函数的综合应用(教师)
- 格式:doc
- 大小:1.85 MB
- 文档页数:13
二次函数与几何综合专题--角问题【模型解读】二次函数与角综合问题,常见的主要有三种类型: 1. 特殊角问题:(1) 利用特殊角的三角函数值找到线段之间的数量关系(2) 遇到特殊角可以构造特殊三角形,如遇到45°构造等腰直角三角形,遇到30°、60°构造等边三角形,遇到90°构造直角三角形2.角的数量关系问题(1)等角问题:借助特殊图形的性质、全等和相似的性质来解决;构造圆,利用圆周角的性质来解决 (2)二倍角问题:利用角平分线的性质、等腰三角形的性质、对称、辅助圆等知识来解答 (3)角的和差问题3.角的最值问题:利用辅助圆等知识来解答【引例】如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,3OA OC ==,顶点为D ,对称轴交x 轴于点E . (1)求抛物线的解析式、对称轴及顶点D 的坐标.(2)在抛物线上是否存在点P ,使PAO OCE ∠=∠,若存在,求出点P 的坐标;若不存在,说明理由.(3)该抛物线上是否存在点P,使得PCA CAD∠=∠?若存在,求出所有点P的坐标;若不存在,请说明理由.∠的平分线与y轴的交点M的坐标.(4)直线AC与抛物线的对称轴交于点F,请求出CDF∠=∠,若存在,求出点P的坐标;若不存在,请说明理(5)在抛物线上是否存在点P,使得POC PCO由.(6)过点B 的直线交直线AC 于点M ,当直线AC 与BM 的夹角等于ACB ∠的2倍时,求点M 的坐标.(7)在y 轴上是否存在点N ,使得BCO BNO BAC ∠+∠=∠,若存在,求出点N 的坐标;若不存在,请说明理由.(8)在对称轴左侧的抛物线上有一点M ,在对称轴右侧的抛物线上有一点N ,满足90MDN ∠=︒.求证:MN 恒过定点,并求出定点坐标.【答案】(1)223y x x =+-,对称轴为:直线x =-1,顶点坐标为:D (-1,-4);(2)存在,P 的坐标为(43,139)或(23,119-);(3)存在,点P 的坐标为(-4,5)或(52-,74-);(4)点M 的坐标为(0-3);(5)存在,P 1,-32)或(1-,-32);(6)点M 的坐标为(52-,12-)或(12,72-);(7)在y 轴上存在点N ,点N 的坐标为(0,±2);(8)见解析,(-1,-3).【详解】答案:(1)解:∵3OA OC ==, ∴A (-3,0),C (0,-3),∴()20333b c c ⎧=--+⎪⎨-=⎪⎩,解得:23b c =⎧⎨=-⎩,∴抛物线的解析式为:223y x x =+-,对称轴为:直线x =-1,顶点坐标为:D (-1,-4). (2)解:假设存在,如图,当点P 在x 轴上方时,过点P 作PH ⊥x 轴于点H ,设点P 的坐标为(a ,223a a +-), 则90PHA COE ∠=∠=︒,∵点A (-3,0),点C (0,-3),点E (-1,0),点P (a ,223a a +-), ∴AH =a -(-3)=a +3,PH =223a a +-,OC =3,EO =1,∵PAO OCE ∠=∠,90PHA COE ∠=∠=︒, ∴PHA EOC △∽△, ∴PH AHEO OC=, ∴223313a a a +-+=, 解得:143a =,23a =-(不符合题意,舍去), 此时2164132323939a a +-=+⨯-=, ∴点P 的坐标为(43,139),当点P 在x 轴下方时,如图,过点P '作P F '⊥x 轴于点F ,设点P '的坐标为(b ,223b b +-), 则90P FA COE '∠=∠=︒,∵点A (-3,0),点C (0,-3),点E (-1,0),点P '(b ,223b b +-), ∴AF =b -(-3)=b +3,P F '=223b b --+,OC =3,EO =1, ∵P AO OCE '∠=∠,90P FA COE '∠=∠=︒, ∴P FA EOC '△∽△, ∴P F AFEO OC'=, ∴223313b b b --++=,解得:123b =,23b =-(不符合题意,舍去), 此时242112323939b b +-=+⨯-=-, ∴点P '的坐标为(23,119-), 综上所述,在抛物线上存在点P ,使PAO OCE ∠=∠,此时点P 的坐标为(43,139)或(23,119-).(3)解:假设存在,如图,当点P 在直线AC 的右上方时,设直线AD 为y kx b =+,将A (-3,0),D (-1,-4)代入,得304k b k b -+=⎧⎨-+=-⎩, 解得:26k b =-⎧⎨=-⎩,∴直线AD 为26y x =--, ∵PCA CAD ∠=∠, ∴//PC AD ,∴设直线PC 为12y x b =-+, 将C (0,-3)代入,得13b =-, ∴直线PC 为23y x =--,将23y x =--与223y x x =+-联立方程,得22323x x x +-=--,解得:14x =-,20x =(不符合题意,舍去) 当4x =-时,235y x =--=, ∴点P 的坐标为(-4,5);如图,当点P '在直线AC 的左下方时,延长CP '交x 轴于点G ,延长AD 交y 轴于点H ,∵直线AD 为26y x =--, ∴当x =0时,y =-6, ∴OH =6,∵P CA CAD '∠=∠,45OCA OAC ∠=∠=︒, ∴P CA OCA CAD OAC '∠+∠=∠+∠, 即:P CO OAD '∠=∠, ∴在△GOC 与△HOA 中,OCG OAH OC OA COG AOH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△GOC ≌△HOA (ASA ), ∴OG =OH =6,∴点G 的坐标为(-6,0), 设直线CG 为22y k x b =+,将G (-6,0),C (0,-3)代入,得603k b b -+=⎧⎨=-⎩,解得:123kb⎧=-⎪⎨⎪=-⎩,∴直线CG为132y x=--,将132y x=--与223y x x=+-联立方程,得21 2332x x x+-=--,解得:15 2x=-,20x=(不符合题意,舍去)当52x=-时,17324y x=--=-,∴点P的坐标为(52-,74-),综上所述,抛物线上存在点P,使得PCA CAD∠=∠,此时点P的坐标为(-4,5)或(52-,74-).(4)解:如图,过点D作DH⊥y轴于点H,∵点D为(-1,-4),点C为(0,-3),∴DE=OH=4,OC=3,DH=1,∴CH=OH-OC=1,∴在Rt△CDH中,CD∵DM平分CDF∠,∴∠CDM=∠FDM,∵DF//y轴,∴∠CMD=∠FDM,∴∠CMD=∠CDM,∴CM=CD∴OM=OC-CM=3又∵点M在y轴的负半轴上,∴点M 的坐标为(03). (5)解:假设存在,∵POC PCO ∠=∠, ∴PC =PO ,∴点P 在OC 的垂直平分线上, ∵O (0,0),C (0,-3),∴OC 的垂直平分线为直线y =-32,将y =-32代入223y x x =+-,得23232x x +-=-,解得:11x ,21x =,∴在抛物线上存在点P ,使得POC PCO ∠=∠,此时点P 1,-32)或(1,-32). (6)解:若点M 在点C 的左上方时,满足2AMB ACB ∠=∠,如图,过点M 作MH ⊥AB 于点H ,过点C 作CG ⊥MH ,交HM 的延长线于点G ,∵2AMB ACB MBC ACB ∠=∠+∠=∠, ∴ACB MBC ∠=∠, ∴MB MC =,设直线AC 为y kx b =+,将A (-3,0),C (0,-3)代入,得303k b b -+=⎧⎨=-⎩, 解得:13k b =-⎧⎨=-⎩,∴直线AC 为3y x =--, ∵点M 在直线AC 上,∴设点M 的坐标为(x ,-x -3), 又∵点B (1,0),点C (0,-3),∴MH =x +3,BH =1-x ,MG =-x -3-(-3)=-x ,CG =-x , ∴在Rt △MHB 中,22222(3)(1)MB MH BH x x =+=++-, 在Rt △MGC 中,222222()()2MC MG CG x x x =+=-+-=, ∵MB MC =, ∴22MB MC =, ∴222(3)(1)2x x x ++-=, 解得:52x =-,将52x =-代入3y x =--,得12y =-,∴此时点M 的坐标为(52-,12-),若点M '在点C 的右下方时,满足2PM B ACB '∠=∠, 如图,过点M '作M N AB '⊥于点N ,∵2PM B ACB '∠=∠,2AMB ACB ∠=∠,∴AMB PMB '∠=∠, ∴MBMB '=, 设点M '的坐标为(m ,-m -3),又∵点B (1,0),点M (52-,12-),∴MH =52-+3=12,BH =1-(52-)=72,M 'N =-m -3,BN =1-m ,∴在Rt △MHB 中,222221725()()222MB MH BH =+=+=, 在Rt M NB '△中,22222(3)(1)M B M N BN m m ''=+=--+-,∵MBMB '=, ∴22M B MB '=, ∴2225(3)(1)2m m --+-=, 解得:112m =,252m =-(不符合题意,舍去), 将12x m ==代入3y x =--,得72y =-,∴此时点M '的坐标为(12,72-),综上所述,当直线AC 与BM 的夹角等于ACB ∠的2倍时,点M 的坐标为(52-,12-)或(12,72-).(7)解:假设在y 轴的正半轴上存在点N ,使得BCO BNO BAC ∠+∠=∠,如图,过点N 作NM ⊥BN ,交CB 的延长线于点M ,过点M 作MH ⊥y 轴于点H , 则∠MHN =∠MNB =∠BON =90°,∵点A (-3,0),点C (0,-3), ∴OA =OC =3, 又∵∠AOC =90°, ∴∠BAC =∠OCA =45°, ∴45BCO BNO BAC ∠+∠=∠=︒, ∴45MBN BCO BNO ∠=∠+∠=︒, ∵∠MNB =90°,∴∠NMB =∠MBN =45°, ∴NB =MN ,∵∠MHN =∠MNB =90°,∴∠HMN +∠HNM =∠ONB +∠HNM =90°, ∴∠HMN =∠ONB , ∴在△HMN 与△ONB 中,MHN NOB HMN ONB MN BN ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△HMN ≌△ONB (AAS ), ∴HM =ON ,HN =OB , ∵点B 坐标为(1,0), ∴HN =OB =1,设HM =ON =a ,则OH =ON +HN =a +1, ∴点M 的坐标为(a ,a +1), 设直线BC 为y kx b =+,将B (1,0),C (0,-3)代入,得3k b b +=⎧⎨=-⎩, 解得:33k b =⎧⎨=-⎩,∴直线BC 为33y x =-, 将点M (a ,a +1)代入得:133a a +=-,解得:2a =,∴点N 的坐标为(0,2),当点N 在y 轴的负半轴时,如图所示,根根轴对称的性质可得此时点N 的坐标为(0,-2), 综上所述,在y 轴上存在点N ,使得BCO BNO BAC ∠+∠=∠,此时点N 的坐标为(0,±2). (8)解:如图,过点D 作直线l ⊥y 轴,过点M 、N 分别作直线l 的垂线,垂足分别为点H 、G ,设点M 的坐标为(m ,223m m +-),点N 的坐标为(n ,223n n +-), ∵顶点D 的坐标为(-1,-4),且M 、N 分别位于点D 的左右两侧, ∴2223(4)21MH m m m m =+---=++,1HD m =--,2223(4)21NG n n n n =+---=++,(1)1DG n n =--=+,根据题意可得90MHD DGN MDN ∠=∠=∠=︒, ∴90MDH HMD MDH GDN ∠+∠=∠+∠=︒, ∴HMD GDN ∠=∠, ∴HMD GDN △∽△, ∴MH HDDG NG=, ∴22211121m m mn n n ++--=+++,即22(1)(1)1(1)m m n n +-+=++, ∴(1)(1)1m n -++=, 整理得:20mn m n +++=, 设直线MN 为y kx b =+,将M (m ,223m m +-),N (n ,223n n +-)代入,得222323km b m m kn b n n ⎧+=+-⎨+=+-⎩, 解得:23k m n b mn =++⎧⎨=--⎩,∴直线MN 为(2)3y m n x mn =++--, ∵20mn m n +++=, ∴2m n mn ++=-,∴直线MN 为3(1)3y mnx mn mn x =---=-+-, ∴当10x +=即=1x -时,=3y -,∴无论m ,n 取何值,直线MN 总会经过定点(-1,-3), ∴直线MN 恒过定点,该定点坐标为(-1,-3).【模型实例】1.如图,在平面直角坐标系xOy 中,抛物线()2y a x h k =-+与x 轴相交于O ,A 两点,顶点P 的坐标为()2,1-.点B 为抛物线上一动点,连接,AP AB ,过点B 的直线与抛物线交于另一点C .(1)求抛物线的函数表达式;(2)若点B 的横坐标与纵坐标相等,ABC OAP ∠=∠,且点C 位于x 轴上方,求点C 的坐标;(3)若点B 的横坐标为t ,90ABC ∠=︒,请用含t 的代数式表示点C 的横坐标,并求出当0t <时,点C 的横坐标的取值范围.【答案】(1)214y x x =-或21(2)14y x =--;(2)点C 的坐标为(6,3)或51,4⎛⎫- ⎪⎝⎭;(3)164t t --+;12C x ≥【分析】(1)设抛物线的解析式为()221y a x =--,把点O (0,0)代入即可求解;(2)求得B (0,0)或B (8,8),分两种情况讨论,①当点B 的坐标为(0,0)时,过点B 作BC ∥AP 交抛物线于点C ,利用待定系数法求得直线BC 的解析式为12y x =,解方程组即可求解;②点B 的坐标为(8,8)时,作出如图的辅助线,利用三角形函数以及轴对称的性质求得M (85,165),同①可求解;(3)作出如图的辅助线,点B 的坐标为(t ,214t t -),得到AH =4t -,BH =214t t -,OH =t =MN ,由AH =4t -,BH =214t t -,OH =t =MN ,△ABH ~△BMN 得到M (0,2144t t -+),求得BC 的解析式为:24144y x t t t =-+-+,解方程组求得点C 的横坐标为164t t--+,即可求解.