的应用主要有两个方面,一是用于得出测量结果的合理范围,二是用于比较测量结果的精确程度。
对于合理范围的评估,不确定度可以用于构建置信区间。