【详解】(1)∵抛物线的顶点坐标为P (2,-1),∴设抛物线的解析式为()221y a x =--, ∵抛物线经过原点O ,即经过点O (0,0), ∴()20021a =--, 解得:14a =, ∴抛物线的解析式为()22112144y x x x =--=-; (2)在()21214y x =--中,令y x =, 得:()21214x x =--, 解得0x =或8x =, ∴B (0,0)或B (8,8),①当点B 的坐标为(0,0)时,过点B 作BC ∥AP 交抛物线于点C , 此时∠ABC =∠OAP ,如图:在()21214y x =--中,令0y =, 得:()212104x --=, 解得:0x =或4x =, ∴A (4,0),设直线AP 的解析式为1y kx b =+, 将A (4,0),P (2,-1)代入得110412k b k b =+⎧⎨-=+⎩,解得:1122k b ⎧=⎪⎨⎪=-⎩, ∴直线AP 的解析式为122y x =-,∵BC ∥AP ,∴设直线BC 的解析式为212y x b =+, 将B (0,0)代入得20b =, ∴直线BC 的解析式为12y x =, 由()2121214y x y x ⎧=⎪⎪⎨⎪=--⎪⎩,得:00x y =⎧⎨=⎩(此点为点O ,舍去)或63x y =⎧⎨=⎩, ∴点C 的坐标为(6,3);②点B 的坐标为(8,8)时,过点P 作PQ ⊥x 轴于点Q ,过点B 作BH ⊥x 轴于点H ,作H 关于AB 的对称点M ,作直线BM 交抛物线于C ,连接AM ,如图:∵A (4,0),P(2,-1), ∴PQ =1,AQ =2,在Rt △APQ 中,1tan 2PQ OAP AQ ∠==, ∵A (4,0),B (8,8), ∴AH =4,BH =8,在Rt △ABH 中,1tan 2AH ABH BH ∠==, ∴∠OAP =∠ABH ,∵H 关于AB 的对称点为M , ∴∠ABM =∠ABH ,∴∠ABC =∠OAP ,即C 为满足条件的点, 设M (x ,y ),∵H 关于AB 的对称点为M ,∴AM =AH =4,BM =BH =8,∴()()()()222222404888x y x y ⎧-+-=⎪⎨-+-=⎪⎩ 两式相减得:82x y =-,代入即可解得: 80x y =⎧⎨=⎩(此点为点H ,舍去)或85165x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴M (85,165),同理求得BM 的解析式为:324y x =+, 解()23241214y x y x ⎧=+⎪⎪⎨⎪=--⎪⎩得:88x y =⎧⎨=⎩(此点为点B ,舍去)或154x y =-⎧⎪⎨=⎪⎩,∴点C 的坐标为(-1,54); 综上,点C 的坐标为(6,3)或(-1,54); (3)设BC 交y 轴于点M ,过点B 作BH ⊥x 轴于点H ,过点M 作MN ⊥BH 于点N ,如图:∵点B 的横坐标为t ,∴点B 的坐标为(t ,214t t -),又A (4,0),∴AH =4t -,BH =214t t -,OH =t =MN , ∵∠ABC =90°,∴∠MBN =90°-∠ABH =∠BAH , 且∠N =∠AHB =90°, ∴△ABH ~△BMN ,∴AH BH BN MN=,即2144t t t BN t--=, ∴BN =224414t tt t -=-,∴HN =2144t t -+,∴M (0,2144t t -+),同理求得BC 的解析式为:24144y x t t t =-+-+,由22144144y x x y x t t t ⎧=-⎪⎪⎨⎪=-+-+⎪⎩,得22141444x x x t t t -=-+-+,解得x t =(点B 的横坐标),或2416164t t x t t t-+=-=--+,∴点C 的横坐标为164t t --+,当0t <时,164C x t t=--+224=++212=+,=C x 的最小值是12,此时4t =-;∴当0t <时,点C 的横坐标的取值范围是12C x ≥. 【点睛】本题考查二次函数综合知识,涉及解析式、锐角三角函数、对称变换、两条直线平行、两条直线互相垂直、解含参数的方程等,综合性很强,难度较大,解题的关键是熟练掌握、应用各种综合知识,用含字母的式子表示线段长度及函数解析式.2.如图,在平面直角坐标系xOy 中,抛物线E :y =﹣(x ﹣m )2+2m 2(m <0)的顶点P 在抛物线F :y =ax 2上,直线x =t 与抛物线E ,F 分别交于点A ,B . (1)求a 的值;(2)将A ,B 的纵坐标分别记为y A ,y B ,设s =y A ﹣y B ,若s 的最大值为4,则m 的值是多少? (3)Q 是x 轴的正半轴上一点,且PQ 的中点M 恰好在抛物线F 上.试探究:此时无论m 为何负值,在y 轴的负半轴上是否存在定点G ,使∠PQG 总为直角?若存在,请求出点G 的坐标;若不存在,请说明理由.【分析】(1)由抛物线的顶点式可直接得出顶点P的坐标,再代入抛物线F即可得出结论;(2)根据题意可分别表达A,B的纵坐标,再根据二次函数的性质可得出m的值;(3)过点Q作x轴的垂线KN,分别过点P,G作x轴的平行线,与KN分别交于K,N,则△PKQ∽△QNG,设出点M的坐标,可表达点Q和点G的坐标,进而可得出结论.【解答】解:(1)由题意可知,抛物线E:y=﹣(x﹣m)2+2m2(m<0)的顶点P的坐标为(m,2m2),∵点P在抛物线F:y=ax2上,∴am2=2m2,∴a=2.(2)∵直线x=t与抛物线E,F分别交于点A,B,∴y A=﹣(t﹣m)2+2m2=﹣t2+2mt+m2,y B=2t2,∴s=y A﹣y B=﹣t2+2mt+m2﹣2t2=﹣3t2+2mt+m2=﹣3(t﹣m)2+m2,∵﹣3<0,∴当t=m时,s的最大值为m2,∵s的最大值为4,∴m2=4,解得m=±,∵m<0,∴m=﹣.(3)存在,理由如下:设点M的坐标为n,则M(n,2n2),∴Q(2n﹣m,4n2﹣2m2),∵点Q在x轴正半轴上,∴2n﹣m>0且4n2﹣2m2=0,∴n=﹣m,∴M(﹣m,m2),Q(﹣m﹣m,0).如图,过点Q作x轴的垂线KN,分别过点P,G作x轴的平行线,与KN分别交于K,N,∴∠K=∠N=90°,∠QPK+∠PQK=90°,∵∠PQG=90°,∴∠PQK+∠GQN=90°,∴∠QPK=∠GQN,∴△PKQ∽△QNG,∴PK:QN=KQ:GN,即PK•GN=KQ•QN.∵PK=﹣m﹣m﹣m=﹣m﹣2m,KQ=2m2,GN=﹣m﹣m,∴(﹣m﹣2m)(﹣m﹣m)=2m2•QN解得QN=.∴G(0,﹣).3.如图,在平面直角坐标系中,抛物线y=ax2+bx+2经过A(,0),B(3,)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P在抛物线上,过P作PD⊥x轴,交直线BC于点D,若以P、D、O、C为顶点的四边形是平行四边形,求点P的横坐标;(3)抛物线上是否存在点Q,使∠QCB=45°?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【分析】(1)根据待定系数法,将点A,点B代入抛物线解析式,解关于b,c的二元一次方程组,即可求得抛物线的解析式;(2)设出点P的坐标,确定出PD∥CO,由PD=CO,列出方程求解即可;(3)过点D作DF⊥CP交CP的延长线于点F,过点F作y轴的平行线EF,过点D作DE⊥EF于点E,过点C作CG⊥EF于点G,证明△DEF≌△FGC(AAS),由全等三角形的性质得出DE=FG,EF=CG,求出F点的坐标,由待定系数法求出直线CF的解析式,联立直线CF和抛物线解析式即可得出点P的坐标.【解答】解:(1)将点A(﹣,0),B(3,)代入到y=ax2+bx+2中得:,解得:,∴抛物线的解析式为y=﹣x2+x+2;(2)设点P(m,﹣m2+m+2),∵y=﹣x2+x+2,∴C(0,2),设直线BC的解析式为y=kx+c,∴,解得,∴直线BC的解析式为y=x+2,∴D(m,m+2),∴PD=|﹣m2+m+2﹣m﹣2|=|m2﹣3m|,∵PD⊥x轴,OC⊥x轴,∴PD∥CO,∴当PD=CO时,以P、D、O、C为顶点的四边形是平行四边形,∴|m2﹣3m|=2,解得m=1或2或或,∴点P的横坐标为1或2或或;(3)①当Q在BC下方时,如图,过B作BH⊥CQ于H,过H作MN⊥y轴,交y轴于M,过B作BN⊥MH于N,∴∠BHC=∠CMH=∠HNB=90°,∵∠QCB=45°,∴△BHC是等腰直角三角形,∴CH=HB,∴∠CHM+∠BHN=∠HBN+∠BHN=90°,∴∠CHM=∠HBN,∴△CHM≌△HBN(AAS),∴CM=HN,MH=BN,∵H(m,n),∵C(0,2),B(3,),∴,解得,∴H(,),设直线CH的解析式为y=px+q,∴,解得,∴直线CH的解析式为y=﹣x+2,联立直线CF与抛物线解析式得,解得或,∴Q(,);②当Q在BC上方时,如图,过B作BH⊥CQ于H,过H作MN⊥y轴,交y轴于M,过B作BN⊥MH于N,同理得Q(,).综上,存在,点Q的坐标为(,)或(,).4.如图1,在平面直角坐标系中.抛物线y=ax2+bx+2与x轴交于A(﹣4,0)和B(1,0),与y轴交于点C,连接AC,BC.(1)求该抛物线的解析式;(2)如图2,点M为直线AC上方的抛物线上任意一点,过点M作y轴的平行线,交AC于点N,过点M作x轴的平行线,交直线AC于点Q,求△MNQ周长的最大值;(3)点P为抛物线上的一动点,且∠ACP=45°﹣∠BAC,请直接写出满足条件的点P的坐标.【分析】(1)用待定系数法可得抛物线的解析式为y=﹣x2﹣x+2;(2)设直线AC解析式为y=kx+2,用待定系数法得直线AC解析式为y=x+2,设M(x,﹣x2﹣x+2),则N(x,x+2),即得MN=﹣x2﹣2x,可证△QMN∽△AOC,有==,故MQ=2MN,NQ=MN,可得△MNQ周长MN+MQ+NQ=MN+2MN+MN=﹣(x﹣2)2+6+2,即得当x=2时,△MNQ周长最大值为6+2;(3)在x轴负半轴上取D,使OC=OD,连接CD交抛物线于P,此时∠ACP=45°﹣∠BAC,P是满足条件的点,由C(0,2),D(2,0),得直线CD解析式为y=x+2,即可解得P(﹣5,﹣3),作D关于直线AC的对称点E,连接CE并延长交抛物线于P',由对称性知∠ACP'=∠ACP,P'是满足条件的点,设E (m,n),可得,可解得E(﹣,),从而可得直线CE解析式为:y=x+2,即可解得P'(﹣,).【解答】解:(1)把A(﹣4,0)和B(1,0)代入y=ax2+bx+2得:,解得,∴抛物线的解析式为y=﹣x2﹣x+2;(2)由y=﹣x2﹣x+2可得C(0,2),设直线AC解析式为y=kx+2,把A(﹣4,0)代入得:﹣4k+2=0,解得k=,∴直线AC解析式为y=x+2,设M(x,﹣x2﹣x+2),则N(x,x+2),∴MN=﹣x2﹣x+2﹣(x+2)=﹣x2﹣2x,∵MQ∥x轴,MN∥y轴,∴∠MQN=∠CAO,∠NMQ=∠AOC=90°,∴△QMN∽△AOC,∴==,即==,∴MQ=2MN,NQ=MN,∴△MNQ周长MN+MQ+NQ=MN+2MN+MN=(3+)MN=(3+)×(﹣x2﹣2x)=﹣(x+2)2+6+2,∵﹣<0,∴当x=﹣2时,△MNQ周长最大值为6+2;(3)在x轴负半轴上取D,使OC=OD,连接CD交抛物线于P,如图:∴D(﹣2,0),∠CDO=45°,此时∠ACP=45°﹣∠BAC,P是满足条件的点,∵C(0,2),D(2,0),∴直线CD解析式为y=x+2,由得或,∴P(﹣5,﹣3),作D关于直线AC的对称点E,连接CE并延长交抛物线于P',由对称性知∠ACP'=∠ACP,P'是满足条件的点,设E(m,n),根据AE=AD,CE=CD可得:,解得或,∴E(﹣,),由E(﹣,),C(0,2)可得直线CE解析式为:y=x+2,解得或,∴P'(﹣,),综上所述,P的坐标为(﹣5,﹣3)或(﹣,).5.抛物线y=x2﹣4x+c与直线I:y=kx交于点G(1,m)和点H,﹣1≤m<0,直线x=m﹣1交直线l于点A,交抛物线于点B.(1)求c和k的值(用含m的代数式表示);(2)过点A作x轴的平行线交抛物线于M,N两点(M在N的左侧),交y轴于点C.求的取值范围;(3)在(2)的条件下,过点B作x轴的平行线,与抛物线另一个交点为D,若点E是线段BD的中点,探究∠MEN与∠ABC的数量关系,并说明理由.【分析】(1)把点G(1,m)分别代入y=x2﹣4x+c与y=kx,即可求得答案;(2)由题意可得A(m﹣1,m2﹣m),B(m﹣1,m2﹣5m+8),M(m+1,m2﹣m),求得==﹣2m+4,再根据一次函数的性质即可求得的取值范围;(3)先求出D(﹣m+5,m2﹣5m+8),E(2,m2﹣5m+8),F(2,m2﹣m),利用三角函数定义可得:tan ∠ABC==,tan∠MEF==,tan∠NEF==,得出∠MEF=∠NEF=∠ABC,进而可得∠MEN=2∠ABC.【解答】解:(1)∵抛物线y=x2﹣4x+c与直线I:y=kx交于点G(1,m),∴m=12﹣4×1+c,m=k×1,∴c=m+3,k=m;(2)∵直线x=m﹣1交直线l于点A,∴y=m(m﹣1)=m2﹣m,∴A(m﹣1,m2﹣m),∵直线x=m﹣1交抛物线于点B,∴y=x2﹣4x+m+3=(m﹣1)2﹣4(m﹣1)+m+3=m2﹣5m+8,∴B(m﹣1,m2﹣5m+8),∴AB=﹣4m+8,∵过点A作x轴的平行线交抛物线于M,N两点(M在N的左侧),交y轴于点C,∴C(0,m2﹣m),点M的纵坐标与点A的纵坐标相等,∴m2﹣m=x2﹣4x+m+3,解得:x1=m+1,x2=﹣m+3,∴M(m+1,m2﹣m),N(﹣m+3,m2﹣m),∴AM=m+1﹣(m﹣1)=2,∴==﹣2m+4,∵﹣2<0,且﹣1≤m<0,∴的值随着m的增大而减小,当m=﹣1时,=﹣2×(﹣1)+4=6,当m=0时,=﹣2×0+4=4,∴4≤≤6;(3)∠MEN=2∠ABC.理由如下:∵BD∥x轴,∴点D的纵坐标与点B的纵坐标相等,∴m2﹣5m+8=x2﹣4x+m+3,解得:x1=m﹣1,x2=﹣m+5,∴D(﹣m+5,m2﹣5m+8),∵点E是线段BD的中点,∴E(2,m2﹣5m+8),如图,设直线x=2交直线MN于点F,则F(2,m2﹣m),∴MF=NF=﹣m+1,EF=m2﹣5m+8﹣(m2﹣m)=﹣4m+8,∵AC=0﹣(m﹣1)=﹣m+1,AB=﹣4m+8,∴tan∠ABC==,∵tan∠MEF==,tan∠NEF==,∴∠MEF=∠NEF=∠ABC,∴∠MEN=2∠ABC.6.抛物线y=ax2﹣2ax﹣3a与x轴交于A、B两点(点A在点B的左边),与y轴的正半轴交于C点,△ABC的面积为6.(1)直接写出点A、B的坐标为A(﹣1,0),B(3,0);抛物线的解析式为y=﹣x2+2x+3.(2)如图1,连结AC,若在第一象限抛物线上存在点D,使点D到直线AC的距离为,求点D的坐标;(3)如图2,平行于AC的直线交抛物线于M、N两点,在抛物线上存在点P,当PQ⊥y轴时,PQ恰好平分∠MPN,求P点坐标.【分析】(1)令y=0,可求出x的值,进而可得出A,B的坐标;令x=0,可求出y的值,可得出点C的坐标,得出线段OC的长,利用三角形的面积公式可得出a的值;(2)过点O作OQ⊥AC于点Q,根据三角形面积的等积法可求出OQ的长,进可得出点D的位置,利用全等三角形的性质求出直线QA′的解析式,联立可求出点D的坐标;(3)过点M作ME⊥DE于E,过点N作NF⊥DE于F,根据∠MPE=∠NPE,∠MEP=∠NFP=90°,可得△MPE∽△NPF,设出M、N、P三点的坐标(只设横坐标,纵坐标用横坐标表示),分别用横坐标之差、纵坐标之差表示出两个相似三角形的直角边,列出比例等式;设出MN的解析式,与抛物线方程联立,得出两根之和的关系式,结合前面的比例等式解出P点的横坐标,进而算出纵坐标.【解答】解:(1)令y=0,即ax2﹣2ax﹣3a=0,解得x=﹣1或x=3,∴A(﹣1,0),B(3,0);令x=0,则y=﹣3a,∴C(0,﹣3a),即OC=﹣3a,∴S=×4×(﹣3a)=6,解得a=﹣1,∴函数解析式为:y=﹣x2+2x+3.故答案为:A(﹣1,0),B(3,0);y=﹣x2+2x+3.(2)由(1)知,A(﹣1,0),B(3,0),C(0,3),∴OA=1,OC=3,AB=,过点O作OG⊥AC于点G,∴S△OAC=•OA•OB=•AC•OG∴×1×3=וOG,∴OG=,设点D到直线AC的距离h==2OG,延长GO到点G′,使得OG′=OG,过点G′作AC的平行线与x轴交于点A′,与抛物线在第一象限内交于点D,∴∠GAO=∠G′A′O,∵∠GOA=∠G′OA′,∴△GAO≌△G′A′O(AAS),∴OA=OA′=1,∴A′(1,0),∵A(﹣1,0),C(0,3),∴直线AC的解析式为:y=3x+3,∴直线A′G′的解析式为:y=3x﹣3,令3x﹣3=﹣x2+2x+3,解得x=2或x=﹣3,∵点D在第一象限,∴D(2,3).(3)如图,过点M作ME⊥DE于E,过点N作NF⊥DE于F,设M(x1,﹣x12+2x1+3),N(x2,﹣x22+2x2+3),P(x0,﹣x02+2x0+3),则:ME=﹣x12+2x1+3﹣(﹣x02+2x0+3)=﹣x12+2x1+x02﹣2x0=﹣(x1﹣x0)(x1+x0)+2(x1﹣x0)=(x0+x1﹣2)(x0﹣x1),PE=x0﹣x1,FN=﹣x02+2x0+3﹣(﹣x22+2x2+3)=﹣(x0+x2﹣2)(x0﹣x2),PF=x0﹣x2,∵PQ恰好平分∠MPN,即∠MPE=∠NPE,∠MEP=∠NFP=90°,∴△MPE∽△NPF,∴=,∴=,∴x0=,∵A(﹣1,0),C(0,﹣3),∵MN∥AC,∴设直线MN的解析式为y=3x+b,令3x+b=﹣x2+2x+3,由消去y整理得:x2+x﹣3+b=0,由韦达定理可知:x1+x2=﹣1,∴x=,∴x−2x−3=,∴P(,).7.如图,抛物线y=mx2+3mx﹣2m+1的图象经过点C,交x轴于点A(x1,0),B(x2,0)(点A在点B左侧),且x2﹣x1=5,连接BC,D是AC上方的抛物线一点.(1)求抛物线的解析式;(2)连接BC,CD,S△DCE:S△BCE是否存在最大值?若存在,请求出其最大值及此时点D的坐标;若不存在,请说明理由;(3)第二象限内抛物线上是否存在一点D,DF垂直AC于点F,使得△DCF中有一个锐角等于∠BAC的两倍?若存在,求点D的横坐标,若不存在,请说明理由.【分析】(1)利用抛物线与x轴的交点的横坐标与一元二次方程根的联系,用一元二次方程根与系数的关系定理列出关于m的方程,解方程即可得出结论;(2)过点D作DH⊥x轴于点H,交AC于点M,过点B作BN⊥x轴于点B,交直线AC于点N,利用待定系数法求得直线AC的解析式,设D(a,a+2),则M(a,a+2),求得线段DM,BN的长,利用同高的三角形的面积关系列出S△DCE:S△BCE关于a的等式,利用配方法和二次函数的性质解答即可;(3)利用分类讨论的思想方法分两种情况讨论解答:①当∠DCF=2∠BAC时,②当∠FDC=2∠BAC时:取AB的中点P,连接OP,过点D作DR⊥y轴于点R,延长交AC于点G,利用勾股定理的逆定理判定△ABC为直角三角形,∠ACB=90°,设D(a,a+2),则DR=﹣a,OR=a+2,利用直角三角形的边角关系定理列出关于a的方程,解方程即可得出结论.【解答】解:(1)∵抛物线y=mx2+3mx﹣2m+1的图象交x轴于点A(x1,0),B(x2,0),∴x1,x2是方程mx2+3mx﹣2m+1=0的两根,∴x1+x2=﹣3,x1•x2=.∵x2﹣x1=5,∴=25.即:﹣4x1•x2=25,∴9﹣4×=25.解得:m=﹣.∴抛物线的解析式为y=﹣﹣x+2.(2)S△DCE:S△BCE存在最大值,此时点D的坐标为(﹣2,3),理由:令y=0,则﹣﹣x+2=0,解得:x=﹣4或1,∴A(﹣4,0),B(1,0),令x=0,则y=2,∴C(0,2).设直线AC的解析式为y=kx+b,∴,解得:,∴直线AC的解析式为y=x+2.过点D作DH⊥x轴于点H,交AC于点M,过点B作BN⊥x轴于点B,交直线AC于点N,如图,则DM∥BN,∴△EDM∽△EBN,∴.设D(a,a+2),则M(a,a+2),∴DM=(a+2)﹣(a+2)=﹣﹣2a.当x=1时,y=×1+2=,∴N(1,).∴BN=.∵等高的三角形的面积比等于底的比,∴S△DCE:S△B∁E=.∴S△DCE:S△B∁E==﹣﹣a=﹣(a+2)2+,∵<0,∴当a=﹣2时,S△DCE:S△BCE有最大值为,此时点D(﹣2,3);(3)第二象限内抛物线上存在一点D,DF垂直AC于点F,使得△DCF中有一个锐角等于∠BAC的两倍,点D的横坐标为﹣2或﹣,理由:∵A(﹣4,0),B(1,0),C(0,2),∴OA=4,OB=1,OC=2,∴AC==2,BC==,AB=OA+OB=5.∵AC2+BC2=25=AB2,∴△ABC为直角三角形,∠ACB=90°.取AB的中点P,连接OP,则P(﹣,0),∴OP=.∴P A=PB=PC=,∴∠BAC=∠PCA.∵∠CPB=∠BAC+∠PCA,∴∠CPB=2∠BAC.过点D作DR⊥y轴于点R,延长交AC于点G,如图,①当∠DCF=2∠BAC时,设D(m,m+2),则DR=﹣m,OR=m+2,∴CR=OR﹣OC=m.∵DR⊥y轴,OA⊥y轴,∴DR∥AB,∴∠G=∠BAC.∵∠DCF=∠G+∠CDG,∠DCF=2∠BAC,∴∠CDG=∠G=∠BAC.∵tan∠BAC=,∴tan∠CDR=.∴,∴解得:m=﹣2或0(舍去),∴m=﹣2.∴点D的横坐标为﹣2;②当∠FDC=2∠BAC时,∵∠CPB=2∠BAC,∴∠FDC=∠CPB.∵tan∠CPB=,∴tan∠FDC=,∵tan∠FDC=,∴,设FC=4n,则DF=3n,∴CD==5n.∵tan∠G=tan∠BAC=,∴tan∠G=,∴FG=6n.∴CG=FG﹣FC=2n.∵tan∠G=,∴RC=n,∴DR==n,∴,解得:a=或0(舍去),∴a=﹣,即点D的横坐标为﹣,综上,第二象限内抛物线上存在一点D,DF垂直AC于点F,使得△DCF中有一个锐角等于∠BAC的两倍,点D的横坐标为﹣2或﹣.【课后练习】1.如图1,抛物线y=ax2+bx+3经过A(1,0)、B(3,0)两点,与y轴交于点C,(1)求抛物线的函数解析式;(2)如图2,M是x轴下方的抛物线上一点,连接MO、MB、MC,若△MOC的面积是△MBC面积的3倍,求点M的坐标;(3)如图3,连接AC、BC,在抛物线上是否存在一点N(不与点A重合),使得∠BCN=∠ACB?若存在,求点N的横坐标;若不存在,请说明理由.【分析】(1)由于抛物线y=ax2+bx+3过A(1,0)、B(3,0)两点,那么可以得到方程ax2+bx+3=0的两根为x=1或x=3,然后利用根与系数即可确定a、b的值.(2)利用待定系数法求出直线BC的解析式,设点M(m,m2﹣4m+3),过点M作MN∥y轴,交BC于点N,则N(m,﹣m+3),根据△MOC的面积是△MBC面积的3倍,即可得到点M的坐标;(3)过点B作BE⊥AB交CN与E,证明△ABC≌△EBC(ASA),根据全等三角形的性质得BE=AB=2,求得E的坐标,由点E、C的坐标可得直线CN的解析式,联立y=x2﹣4x+3即可求得N点的坐标.【解答】解:(1)∵抛物线y=ax2+bx+3过A(1,0)、B(3,0)两点,∴方程ax2+bx+3=0的两根为x=1或x=3,∴1+3=﹣,1×3=,∴a=1,b=﹣4,∴二次函数解析式是y=x2﹣4x+3;(2)∵二次函数解析式是y=x2﹣4x+3,∴C(0,3).设直线BC的解析式为y=kx+t(k≠0),则,解得:.∴直线BC的解析式为y=﹣x+3.设点M(m,m2﹣4m+3),过点M作MN∥y轴,交BC于点N,∴N(m,﹣m+3),∴MN=﹣m+3﹣m2+4m﹣3=﹣m2+3m,∵A(1,0)、B(3,0),C(0,3).∴S△MOC=OC•m=m,S△MBC=MN•OB=﹣m2+m,∵△MOC的面积是△MBC面积的3倍,∴m=3(﹣m2+m),∴m=0(舍去)或,∴点M的坐标为(,﹣);(3)抛物线上存在一点N,使得∠BCN=∠ACB.过点B作BE⊥AB交CN与E,∵B(3,0),C(0,3).∴OB=OC=3,∴∠OBC=45°,∴∠OBC=∠EBC=45°,∵BC=BC,∠BCN=∠ACB.∴△ABC≌△EBC(ASA),∴BE=AB=2,∴E(3,2),设直线CN的解析式为y=mx+n,∴,解得,∴直线CN的解析式为y=﹣x+3,联立y=x2﹣4x+3得,或(舍去),∴抛物线上存在一点N,使得∠BCN=∠ACB.点N的横坐标为.2.如图,抛物线与x轴交于点A和点C(﹣1,0),与y轴交于点B(0,3),连接AB,BC,对称轴PD交AB与点E.(1)求抛物线的解析式;(2)如图2,试探究:线段BC上是否存在点M,使∠EMO=∠ABC,若存在,求出点M的坐标;若不存在,请说明理由;(3)如图3,点Q是抛物线的对称轴PD上一点,若以点Q、A、B为顶点的三角形是锐角三角形,请直接写出点Q纵坐标n的取值范围.【分析】(1)用待定系数法即可求解;(2)先求出A(4,0),可得抛物线的对称轴为x==,证明∠ACB=∠ABC,△MCO∽△EBM,可得MC•BM=BE•CO,求出MC,即可求解;(3)当∠BAQ为直角时,求出直线BQ的表达式为y=x+3,得到n=5;当∠BQA为直角时,利用解直角三角形的方法求出n=;当∠BAQ为直角时,同理可得,n=﹣,进而求解.【解答】解:(1)由题意得:,解得,故抛物线的表达式为y=﹣x2+x+3;(2)对于y=﹣x2+x+3,令y=﹣x2+x+3=0,解得x=4或﹣1,故点A的坐标为(4,0),∵点A(4,0),B(0,3),C(﹣1,0),∴抛物线的对称轴为x==,直线AB的表达式为y=﹣x+3,AB==5=AC.∴∠ACB=∠ABC,点E(,),∵∠CME=∠CMO+∠OME=∠ABC+∠MEB,∠ABC=∠OME,∴∠CMO=∠BEM.∴△MCO∽△EBM,∴,∴MC•BM=BE•CO,∵B(0,3),E(,),∴BE==,∴MC•BM=,∵MC+BM=BC==.∴MC=或MC=.∴=或=,如图,过M作MK⊥x轴于K,则MK∥y轴,∴△CMK∽△CBO,∴=或,即=或,∴MK=或,∵B(0,3),C(﹣1,0),∴直线BC的解析式为y=3x+3,∴M的﹣横坐标为﹣或﹣,∴点M的坐标为(﹣,)或(﹣,);(3)设点Q的坐标为(,n),当∠ABQ为直角时,如图,设BQ交x轴于点H,∵∠ABQ=90°,∴∠BAO+∠BHA=90°,∵∠BAO+∠ABO=90°,∴∠ABO=∠BHA,∵tan∠ABO=,∴tan∠BHO=,故设直线BQ的表达式为y=x+t,∵该直线过点B(0,3),∴t=3,∴直线BQ的表达式为y=x+3,当x=时,y=x+3=5,即n=5;②当∠BQA为直角时,过点Q作直线MN交y轴于点N,交过点A与y轴的平行线于点M,∵∠BQN+∠MQA=90°,∠MQA+∠MAQ=90°,∴∠BQN=∠MAQ,∴tan∠BQN=tan∠MAQ,即,则,解得n=;③当∠BAQ为直角时,同理可得,n=﹣;综上,以点Q、A、B为顶点的三角形是锐角三角形,则△ABQ不为直角三角形,故点Q纵坐标n的取值范围为﹣<n<或<n<5.3.如图1,抛物线y=ax2﹣x+c与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,直线l与抛物线交于A、D两点,其中D点的横坐标为2.(1)求抛物线的解析式以及直线AD的解析式;(2)点P是抛物线上位于直线AD下方的动点,过点P作x轴,y轴的平行线,交AD于点E、F,当PE+PF取最大值时,求点P的坐标;(3)如图2,连接AC,点Q在抛物线上,且满足∠QAB=2∠ACO,求点的坐标.【分析】(1)将A(﹣2,0),B(4,0)代入y=ax2﹣x+c,求出抛物线的解析式,求出D点坐标后,利用待定系数法求直线AD的解析式;(2)由题意可得PF=PE,设P(x,x2﹣x﹣4),F(x,﹣x﹣2),则PF=﹣x2+2,当PF最大时,PF+PE就最大,由此求解即可;(3)在BO上截取ON=OA,连接CN,过点A作AH⊥CN,证明△OCN≌△OCA(SAS),则可推导出∠QAB=∠NCA,再由S△ANC=AN×OC=AH×CN,求出tan∠NCA=,分两种情况讨论:当点Q在AB的下方时,设AQ与y轴交于点I,tan∠NCA=tan∠QAB=,可求点I(0,﹣),求出直线AQ解析式为y=﹣x﹣,联立方程组得:,可求点Q坐标为(,﹣),当点Q在AB的上方时,同理可求直线AQ解析式为:y=x+,联立方程组得:,可求点Q坐标为(,).【解答】解:(1)将A(﹣2,0),B(4,0)代入y=ax2﹣x+c,得,解得,∴抛物线解析式为y=x2﹣x﹣4,当x=2时,y=﹣4,∴D(2,﹣4),设直线AD的解析式为y=kx+b,将A(﹣2,0)D(2,﹣4)代入,得,解得,∴直线AD的解析式为y=﹣x﹣2;(2)根据题意作图,如图1,在y=﹣x﹣2上,当x=0时,y=﹣2,∴AD与y轴的交点M的坐标为(0,﹣2),∴OA=OM,∠AOM=90°,∴∠OAB=45°,∵PE∥x轴,PF∥y轴,∴∠PEF=∠OAB=45°,∠EPF=90°,∴PF=PE,设P(x,x2﹣x﹣4),F(x,﹣x﹣2),∴PF=﹣x2+2,∵P在AD的下方,∴﹣2<x<2,当x=0时,PF有最大值为2,此时PF+PE最大,∴P(0,﹣4);(3)在BO上截取ON=OA,连接CN,过点A作AH⊥CN,如图2,∵点A(﹣2,0),点C(0,﹣4),∴OA=2,OC=4,∴AC=2,∵ON=OA,∠CON=∠COA=90°,OC=OC,∴△OCN≌△OCA(SAS),∴∠ACO=∠NCO,CN=AC=2,∴∠NCA=2∠ACO,∵∠QAB=2∠ACO,∴∠QAB=∠NCA,∵S△ANC=AN×OC=AH×CN,∴AH=,∴CH=,∴tan∠NCA=,如图3,当点Q在AB的下方时,设AQ与y轴交于点I,∵∠QAB=∠NCA,∴tan∠NCA=tan∠QAB=,∴OI=,∴点I(0,﹣),又∵点A(﹣2,0),∴直线AQ解析式为:y=﹣x﹣,联立方程组得:,解得:或(不合题意舍去),∴点Q坐标为(,﹣),当点Q在AB的上方时,同理可求直线AQ解析式为:y=x+,联立方程组得:,解得:(不合题意舍去)或,∴点Q坐标为(,),综上所述:点Q的坐标为(,﹣)或(,).。
x/小时y /千米 600146O F E C D(第5题)一次函数的应用1.(2010安徽省中中考) 甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4s m /和6s m /,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离y(m)与时间t(s)的函数图象是……………………………………( )2.(2010 江苏连云港)某公司准备与汽车租凭公司签订租车合同,以每月用车路程x km 计算,甲汽车租凭公司每月收取的租赁费为y 1元,乙汽车租凭公司每月收取的租赁费为y 2元,若y 1、y 2与x 之间的函数关系如图所示,其中x =0对应的函数值为月固定租赁费,则下列判断错误..的是( ) A .当月用车路程为2000km 时,两家汽车租赁公司租赁费用相同 B .当月用车路程为2300km 时,租赁乙汽车租赁公车比较合算 C .除去月固定租赁费,甲租赁公司每公里收取的费用比乙租赁公司多D .甲租赁公司平均每公里收到的费用比乙租赁公司少3.(2010鄂尔多斯)某移动通讯公司提供了A 、B 两种方案的通讯费用y(元)与通话时间x(分)之间的关系,如图所示,则以下说法错误..的是 A .若通话时间少于120分,则A 方案比B 方案便宜20元 B .若通话时间超过200分,则B 方案比A 方案便宜 C .若通讯费用为了60元,则方案比A 方案的通话时间多 D .若两种方案通讯费用相差10元,则通话时间是145分或185分4.(2010天门、潜江、仙桃)甲、乙两人以相同路线前 往距离单位10km 的培训 中心参加学习.图中l 甲、l乙分别表示甲、乙两人前往目的地所走的路程 S (km)随时间t (分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的 平均速度为15千米/小时;③乙走了8km 后遇到甲;④乙 出发6分钟后追上甲.其中正确的有( )A.4个B.3个C.2个D.1个5.(2010 浙江台州市)A ,B 两城相距600千米,甲、 乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即 返回.如图是它们离A 城的距离y (千米)与行驶时间 x (小时)之间的函数图象. (1)求甲车行驶过程中y 与x 之间的函数解析式,并写出自变量x 的取值范围;(2)当它们行驶7了小时时,两车相遇,求乙车速度.第2题1000 2000 3000 x(km)10002000 3000 y (元)y 1 y 2y/km 90甲 乙6.(2010浙江湖州)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y (千米),图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系.(1)根据图中信息,求线段AB 所在直线的函数解析式和甲乙两地之间的距离; (2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t 时,求t 的值; (3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y 关于x 的函数的大致图像. (温馨提示:请画在答题卷相对应的图上)7.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y (人)与售票时间x (分钟)的关系如图所示,已知售票的前a 分钟只开放了两个售票窗口(规定每人只购一张票). (1)求a 的值.(2)求售票到第60分钟时,售票听排队等候购票的旅客人数.(3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?8.(2010湖北省咸宁)在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的距离....分别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离为 km , a ;(2)求图中点P 的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.9.(2010辽宁大连)25.某物流公司的甲、乙两辆货车分别从A 、B 两地同时相向而行,并以各自的速度匀速行驶,途径配货站C ,甲车先到达C 地,并在C 地用1小时配货,然后按原速度开往B 地,乙车从B 地直达A 地,图16是甲、乙两车间的距离y (千米)与乙车出发x (时)的函数的部分图像(1)A 、B 两地的距离是 千米,甲车出发 小时到达C 地;(2)求乙车出发2小时后直至到达A 地的过程中,y 与x 的函数关系式及x 的取值范围,并在图16中补全函数图像;(3)乙车出发多长时间,两车相距150千米10.(2010黑龙江绥化)因南方早情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式予以支援.下图是两水库的蓄水量y (万米3)与时间x (天)之间的函数图象.在单位时间内,甲水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计).通过分析图象回答下列问题:(1)甲水库每天的放水量是多少万立方米? (2)在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米? (3)求直线AD 的函数解析式.1.5 2300x (时)O y (千米)3011、(2011年长春)甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2分)(2)求乙组加工零件总量a的值.(3分)(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?(5分)12、一辆客车从甲地开往甲地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x (h),y1,y2与x的函数关系图象如图12所示:(1)根据图象,直接写出....y1,y2关于x的函数关系式。
一次函数与反比例函数综合应用教案一、教学目标1. 让学生掌握一次函数和反比例函数的基本概念和性质。
2. 培养学生运用一次函数和反比例函数解决实际问题的能力。
3. 引导学生通过合作交流,提高解决问题的策略和思维能力。
二、教学内容1. 一次函数的基本概念和性质。
2. 反比例函数的基本概念和性质。
3. 一次函数和反比例函数的综合应用。
三、教学重点与难点1. 教学重点:一次函数和反比例函数的基本概念、性质和综合应用。
2. 教学难点:一次函数和反比例函数的综合应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究一次函数和反比例函数的性质。
2. 利用案例分析法,让学生通过实际问题体会一次函数和反比例函数的应用价值。
3. 采用合作交流法,培养学生团队协作和沟通能力。
五、教学过程1. 导入新课:通过生活实例引入一次函数和反比例函数的概念。
2. 自主学习:让学生自主探究一次函数和反比例函数的性质。
3. 案例分析:分析实际问题,引导学生运用一次函数和反比例函数解决问题。
4. 合作交流:分组讨论,让学生分享解题策略和心得。
5. 总结提升:总结一次函数和反比例函数的性质及应用,提高学生解决问题的能力。
6. 课后作业:布置相关练习题,巩固所学知识。
六、教学活动设计1. 活动一:引入概念通过展示实际生活中的线性关系图片,如直线轨道上列车的运动,引导学生思考线性关系的表现形式。
引导学生提出一次函数的表达式,并解释其含义。
2. 活动二:探索性质学生通过绘制一次函数图像,观察并总结其在坐标系中的性质。
通过实际例子,让学生理解一次函数的斜率和截距对图像的影响。
3. 活动三:反比例函数的引入引导学生从比例关系出发,思考反比例函数的概念。
通过实际问题,如在固定面积内,距离与面积的关系,引入反比例函数。
七、教学评价设计1. 评价目标:学生能理解并应用一次函数和反比例函数解决实际问题。
通过设计具有挑战性的问题,如购物预算问题,让学生应用所学的函数知识。
第11讲 函数复习专题2.函数图象与零点(教师)一、教学目标:1.会运用函数图象理解和研究函数的性质.2.结合二次函数的图象,了解函数的零点与方程根的关系,判断一元二次方程根的存在性及根的个数.3.根据具体函数的图象,能够用二分法求相应方程的近似解二、重点难点:1.函数图像及运用2.函数零点与方程关系三、教学方法:“一学二记三应用” 四、知识梳理:(1)描点法作函数图象,应注意在定义域内依据函数的性质,选取关键的一部分点连接而成.(2)图象变换法,包括有平移变换、伸缩变换、对称翻折变换.的图像的画法:先画时,再将其关于对称,得轴左侧的图像. 的图像画法:先画的图象,然后位于轴上方的图象不变,位于轴下方的图象关于 轴翻折上去. 的图象关于对称;的图象关于点对称.的图象关于轴对称的函数图象解析式为;关于轴对称的函数解析式为;关于原点对称的函数解析式为.(3)熟记基本初等函数的图象,以及形如的图象五.课前评估:1.[2022·重庆六校联考]函数f (x )=sin πxx2的大致图象为( )0(0(()()a a a a f x f x a ><−−−−−−−→+向左平移个单位)向右平移个单位)0(0(()()+k k k f x f x k ><−−−−−−−→向上平移k 个单位)向下平移个单位)11(101(()()(0,1)f x f x w ωωωωωω><<−−−−−−−−−−−−−−−−→>≠图像上所有点的纵坐标不会,横坐标缩短为原来的)图像上所有点的纵坐标不会,横坐标伸长为原来的)1(01(()()(0,1)A A A f x Af x A A ><<−−−−−−−−−−−−−−−−→>≠图像上所有点的横坐标不会,纵坐标伸长为原来的)图像上所有点的横坐标不会,纵坐标缩短为原来的A )()f x 0x ≥()y f x =y y ()f x()y f x =x x x ()()f a x f a x +=-()y f x =x =a ()()f a x f a x +=--()y f x =(a,0)()y f x =x (y f x =-)y (-y f x =)-(-y f x =)1y x x=+xyf x () = x +1x–1–2–3–41234–1–2–3–41234O答案:D 解析:易知函数f (x )=sinπxx 2为奇函数且定义域为{x |x ≠0},只有选项D 满足, 2.[2022·福州质检]若函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )的解析式为( )A .f (x )=e x +1B .f (x )=e x -1C .f (x )=e -x +1D .f (x )=e -x -1答案:D 解析:与y =e x 的图象关于y 轴对称的图象对应的函数为y =e -x .依题意,f (x )的图象向右平移1个单位长度,得y =e -x 的图象,∴f (x )的图象是由y =e -x 的图象向左平移1个单位长度得到的,∴f (x )=e -(x +1)=e -x -1.3.[2022·全国卷Ⅱ]函数f (x )=e x -e -xx 2的图象大致为( )A BCD答案:B 解析:∵ y =e x -e -x是奇函数,y =x 2是偶函数,∴ f (x )=e x -e -xx 2是奇函数,图象关于原点对称,排除A 选项.当x =1时,f (1)=e -e -11=e -1e>0,排除D 选项.又e>2,∴ 1e <12,∴ e -1e>1,排除C 选项.故选B.题型一 识图与辨图例1(1)(2022年高考浙江卷)在同一直角坐标系中,函数y =1x a ,y =log a (x +12)(a >0,且a ≠1)的图象可能是答:D(2)在同一直角坐标系中,函数()2f x ax =-, ()()log 2a g x x =+(0a >,且1a ≠)的图象大致为( )A. B. C. D.(3)(2022年高考全国3卷)函数3222x xxy -=+在[]6,6-的图像大致为 A . B .C .D .答:B(4)(2022年高考全国1卷)函数f (x )=在[,]-ππ的图像大致为A .B .C .D .答:D课堂练习1:(1)(内江市高中2022届第一次模拟考试题)函数()()21=ln 2x f x x e -+-的图象大致是( )2sin cos ++x xx xA. B C. D.答:C (2).(2022届吉林省五地六校联考高三考前适应卷)已知函数()(22)ln ||x x f x x -=+的图象大致为( )A .B .C .D .【答案】B 【详解】()f x 定义域为{}0x x ≠,()()()()22ln 22ln x x x x f x x x f x ---=+-=+=()f x ∴为偶函数,关于y 轴对称,排除D ;当()0,1x ∈时,220x x -+>,ln 0x <,可知()0f x <,排除,A C .题型二 图象初等变换例2 (1)(江西省红色七校2022届高三第一次联考理科数学科试题)设,则函数的图象的大致形状是( )答:B(2)已知图①中的图象对应的函数为y =f (x ),则在下列给出的四个选项中,图②中的图象对应的函数只可能是( )A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (|x |)答案:C 解析:由图②知,图象关于y 轴对称,对应的函数是偶函数.对于A ,当x >00a >()y x x a =-时,y=f(|x|)=f(x),其图象在y轴右侧与图①的相同,不符合,故错误;对于B,当x>0时,对应的函数是y=f(x),显然B错误;对于D,当x<0时,y=-f(-x),其图象在y轴左侧与图①的不相同,不符合,故错误;所以C选项是正确的.(3)已知函数,则函数的大致图象是()A. B. C. D.解析】,函数在处图象有跳跃点,选项AC错误;当(4).若函数y=f(x)的图象如图所示,则函数y=-f(x+1)的图象大致为()答案:C解析:要想由y=f(x)的图象得到y=-f(x+1)的图象,需要先将y=f(x)的图象关于x轴对称得到y=-f(x)的图象,然后向左平移1个单位长度得到y=-f(x+1)的图象,根据上述步骤可知C正确.(5)[2022·咸宁模拟]已知a>0,且a≠1,函数y=a x与y=log a(-x)的图象可能是图中的()答案:B解析:通解因为y=a x与y=log a x互为反函数,而y=log a x与y=log a(-x)的图象关于y轴对称,根据图象特征可知选B.优解首先,曲线y=a x只可能在x轴上方,曲线y=log a(-x)只可能在y轴左边,从而排除A,C;其次,y=a x与y=log a(-x)的增减性正好相反,排除D,选B.(6)(提高)函数的部分图象大致为()A. B. C. D.【解析】分析:分析函数的奇偶性,以及是函数值的符号,利用排除法即可得到答案.解:由题意,函数满足,所以函数为奇函数,图象关于轴对称,排除B 、D ;又由当时,函数,排除C ,故选A.[规律方法] 识图常用方法:(1)定性分析法:通过对问题进行定性的分析,从而得出图像的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图像特征,联想相关函数模型,利用这一函数模型来分析解决问题. 课堂练习2.(1).函数的图象大致为( )A. B. C. D. 【解析】根据函数表达式得到,故函数是奇函数,排除D 选项,当x 趋向于正无穷时,函数值趋向于0,并且大于0,排除B ;当x 从左侧趋向于1时,函数值趋向于负无穷,故排除 C.故答案为:A. (2) 函数的图象可能是( )A. B. C. D. 【解析】试题分析:化简函数的解析式,判断函数的对称性,利用函数的值判断即可. 详解:函数f (x )==,可知函数的图象关于(2,0)对称,排除A ,B .当x <0时,ln (x ﹣2)2>0,(x ﹣2)3<0,函数的图象在x 轴下方,排除D ,故选:C .题型三 零点判断与运用例3 (1)[2022·南昌调研]函数f (x )=2x +ln 1的零点所在的大致区间是( ) A .(1,2) B .(2,3) C .(3,4) D .(4,5)答案:B 解析:易知f (x )=2x +ln 1x -1=2x-ln(x -1)在(1,+∞)上单调递减且连续,当1<x <2时,ln(x -1)<0,2x>0,所以f (x )>0,故函数f (x )在(1,2)上没有零点.f (2)=1-ln1=1,f (3)=23-ln2=2-3ln23=2-ln83,8=22≈2.828>e ,所以8>e 2,即ln8>2,所以f (3)<0.所以f (x )的零点所在的大致区间是(2,3),故选B.(2).[2022·山东枣庄模拟]函数f (x )=x 12-⎝⎛⎭⎫12x的零点个数为( )A .0B .1C .2D .3 答案:B解析:在同一直角坐标系中作出函数y =x 12与y =⎝⎛⎭⎫12x的图象,如图所示.由图知,两个函数图象只有一个交点,所以函数f (x )的零点只有1个.故选B. a c 若()2019()()f x x a x b =---的零点为c ,d ,则下列不等式正确的是( ) A . a c b d >>> B .a b c d >>> C.c d a b >>> D .c a b d >>>答:由()2019()()f x x a x b =---,又()()2019f a f b ==,c ,d ,为函数()f x 的零点,且a b >,c d >,所以可在平面直角坐标系中作出函数()f x 的大致图像,如图所示,由图可知c a b d >>>,故选D.(4) [2022·河南省实验中学模拟]已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))-1的图象与x 轴的交点个数为( )A .3 B .2 C .0 D .4答案: A 解析:y =f (f (x ))-1=0,即f (f (x ))=1.当f (x )≤0时,得f (x )+1=1,f (x )=0. 所以log 2x =0,得x =1;由x +1=0,得x =-1.当f (x )>0时,得log 2f (x )=1, 所以f (x )=2.由x +1=2,得x =1(舍去);由log 2x =2,得x =4. 综上所述,函数y =f (f (x ))-1的图象与x 轴的交点个数为3.故选A. (5) (提高)已知函数,则函数的零点个数是( )A. 7 B. 6 C. 5 D. 4 【解析】分析:令 函数的零点个数问题的根的个数问题.结合图象可得的根,方程有1解,有3解,有3解.从而得到函数的零点个数详解:令函数的零点个数问题的根的个数问题.即 的图象如图,结合图象可得的根方程 有1解,有3解,有3解.综上,函数的零点个数是7.故选A.(6)(提高) 定义在实数集上的函数满足,当时,,则函数的零点个数为__________.【解析】分析:先根据函数的奇偶性与周期性画出函数的图象,以及的图象,根据的图象在上单调递增函数,当时,,当时,的图象与函数无交点,结合图象可知有个交点.详解:定义在上的函数,满足,上的偶函数,因为满足,函数为周期为的周期函数,且为上的偶函数,因为时,,所以,在上递增,且值域为,根据周期性及奇偶性画出函数的图象和的图象,如图,根据的图象在上单调递增函数,当时,,当时,的图象与函数无交点,结合图象可知有个交点,故答案为.课堂练习3:(1)已知函数f (x )=1x -a为奇函数,g (x )=ln x -2f (x ),则函数g (x )的零点所在区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)解:由函数f (x )=1x -a为奇函数,可得a =0,则g (x )=ln x -2f (x )=ln x -2x ,所以g (2)=ln2-1<0,g (3)=ln3-23>0,所以g (2)·g (3)<0,可知函数的零点在(2,3)之间。
函数的单调性和奇偶性的综合应用教案一、教学目标:1. 知识与技能:(1)理解函数的单调性和奇偶性的概念;(2)掌握判断函数单调性和奇偶性的方法;(3)学会运用函数的单调性和奇偶性解决实际问题。
2. 过程与方法:(1)通过实例引导学生观察、分析函数的单调性和奇偶性;(2)利用图形直观地展示函数的单调性和奇偶性;(3)培养学生运用函数的单调性和奇偶性解决实际问题的能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生合作、探究的精神;(3)培养学生运用数学知识解决实际问题的意识。
二、教学重点与难点:1. 教学重点:(1)函数的单调性和奇偶性的概念;(2)判断函数单调性和奇偶性的方法;(3)运用函数的单调性和奇偶性解决实际问题。
2. 教学难点:(1)函数的奇偶性在实际问题中的应用;(2)函数的单调性在实际问题中的应用。
三、教学准备:1. 教师准备:(1)熟练掌握函数的单调性和奇偶性的概念及判断方法;(2)准备相关实例和练习题;(3)准备多媒体教学设备。
2. 学生准备:(1)掌握函数的基本概念;(2)了解简单的函数图形;(3)具备一定的数学运算能力。
四、教学过程:1. 导入新课:(1)引导学生回顾函数的基本概念;(2)引导学生思考函数的单调性和奇偶性在实际问题中的应用。
2. 知识讲解:(1)讲解函数的单调性概念及判断方法;(2)讲解函数的奇偶性概念及判断方法;(3)结合实例分析函数的单调性和奇偶性在实际问题中的应用。
3. 图形展示:(1)利用图形直观地展示函数的单调性和奇偶性;(2)引导学生观察、分析图形,加深对函数单调性和奇偶性的理解。
4. 课堂练习:(1)布置针对性练习题,让学生巩固所学知识;(2)引导学生互相讨论、交流,共同解决问题。
5. 总结提升:(1)总结本节课所学内容,强调函数的单调性和奇偶性在实际问题中的应用;(2)鼓励学生在日常生活中发现和运用函数的单调性和奇偶性。
函数解析综合问题教案教案标题:函数解析综合问题教案教学目标:1. 理解函数的概念和性质。
2. 掌握函数解析综合问题的解题方法和策略。
3. 培养学生的逻辑思维和问题解决能力。
教学准备:1. 教师准备:教案、教学课件、习题集、白板、黑板笔等。
2. 学生准备:课本、笔记、习题集等。
教学过程:一、导入(5分钟)1. 引入问题:请举例说明函数在实际生活中的应用。
2. 学生回答问题并讨论。
二、知识讲解(15分钟)1. 通过教学课件,向学生介绍函数的概念和性质。
2. 讲解函数解析综合问题的解题方法和策略,包括确定函数关系、列方程、解方程等。
三、示范与练习(20分钟)1. 教师通过教学课件展示一个函数解析综合问题的示范解答过程。
2. 学生在教师指导下,完成一些简单的练习题,巩固所学方法和策略。
四、合作探究(15分钟)1. 学生分成小组,共同解决一个函数解析综合问题。
2. 学生可以互相讨论、合作解题,提高问题解决能力。
五、展示与总结(10分钟)1. 学生代表小组展示解题过程和答案。
2. 教师对学生的解题过程进行点评和总结,强调解题中的关键步骤和技巧。
六、作业布置(5分钟)1. 教师布置相关练习题,要求学生独立完成。
2. 鼓励学生在解题过程中运用所学方法和策略。
教学反思:本教案通过导入问题引发学生的思考,激发学习兴趣;通过知识讲解和示范,帮助学生掌握函数解析综合问题的解题方法和策略;通过合作探究和展示,培养学生的合作意识和问题解决能力。
同时,布置相关练习题巩固所学知识。
整个教学过程注重学生的参与和互动,促进学生的主动学习和自主思考。
教学过程一、课堂导入如图,已知平面直角坐标系上的三点坐标分别为A(2,3)、B(6,3),C (4,0),现要找到一点D,使得这四个点构成的四边形是平行四边形,那么点D的坐标_______________________________.问题:这是我们在平面直角坐标系那章学习的内容,如果我们将二次函数容纳其中,在抛物线上求作一点,使得四边形是平行四边形并求出该点坐标时,又该如何解答呢?如果是存在两个动点又该如何解答?二、复习平行四边形性质:两组对边分别平行且相等,对角相等,对角线互相平分。
三、例题精析【例题】1. (2011湛江)如图,抛物线y=x2+bx+c的顶点为D(-1,-4),与y轴交于点C(0,-3),与x轴交于A,B两点(点A在点B的左侧).(1)求抛物线的解析式;(2)连接AC,CD,AD,试证明△ACD为直角三角形;(3)若点E在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F为顶点的四边形为平行四边形?若存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.【答案】(1) y=x2+2x-3;(2)见解析;(3) F的坐标为(3,12),(-5,12),(-1,-4).【解析】解:(1)由题意得{−b2=−14c−b24=−4,解得:b=2,c=-3,则解析式为:y=x2+2x-3;(2)由题意结合图形则解析式为:y=x2+2x-3,解得x=1或x=-3,由题意点A(-3,0),∴AC=√9+9=3√2,CD=√1+1=√2,AD=√4+16=2√5,由AC2+CD2=AD2,所以△ACD为直角三角形;(3)∵A(-3,0),B(1,0),∴AB=4,∵点E在抛物线的对称轴上,∴点E的横坐标为-1,当AB为平行四边形的一边时,EF=AB=4,∴F的横坐标为3或-5,把x=3或-5分别代入y=x2+2x-3,得到F的坐标为(3,12)或(-5,12);当AB为平行四边形的对角线时,由平行四边形的对角线互相平分,∴F点必在对称轴上,即F点与D点重合,∴F(-1,-4).∴所有满足条件的点F的坐标为(3,12),(-5,12),(-1,-4)四、课堂小结平行四边形模型探究:1. 已知三个定点,一个动点的情况在直角坐标平面内确定点M,使得以点M、A、B、C为顶点的四边形是平行四边形,直接写出点M的坐标。
1.知识与技能:通过本节学习,巩固二次函数y=ax2+bx+c(a/0)的图象与性质,理解顶点与最值的关系,会用顶点的性质求解最值问题。
能力训练要求1、能够分析实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值发展学生解决问题的能力,学会用建模的思想去解决其它和函数有关应用问题。
2、通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,培养数形结合思想,函数思想。
情感与价值观要求1、在进行探索的活动过程中发展学生的探究意识,逐步养成合作交流的习惯。
2、培养学生学以致用的习惯,体会体会数学在生活中广泛的应用价值,激发学生学习数学的兴趣、增强自信心。
方法设计由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式"为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。
为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。
教学过程导学提纲设计思路:最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。
从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。
目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。
二次函数的实际应用(拱桥问题)教师work Information Technology Company.2020YEAR二次函数中抛物线形与拱桥问题1 有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m ,拱顶距离水面4m .(1)在如图所示的直角坐标系中,求出该抛物线的表达式;(2)在正常水位的基础上,当水位上升h (m )时,桥下水面的宽度为d (m ),求出将d 表示为h 的函数表达式;(3)设正常水位时桥下的水深为2m ,为保证过往船只顺利航行,桥下水面宽度不得小于18m ,求水深超过多少米时就会影响过往船只在桥下的顺利航行.解:(1)设抛物线的解析式为y =ax 2,且过点(10,-4)∴故 (2)设水位上升h m 时,水面与抛物线交于点()则∴ (3)当d =18时,∴当水深超过2.76m 时会影响过往船只在桥下顺利航行。
2、如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽AB=10m ,如果水位上升2m ,就将达到警戒线CD ,这时水面的宽为8m.若洪水到来,水位以每小时0.1m速度上升,经过多少小时会达到拱顶解: 以AB 所在的直线为x 轴,AB 中点为原点,建立直角坐标系,则抛物线的顶点E 在y 轴上,且B 、D 两点的坐标分别为(5,0)、(4,2)-==-4101252a a ×,y x =-1252d h 24,-h d -=-412542×d h =-10418104076=-=h h ,.0762276..+=设抛物线为y=ax2+k.由B、D两点在抛物线上,有解这个方程组,得所以,顶点的坐标为(0,)则OE=÷0.1=(h)所以,若洪水到来,水位以每小时0.1m速度上升,经过小时会达到拱顶.3、如图4,有一座抛物线形拱桥,抛物线可用y=表示.在正常水位时水面AB 的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)在正常水位时,有一艘宽8m、高2.5m的小船,它能通过这座桥吗(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通过:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来的速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米?解:(1)由对称性,当x=4时,y=.当x=10时,y=.故正常水位时,AB距桥面4米,由,故小船能通过.(2)水位由CD处涨到点O的时间为1÷0.25=4小时.货车按原来的速度行驶的路程为40×1+40×4=200<280.∴货车按原来的速度行驶不能安全通过此桥.设货车速度提高到x千米/时,当4x+40×1=280时,x=60.∴要使货车安全通过此桥,货车的速度超过60千米/时。
题型1费用比较型1.某社区的游泳馆按照顾客游泳的次数收取费用,每次的全票价为40元.在盛夏即将来临时,为吸引更多的顾客再次光顾,推出了以下两种收费方式.方式一:先交250元会员费,每次游泳按照全票价的7.5折收取费用;方式二:第一次收全票价,以后每次按照全票价的9.5折收取费用.(1)技照方式一的总费用为y1,按照方式二的总费用为y2,请直接写出y1,y2与游泳次数x的函数关系式;(2)去该游泳馆的次数等于31次时,两种方式收取总费用一样.【解答】解:(1)根据题意,可得:y1=250+40×0.75x=30x+250;y2=40+40×0.95(x ﹣1)=38x+2.(2)令y1=y2,可得:30x+250=38x+2,解方程,得x=31,故答案为31.2.某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种.收费方式,除按印刷份数收取印刷费外,甲种方式还需收取制版费而乙种不需要,两种印刷方式的收费费用y(元)与印刷份数x(份)之间的函数关系如图所示:=0.08x+20,乙种收费方式的函数关系(1)填空:甲种收费方式的函数关系式是y甲=0.12x;(直接写出答案,不写过程)式是y乙(2)根据函数图象,请直接写出如何根据每次印刷份数选择省钱的收费方式.(3)填空:该校八年级每次需印刷800份学案,选择甲种印刷方式较合算?(填“甲”“乙”,直接写出答案,不写过程)【解答】解:(1)甲种收费方式每份的费用为:(60﹣20)÷500=0.08(元),∴y甲=0.08x+20,乙种收费方式每份的费用为:60÷500=0.12(元),∴y乙=0.12x;故答案为:y甲=0.08x+20;y乙=0.12x;(2)由图象可知,当印刷份数小于500份时,选择乙种方式省钱;当印刷份数等于500份时,两种方式一样;当印刷份数大于500份时,选择甲种方式省钱.(3)∵800>500,∴选择甲种印刷方式较合算.故答案为:甲.3.2017年“中国移动”公司提供两种通讯收费方案供客户选择.根据以上信息,解答下列问题:(1)设通话时间为x分钟,方案一的通讯费用为y1元,方案二的通讯费用为y2元,分别求出y1、y2关于x的函数表达式.(2)请你通过计算说明如何选用通讯收费方案更合算.(3)小明的爸爸每月的通话时间约为500分钟,应选用哪种通讯收费方案.【解答】解:(1)根据题意知,当0≤x≤50时,y1=40.当x>50时,y1=40+(x﹣50)×0.1=35+0.1x.综上所述,y1=.y2=0.2x(x≥0);(2)当0≤x≤50时,y1=40>y2,选择方案二合算;当x>50时:①y1>y2,即0.1x+35>0.2x,解得x<350,选择方案二合算;②y1=y2,即0.1x+35=0.2x,解得x=350,选择两种方案一样合算;③y1<y2,即0.1x+35<0.2x,解得x>350,选择方案一合算.综上所述,当通话时间小于350分钟,选择方案二合算;当通话时间为350分钟,选择两种方案一样合算;当通话时间大于350分钟,选择方案一合算;(3)由于500>350,所以小明的爸爸选用通讯收费方案一合算.题型2.分段计费4.某市电力公司采用分段计费的方法计算电费.每月用电不超过100度时,按每度0.55元计算费用,每月用电超过100度时,超过部分按每度0.60元计算.(1)设每月用电x度时,应交电费y元,写出y与x之间的函数关系式,并写出自变量的取值范围;(2)小王家一月份用了115度电,应交电费多少元?(3)小王家三月份交纳电费49.5元,求小王家三月份用了多少度电?【解答】解:(1)由题意可得,当0<x≤100时,y=0.55x,当x>100时,y=0.55×100+(x﹣100)×0.6=0.6x﹣5,由上可得,y与x之间的函数关系式是y=;(2)当x=115时,y=0.6×115﹣5=64(元),答:小王家一月份用了115度电,应交电费64元;(3)∵100×0.55=55>49.5,∴小王家三月份用电在100度以内,当y=49.5时,49.5=0.55x,解得,x=90,答:小王家三月份用了90度电.5.为鼓励居民节约用电,某市电力公司采用分段计费方式计算电费;每月用电不超过180度时,按每度0.5元计费;每月用电超过180度但不超过280度时,其中的180度仍按原标准收费,超过部分按每度0.6元计费.收费标准如下表:超过280度的部分用电量不超过180度超过180度不超过280度的部分收费标准(元/度)0.50.60.8(1)若小陈家每月交电费y元,每月用电量为x度,用含x的代数式表示电费y为:当0≤x≤180时,y=0.5x;当180<x≤280时,y=0.6x﹣18;当x>280时,y=0.8x﹣74.(2)小陈家第三季度交电费132元,求小陈家第三季度用电多少度?【解答】解:(1)根据题意得:当0≤x≤180时,y=0.5x,当180<x≤280时,y=0.5×180+0.6×(x﹣180)=90+0.6x﹣108=0.6x﹣18,当x>280时,y=0.5×180+0.6×(280﹣180)+0.8×(x﹣280)=0.8x﹣74,故答案为:0.5x;0.6x﹣18;0.8x﹣74;(2)由y=132代入y=0.6x﹣18,可得x=250.小陈家第三季度用电250度.6.某市为鼓励市民节约用水和加强对节水的管理,制订了以下每年每户用水的收费标准:①用水量不超过220立方米时,每立方米收费1.92元,并加收每立方米1.53元的污水处理费;②用水量超过220立方米时,在①的基础上,超过220立方米的部分,每立方米收费3.30元,并加收每立方米1.53元污水处理费;设某户一年的用水量为x立方米,应交水费y元.(1)分别对①、②两种情况,写出y与x的函数解析式,并指出函数的定义域;(2)当某户2019年全年缴纳的水费共计1000.5元时,求这户2019年全年用水量.【解答】解:(1)情况①:y=(1.92+1.53)x,即y=3.45x(0<x≤220),情况②:y=220×(1.92+1.53)+(x﹣220)(3.30+1.53),即所求的函数解析式为y=4.83x﹣303.6(x>220);(2)当该户一个月应交水费为1000.5元时,说明该户用水量已超过220立方米,则4.83x﹣303.6=1000.5,解得x=270.答:该户一个月的用水量为270立方米.10.《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额.此项税款按下表累进计算:全月应税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%………(纳税款=应纳税所得额×对应税率)(1)设某甲的月工资、薪金所得为x元(1300<x<2800),需缴交的所得税款为y元,试写出y与x的函数关系式;(2)若某乙一月份应缴所得税款95元,那么他一月份的工资、薪金是多少元?【解答】解:(1)∵甲得到的月工资、薪金所得为1300~2800元,则对应的纳税范围为:1300﹣800=500;2800﹣800=2000,即对应的纳税款区间为:超过500元至2000元的部分,∴y=500×5%+(x﹣1300)×10%=0.1x﹣105.故y与x的函数关系式为:y=0.1x﹣105.(2)某乙一月份应缴所得税款95元,由(1)关系式可知,令y=95,得95=0.1x﹣105,解得x=2000,满足所对应的纳税区间.即他一月份的工资、薪金是2000元.11.《中华人民共和国个人所得税法》中规定,公民月工薪所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额.即全月应纳税所得额=当月工资﹣3500元.个人所得税款按下表累进计算.全月应纳税金额税率(%)不超过1500元3%超过1500元至4500元的部分10%超过4500元至9000元的部分20%……(例如:某人月工资为5500元,需交个人所得税为(5500﹣3500﹣1500)×10%+1500×3%=95元)(1)求月工资为4200元应交的个人所得税款;(2)设小明的月工资为x 元(5000<x <8000),应交的个人所得税为y 元,求y 与x 之间的函数关系式;(3)若王教授的月工资不超过10000元,他每月的纳税金额超过月工资的吗?若能,请给出王教授的工资范围;若不能,请说明理由.【解答】解:(1)根据题意得(4200﹣3500)×3%=21(元).答:月工资为4200元应交个人所得税款是21元;(2)∵5000<x <8000,∴150<x ﹣3500<4500,∴y =(x ﹣35000﹣1500)•10%+1500×3%,即y =0.1x﹣455(5000<x <8000);(3)能.设月工资是y 元.∵3000×10%+1500×3%<×8000.∴当0<y ≤8000时,纳税金额不能超过月工资的.当8000<y ≤10000时,3000×10%+1500×3%+(y ﹣8000)×20%>,解得:y >9412.5.故王教授的月工资范围是9412.5<y ≤10000.12.我国现行个人工资薪金税征收办法规定:月收入高于800元但低于1300元的部分征收5%的所得税,如某人某月收入1160元,他应缴个人工资薪金所得税为(1160﹣800)×5%=18(元).①当月收入大于800元而又小于1300元时,写出应缴所得税y(元)与月收入x(元)之间的关系式.②某人某月收入为960元,他应缴所得税多少元?③如果某人本月缴所得税19.2元,那么此人本月工资薪金是多少元?【解答】解:(1)∵当月收入大于800元而又小于1300元,∴应缴所得税y(元)与月收入x(元)之间的关系式为;y=(x﹣800)×5%=0.05x﹣40;(2)根据题意得:(960﹣800)×5%=8(元),答:他应缴所得税8元.(3)此人本月工资薪金是x元,根据题意得:(x﹣800)×5%=19.2,解得:x=1184,则此人本月工资薪金是1184元.题型3资源分配8.A城有肥料200t,B城有肥料300t,现要把这些肥料全部运往C、D两乡.从A城运往C,D两乡肥料费用分别为20元/t和25元/t;从B城运往C,D两乡运肥料的费用分别为15元/t和24元/t.现C乡需要肥料240t,D乡需要肥料260t.设A城运往C乡xt,请解答下列问题:(1)根据题意,填写下列表格:城、乡/吨数A BC x①240﹣xD②200﹣x③60+x(2)设总运费为W(元),求出W(元)与x(吨)的函数关系式,并写出自变量x的取值范围.(3)求怎么调运可使总运费最少?最少为多少元?【解答】解:(1)根据题意,填写下表如下:故答案为:①200﹣x;②240﹣x;③60+x.(2)A城运往C乡的肥料量为x吨,则运往D乡的肥料量为(200﹣x)吨;B城运往C、D乡的肥料量分别为(240﹣x)吨和(60+x)吨.由总运费与各运输量的关系可知,反映W与x之间的函数关系为W=20x+25(200﹣x)+15(240﹣x)+24(60+x),化简得W=4x+10040(0≤x≤200);(3)由解析式可看出:当x=0时,y有最小值10040.因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值是10040元.题型4.行程工程3.某水果店以每千克9元的价格购进苹果若干千克,销售了部分苹果后,余下的苹果每千克降价4元销售,全部售完.销售金额y(元)与销售量x(千克)之间的关系如图所示,请根据图象提供的信息完成下列问题:(1)降价前苹果的销售单价是16元/千克;(2)求降价后销售金额y(元)与销售量x(千克)之间的函数解析式,并写出自变量的取值范围;(3)该水果店这次销售苹果盈利了多少元?【解答】解:(1)由图象可得,降价前苹果的销售单价是640÷40=16(元/千克),故答案为:16;(2)降价后销售的苹果质量为(760﹣640)÷(16﹣4)=120÷12=10(千克),设降价后销售金额y(元)与销售量x(千克)之间的函数解析式时y=kx+b,∵降价后销售金额y(元)与销售量x(千克)之间的函数图象过点(40,640),(50,760),∴,解得,即降价后销售金额y(元)与销售量x(千克)之间的函数解析式是y=12x+160(40<x ≤50);(3)760﹣50×9=760﹣450=310(元),答:该水果店这次销售苹果盈利了310元.9.纺织厂生产某种产品,每件出厂价定为80元,每件的成本是60元,由于在生产过程中平均每生产一件此种产品,就会有0.5立方米的污水排出,为了保护环境,工厂需要对污水净化处理后才能排出.已知处理1立方米污水的费用为2元,且每月排污设备物资损耗为8000元.设该厂每月生产产品x件,每月获得纯利润y元.(纯利润=总收入﹣总支出).(1)求出y与x之间的函数表达式;(2)若厂家有盈利,则每月至少要生产多少件产品?(3)如果该厂本月获得的纯利润是106000元,请求出该厂在本月生产产品的件数.【解答】解:(1)依题意得:y=80x﹣60x﹣0.5x•2﹣8000,化简得:y=19x﹣8000.∴所求的函数关系式为y=19x﹣8000(x>0且x是整数);(2)当19x﹣8000>0时,即x>421,∵x为正整数,∴若厂家有盈利,则每月至少要生产422件产品;(3)当y=106000时,代入得:106000=19x﹣8000,解得x=6000.∴这个月该厂生产产品6000件.13.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的图象如图所示:(1)客车的速度是60千米/小时,出租车的速度是100千米小时;(2)根据图象,分别直接写出y1、y2关于x的关系式:y1=60x(0≤x≤10),y2=﹣100x+600(0≤x≤6);(3)求两车相遇的时间.(4)x为何值时,两车相距100千米.【解答】解:(1)由图可知,甲乙两地间的距离为600km,所以,客车速度=600÷10=60(km/h),出租车速度=600÷6=100(km/h),故答案为:60,100;(2)设客车的函数关系式为y1=k1x,则10k1=600,解得k1=60,所以,y1=60x(0≤x≤10),设出租车的函数关系式为y2=k2x+b,则,解得,所以,y2=﹣100x+600(0≤x≤6),故答案为:y1=60x(0≤x≤10),y2=﹣100x+600(0≤x≤6);(3)当出租车与客车相遇时,60x+100x=600,解得x=.所以两车相遇的时间为小时;(4)由题意可得:|﹣100x+600﹣60x|=100,∴x=或,答:x为或时,两车相距100千米.14.某市端午节期间,甲、乙两队举行了赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的图象如图所示,请你根据图象,回答下列问题:(1)这次龙舟赛的全程是多少米?哪队先到达终点?(2)求甲与乙相遇时甲、乙的速度.【解答】解:(1)由函数图象可得,这次龙舟赛的全程是1000米,乙队先到达终点;(2)由图象可得,甲与乙相遇时,甲的速度是1000÷4=250(米/分钟),乙的速度是:(1000﹣400)÷(3.8﹣2.2)=600÷1.6=375(米/分钟),即甲与乙相遇时甲、乙的速度分别为250米/分钟、375米/分钟.15.甲、乙两人在同一平直的道路上同时、同起点、同方向出发,他们分别以不同的速度匀速跑步2400米(甲的速度大于乙的速度),当甲第一次超出乙600米时,甲停下来等候乙.甲、乙两人会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(秒)之间的关系图象如图所示,根据图象中提供的信息回答问题:(1)A点表示的是甲在600秒时,第一次超出乙600米;(2)乙出发1600s时到达终点,a=1000,b=1360;(3)甲乙出发150或900或1150或1500s相距150米.【解答】解:(1)点A表示甲在600秒时,第一次超出乙600米,故答案为:甲在600秒时,第一次超出乙600米;(2)由图形可得乙出发1600s时到达终点,∴乙的速度==1.5米/秒,∴甲的速度=+1.5=2.5秒,∴a==1000,∴b=﹣600+1000=1360,故答案为:1600,1000,1360;(2)刚出发时,=150s,甲在A地时,=900s,从A地出发后,1000+150=1150s,甲到终点后,=1500s,综上所述:甲乙出发150s或900s或1150s或1500s时,相距150米.故答案为:150或900或1150或1500.16.李老师周末骑自行车去郊游,如图是他离家的距离y(千米)与时间t(时)之间关系的函数图象,李老师9时离开家,15时到家,根据这个函数图象,请你回答下列问题:(1)到达离家最远的地方是12时,离家多远30千米.(2)他12时开始了第二次休息,在整个骑行过程中,一共休息了 1.5小时.(3)他从离家最远的地方回家用了多长时间?速度是多少?【解答】解:(1)由图象可得,到达离家最远的地方是12时,此时离家30千米,故答案为:12,30;(2)由图象可得,他12时开始了第二次休息,在整个骑行过程中,一共休息了(11﹣10.5)+(13﹣12)=1.5(小时),故答案为:12,1.5;(3)由图象可得,他从离家最远的地方回家用了15﹣13=2(小时),速度是30÷2=15(千米/小时),即他从离家最远的地方回家用了2小时,速度是15千米/小时.17.某小区美化工程中,在一段柏油路两侧铺设彩色方砖,施工队分成甲,乙两组分别在道路两侧施工,乙组比甲组晚施工一段时间.如图是甲,乙两组各自铺设的长度y(米)与甲组施工时间x(小时)之间的函数图象.根据图中信息,解答下列问题:(1)点C的坐标为(1,0);(2)求线段AB的解析式,并写出自变量x的取值范围,(3)当乙组铺设完成时,甲组还剩下多少米未铺完.【解答】解:(1)由图象可得,乙组的速度为:(200﹣50)÷(5﹣2)=50(米/小时),则乙组施工200米用的时间为:200÷50=4(小时),∴点C的横坐标为:5﹣4=1,∴点C的坐标为(1,0),故答案为:(1,0);(2)∵点C的坐标为(1,0),∴点A的坐标为(1,50),设线段AB的解析式为y=kx+b,∵线段AB过点A(1,50),点B(5.5,200),∴,解得,,即线段AB的解析式为y=x+(1≤x≤5.5);(3)当x=5时,y=×5+=,200﹣=(米),即当乙组铺设完成时,甲组还剩下米未铺完.18.已知甲、乙两车分别以各自的速度匀速从A地驶向B地,甲车比乙车早出发2h,并且甲车途中休息了0.5h,如图是甲、乙两车行驶的路程y(km)与时间x(h)的函数图象.(1)求图中m的值及A、B两地的距离;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)小明说:乙车行驶路程y(km)与时间x(h)的函数解析式为y=80x﹣160(2≤x ≤5.25).问:①小明的说法对吗?简要说明理由;②当乙车行驶多长时间时,两车恰好相距50km?【解答】解:(1)由题意得:m=1.5﹣0.5=1,A、B两地的距离为260km;(2)当0≤x≤1时设y与x之间的函数关系式为y=k1x,由题意可得:40=k1,∴y=40x,当1<x≤1.5时,y=40;当1.5<x≤7设y与x之间的函数关系式为y=k2x+b,由题意,得,解得,∴y=40x﹣20(1.5<x≤7),∴y=;(3)①小明的说法是对的,理由如下:设乙车行驶的路程y与时间x之间的解析式为y=k3x+b3,由题意,得,解得,∴y=80x﹣160(2≤x≤5.25),②当40x﹣20﹣50=80x﹣160时,解得:x=,当40x﹣20+50=80x﹣160时,解得:x=,当乙车行驶或小时时,两车恰好相距50km.题型5函数综合19.如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2).(1)求直线AC的表达式;(2)求△OAC的面积;(3)动点M在线段OA和射线AC上运动,是否存在点M,使△OMC的面积是△OAC的面积的?若存在,求出此时点M的坐标;若不存在,请说明理由.【解答】解:(1)设直线AC的解析式是y=kx+b,根据题意得:,解得:.则直线AC的解析式是:y=﹣x+6;(2)∵C(0,6),A(4,2),∴OC=6,=×6×4=12;∴S△OAC(3)设OA的解析式是y=mx,则4m=2,解得:m=.则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴M到y轴的距离是×4=1,∴点M的横坐标为1或﹣1;当M的横坐标是:1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=﹣x+6中,当x=﹣1时,y=7,则M的坐标是(﹣1,7).综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,7).20.如图,将直线l1:y=﹣2x向上平移b(b>0)个单位后得到直线l2,直线l2经过点P (1,2),与x轴、y轴分别相交于点A、B.(1)求直线l2的函数表达式;(2)求△AOB的面积.【解答】解:(1)将直线l1:y=﹣2x向上平移b(b>0)个单位后得到直线l2为:y=﹣2x+b,∵直线l2经过点P(1,2),∴2=﹣2+b,解得b=4,∴直线l2为:y=﹣2x+4;(2)令x=0,则y=4,∴B(0,4),令Y=0,则x=2,∴A(2,0),==4.∴S△AOB21.平面直角坐标系xOy内,一次函数y=2x﹣2经过点A(﹣1,m)和B(n,2).(1)求m,n的值;(2)求该直线与x轴的交点坐标.【解答】解:(1)当x=﹣1时,y=2×(﹣1)﹣2=﹣4,∴m=﹣4;当y=2时,2x﹣2=2,解得:x=2,∴n=2.(2)当y=0时,2x﹣2=0,解得:x=1,∴该直线与x轴的交点坐标为(1,0).22.已知一次函数y=﹣2x+4.(1)在如图所示平面直角坐标系中,画出该函数的图象;(2)若一次函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,求出A、B两点的坐标;(3)求△AOB的面积;(4)利用图象直接写出:当y≤0时,x的取值范围.【解答】解:(1)画出函数图象,如图所示;(2)当x=0时,y=﹣2×0+4=4,∴点B的坐标为(0,4);当y=0时,﹣2x+4=0,解得:x=2,∴点A的坐标为(2,0);=OA•OB=×2×4=4;(3)S△AOB(4)观察函数图象,可知:当y≤0时,x≥2.23.已知正比例函数y=kx图象经过点(4,﹣8).①求这个函数的解析式:②图象上两点A(x1,y1)、B(x2,y2),如果x1<x2,比较y1,y2的大小,【解答】解:①把(4,﹣8)代入y=kx得4k=﹣8,解得k=﹣2,所以正比例函数解析式为y=﹣2x;②因为k=﹣2<0,所以y随x的增大而减小,所以当x1<x2时,y1>y2.24.已知一次函数y=kx+b(k,b是常数,且k≠0)的图象过A(3,5)与B(﹣2,﹣5)两点.(1)求一次函数的解析式;(2)若点(a﹣3,﹣a)在该一次函数图象上,求a的值;(3)把y=kx+b的图象向下平移3个单位后得到新的一次函数图象,在图中画出新函数图象,并直接写出新函数图象对应的解析式.【解答】解:(1)∵一次函数y=kx+b(k,b是常数,且k≠0)的图象过A(3,5)与B (﹣2,﹣5)两点,∴,解得,即该一次函数的表达式是y=2x﹣1;(2)点(a﹣3,﹣a)在该一次函数y=2x﹣1的图象上,∴﹣a=2(a﹣3)﹣1,解得,a=,即a的值是;(3)把y=2x﹣1向下平移3个单位后可得:y=2x﹣1﹣3=2x﹣4,图象如图:25.如图,一次函数y=2x+b的图象与x轴交于点A(2,0),与y轴交于点B.(1)求b的值.=4,求点C坐标.(2)若直线AB上的点C在第一象限,且S△AOC【解答】解:(1)将A(2,0)代入直线y=2x+b中,得2×2+b=0解得b=﹣4;=4,点A(2,0),(2)∵S△AOC∴OA=2,∴•OA•y C=4,解得y C=4,把y=4代入y=2x﹣4得2x﹣4=4,解得x=4,∴C(4,4).26.已知一次函数的表达式是y=(m﹣4)x+12﹣4m(m为常数,且m≠4).(1)当图象与x轴交于点(2,0)时,求m的值;(2)当图象与y轴交点位于原点下方时,判定函数值y随着x的增大而变化的趋势;(3)在(2)的条件下,当函数值y随着自变量x的增大而减小时,求其中任意两条直线与y轴围成的三角形面积的取值范围.【解答】解:(1)将(2,0)代入y=(m﹣4)x+12﹣4m中,得2(m﹣4)+12﹣4m=0,解得,m=2;(2)∵图象与y轴交点位于原点下方,∴12﹣4m<0,∴m>3,∴当3<m<4时,有m﹣4<0,则函数y=(m﹣4)x+12﹣4m的函数值y随着x的增大而减小,当m>4时,有m﹣4>0,则函数y=(m﹣4)x+12﹣4m的函数值y随着x的增大而增大;(3)设3<m1<m2<4,则两直线y==(m1﹣4)x+12﹣4m1和直线y==(m2﹣4)x+12﹣4m2分别与y轴的交点坐标为M1(0,12﹣4m1)和M2(0,12﹣4m2),∴M1M2=4(m2﹣m1),∵直线y==(m1﹣4)x+12﹣4m1和直线y==(m2﹣4)x+12﹣4m2的交点坐标为N(4,﹣4),∴在(2)的条件下,当函数值y随着自变量x的增大而减小时,任意两条直线与y轴围成的三角形面积的为:S=,∵3<m1<m2<4,∴0<m2﹣m1<1,∴0<S<8,∴在(2)的条件下,当函数值y随着自变量x的增大而减小时,其中任意两条直线与y 轴围成的三角形面积的取值范围0<S<8.27.如图,在平面直角坐标系中,一次函数y=2x+2与x轴,y轴分别交于点A和B,一次函数y=﹣x+5与x轴,y轴分别交于点C和D,这两个函数图象交于点P.(1)求P点坐标;(2)求△PBC的面积;(3)设点E在x轴上,且与C,D构成等腰三角形,请直接写出所有符合条件的点E的坐标.【解答】解:(1)由得:,∴点P的坐标为(1,4);(2)∵一次函数y=2x+2与x轴,y轴分别交于点A和B,∴点A(﹣1,0),B(0,2),∴OA=1,OB=2,∵一次函数y=﹣x+5与x轴交于点C,∴点C(5,0),∴OC=5,∴AC=6,=S△P AC﹣S△ABC=﹣=6;∴S△PBC(3)∵一次函数y=﹣x+5与x轴,y轴分别交于点C和D,∴C(5,0),D(0,5),∴CD==5,当DE=CE时,E(0,0);当DE=DC时,E(﹣5,0);当DC=CE时,E(5+5,0)或(5﹣5,0),∴符合条件的点E的坐标为:(0,0)或(﹣5,0)或(5+5,0)或(5﹣5,0).28.如图,在平面直角坐标系中,一条直线经过A(1,1),B(3,﹣3),C(﹣2,m)三点.(1)求m的值;(2)设这条直线与y轴相交于点D,求△OCD的面积.【解答】解:(1)设直线的解析式为y=kx+b,把A(1,1),B(3,﹣3)代入,可得:,解得:,所以直线解析式为:y=﹣2x+3,把C(﹣2,m)代入y=﹣2x+3中,得:m=7;(2)令x=0,则y=3,所以直线与y轴的交点坐标为(0,3),由(1)得点C的坐标为(﹣2,7),所以△OCD的面积==3.。
源于名校,成就所托高中数学备课组教师班级学生日期上课时间学生情况:主课题:函数的综合应用教学目标:教学重点:教学难点:考点及考试要求:教学内容高考要求1在全面复习函数有关知识的基础上,进一步深刻理解函数的有关概念,全面把握各类函数的特征,提高运用基础知识解决问题的能力2掌握初等数学研究函数的方法,提高研究函数的能力,重视数形结合数学思想方法的运用和推理论证能力的培养3初步沟通函数与方程、不等式及解析几何有关知识的横向联系,提高综合运用知识解决问题的能力4树立函数思想,使学生善于用运动变化的观点分析问题知识点归纳函数的综合问题主要有如下几个方面:1函数的概念、性质和方法的综合问题;2函数与其它知识,如方程、不等式、数列的综合问题;3函数与解析几何的综合问题;4联系生活实际和生产实际的应用问题函数的综合复习是在系统复习函数有关知识的基础上进行函数的综合应用:在应用中深化基础知识在复习中基础知识经历一个由分散到系统,由单一到综合的发展过程这个过程不是一次完成的,而是螺旋式上升的因此要在应用深化基础知识的同时,使基础知识向深度和广度发展以数学知识为载体突出数学思想方法数学思想方法是观念性的东西,是解决数学问题的灵魂,同时它又离不开具体的数学知识函数内容最重要的数学思想是函数思想和数形结合的思想此外还应注意在解题中运用的分类讨论、换元等思想方法解较综合的数学问题要进行一系列等价转化或非等价转化因此本课题也十分重视转化的数学思想重视综合运用知识分析问题解决问题的能力和推理论证能力的培养函数是数学复习的开始,还不可能在大范围内综合运用知识但从复习开始就让学生树立综合运用知识解决问题的意识是十分重要的推理论证能力是学生的薄弱环节,近几年高考命题中加强对这方面的考查,尤其是对代数推理论证能力的考查是十分必要的重点是通过对问题的讲解与分析,使学生能较好的调动函数的基础知识解决问题,并在解决问题中深化对基础知识的理解,深化对函数思想、数形结合思想的理解与运用难点是函数思想的理解与运用,推理论证能力、综合运用知识解决问题能力的培养与提高精解名题例1 已知函数f(x),x∈F,那么集合{(x,y)|y=f(x),x∈F}∩{(x,y)|x=1}中所含元素的个数是()A0 B1 C0或1 D1或2分析:这里首先要识别集合语言,并能正确把集合语言转化成熟悉的语言从函数观点看,问题是求函数y=f(x),x∈F的图象与直线x=1的交点个数(这是一次数到形的转化),不少学生常误认为交点是1个,并说这是根据函数定义中“惟一确定”的规定得到的,这是不正确的,因为函数是由定义域、值域、对应法则三要素组成的这里给出了函数y=f(x)的定义域是F,但未明确给出1与F的关系,当1∈F时有1个交点,当1 F时没有交点,所以选C例2方程lgx+x=3的解所在区间为()A(0,1) B(1,2)x0321321oyxC (2,3)D (3,+∞)分析:在同一平面直角坐标系中,画出函数y=lgx 与y=-x+3的图象(如图2)它们的交点横坐标0x ,显然在区间(1,3)内,由此可排除A ,D 至于选B 还是选C ,由于画图精确性的限制,单凭直观就比较困难了实际上这是要比较0x 与2的大小当x=2时,lgx=lg2,3-x=1由于lg2<1,因此0x >2,从而判定0x ∈(2,3),故本题应选C说明:本题是通过构造函数用数形结合法求方程lgx+x=3解所在的区间数形结合,要在结合方面下功夫不仅要通过图象直观估计,而且还要计算0x 的邻近两个函数值,通过比较其大小进行判断例3 (1)一次函数f(x)=kx+h(k ≠0),若m <n 有f(m)>0,f(n)>0,则对于任意x ∈(m ,n)都有f(x)>0,试证明之;(2)试用上面结论证明下面的命题:若a ,b ,c ∈R 且|a|<1,|b|<1,|c|<1,则ab+bc+ca >-1分析:问题(1)实质上是要证明,一次函数f(x)=kx+h(k ≠0), x ∈(m , n)若区间两个端点的函数值均为正,则对于任意x ∈(m ,n)都有f(x)>0之所以具有上述性质是由于一次函数是单调的因此本问题的证明要从函数单调性入手(1)证明:当k >0时,函数f(x)=kx+h 在x ∈R 上是增函数,m <x <n ,f(x)>f(m)>0; 当k <0时,函数f(x)=kx+h 在x ∈R 上是减函数,m <x <n ,f(x)>f(n)>0所以对于任意x ∈(m ,n)都有f(x)>0成立(2)将ab+bc+ca+1写成(b+c)a+bc+1,构造函数f(x)=(b+c)x+bc+1则f(a)=(b+c)a+bc+1当b+c=0时,即b=-c , f(a)=bc+1=-c2+1因为|c|<1,所以f(a)=-c2+1>0当b+c ≠0时,f(x)=(b+c)x+bc+1为x 的一次函数因为|b|<1,|c|<1,f(1)=b+c+bc+1=(1+b)(1+c)>0, f(-1)=-b-c+bc+1=(1-b)(1-c)>0由问题(1)对于|a|<1的一切值f(a)>0,即(b+c)a+bc+1=ab+ac+bc+1>0说明:问题(2)的关键在于“转化”“构造”把证明ab+bc+ca >-1转化为证明ab+bc+ca+1>0, 由于式子ab+bc+ca+1中, a ,b ,c 是对称的,构造函数f(x)=(b+c)x+bc+1,则f(a)=(b+c)a+bc+1,问题转化为在|a|<1,|b|<1,|c|<1的条件下证明f(a)>0(也可构造 f(x)=(a+c)x+ac+1,证明f(b)>0)例4 假设国家收购某种农产品的价格是1.2元/kg ,其中征税标准为每100元征8元(叫做税率为8个百分点,即8%),计划可收购mkg 为了减轻农民负担,决定税率降低x 个百分点,预计收购可增加2x 个百分点(1)写出税收y (元)与x 的函数关系;(2)要使此项税收在税率调节后不低于原计划的78%,确定x 的取值范围解:(1)由题知,调节后税率为(8)%x -,预计可收购(12%)m x kg +,总金额为1.2(12%)m x +元 ∴231.2(12%)(8)%(40042)(08)12500m y m x x x x x =+-=--<≤(2)∵元计划税收1.28%m ⋅元,∴1.2(12%)(8)% 1.28%78%m x x m +-≥⋅⋅,得242880x x +-≤,442x -≤≤,又∵08x <≤, ∴x 的取值范围为02x <≤例5 某航天有限公司试制一种仅由金属A 和金属B 合成的合金,现已试制出这种合金400克,它的体积50立方厘米,已知金属A 的比重d 小于每立方厘米9克,大于每立方厘米8.8克;金属B 的比重约为每立方厘米7.2克(1)试用d 分别表示出此合金中金属A 、金属B 克数的函数关系式; (2)求已试制的合金中金属A 、金属B 克数的取值范围解:(1)此合金中含A 金属x 克、B 金属y 克, 则400507.2x y x yd +=⎧⎪⎨+=⎪⎩, 解得40(8.89)7.2d x d d =<<-,360(8)(8.89)7.2d y d d -=<<-(2)∵407.240(1)7.27.2dx d d ==+--在(8.8,9)上是减函数,∴200220x <<360(8)0.8360(1)7.27.2d y d d -==---在(8.8,9)上是增函数,180200y <<例6 已知函数∈++++=a a x a x x f (|2|lg )1()(2R ,且)2-≠a(I )若)(x f 能表示成一个奇函数)(x g 和一个偶函数)(x h 的和,求)()(x h x g 和的解析式; (II )命题P :函数)(x f 在区间),)1[(2+∞+a 上是增函数; 命题Q :函数)(x g 是减函数如果命题P 、Q 有且仅有一个是真命题,求a 的取值范围; (III )在(II )的条件下,比较2lg 3)2(-与f 的大小解:(1)),()(),()(),()()(x h x h x g x g x h x g x f =--=-+=).()()(x h x g x f +-=-∴ ⎪⎩⎪⎨⎧+++-=+-++++=+∴.|2|lg )1()()(|,2|lg )1()()(22a x a x x h x g a x a x x h x g 解得.|2|lg )(,)1()(2++=+=a x x h x a x g(2)|2|lg 4)1()21()(22+++-++=a a a x x f 函数 在区间),)1[(2+∞+a 上是增函数,,21)1(2+-≥+∴a a 解得.2231-≠-≤-≥a a a 且或又由函数x a x g )1()(+=是减函数,得.21,01-≠-<∴<+a a a 且∴命题P 为真的条件是:.2231-≠-≤-≥a a a 且或命题Q 为真的条件是:21-≠-<a a 且 又∵命题P 、Q 有且仅有一个是真命题,.23->∴a(2)由(1)得(2)2lg |2| 6.f a a =+++3,(2)2lg(2)62a f a a >-∴=+++ 又设函数010ln 212)(,6)2lg(2)(>++='+++=a a v a a a v∴函数)(a v 在区间),23[+∞-上为增函数又.2lg 3)2(),23()(,23,2lg 3)23(->->->∴-=-f v a v a v 即时当例7若f (x )在定义域(-1,1)内可导,且a x f 又当;0)(<'、0)1,1(=+-∈b a b 且时,()()0.f a f b +=解2(1)(1)0f m f m -+->解:0)(,)1,1()(<'-x f x f 且内可导在 )1,1()(-∴在x f 上为减函数又当b a ,0)()(,0),1,1(=+=+-∈b f a f b a 时 )()(),()(a f a f a f b f -=--=∴即 )1,1()(-∴在x f 上为奇函数)1()1(0)1()1(22m f m f m f m f -->-⇔>-+-∴2111111111)1()1(222<<∴⎪⎩⎪⎨⎧-<-<-<-<-<-⇔->-⇔m m m m m m f m f∴原不等式的解集为)2,1(例8 函数)(x f 的定义域为D :}0|{≠x x 且满足对于任意D x x ∈21,,有).()()(2121x f x f x x f +=⋅(Ⅰ)求)1(f 的值; (Ⅱ)判断)(x f 的奇偶性并证明;(Ⅲ)如果),0()(,3)62()13(,1)4(+∞≤-++=在且x f x f x f f 上是增函数,求x 的取值范围(Ⅰ)解:令.0)1(),1()1()11(,121=+=⨯==f f f f x x 解得有(Ⅱ)证明:令121,x x ==-[(1)(1)](1)(1),(1)0f f f f -⨯-=-+--=有解得令).()(),()1()(,121x f x f x f f x f x x x =-∴+-=-=-=有 ∴)(x f 为偶函数(Ⅲ).3)4()16()416(,2)4()4()44(=+=⨯=+=⨯f f f f f f ∴)64()]62)(13[(3)62()13(f x x f x f x f ≤-+≤-++即 (1) ∵),0()(+∞在x f 上是增函数, ∴(1)等价于不等式组:⎩⎨⎧≤-+-<-+⎩⎨⎧≤-+>-+.64)62)(13(,0)62)(13(,64)62)(13(,0)62)(13(x x x x x x x 或 ⎪⎩⎪⎨⎧∈<<-⎪⎪⎩⎪⎪⎨⎧≤≤--<>R x x x x x ,331,537,313或或 ∴.331313753<<--<≤-≤<x x x 或或 ∴x 的取值范围为}.533313137|{≤<<≤--<≤-x x x x 或或例9已知函数224, (0),()4 , (0).x x x xf x x x x x ⎧++>⎪⎪=⎨-+⎪-<⎪⎩(1) 求证: 函数()f x 是偶函数;(2) 判断函数()f x 分别在区间]2,0( 、),2[∞+ 上的单调性, 并加以证明; (3) 若121||4,1||4x x ≤≤≤≤, 求证: 12|()()|1f x f x -≤解: (1) 当0x >时, 0x <-,则224()()4(),()()x x x x f x f x x x ++---+=-=--24x x x++= ∴()()f x f x =- 当0x <时, 0x ->, 则224()()4(),()()x x x x f x f x xx -+-+-+=--=--24x x x-+=-,∴()()f x f x =-综上所述, 对于0x ≠, 都有()()f x f x =-, ∴函数()f x 是偶函数(2) 当0x >时, 244()1,x x f x x xx++==++设210x x >>, 则21211212()()(4)x x f x f x x x x x --=⋅-⋅当212x x >≥时, 21()()0f x f x ->; 当2120x x ≥>>时, 21()()0f x f x -<,∴函数()f x 在(0, 2]上是减函数, 函数()f x 在[2,)+∞上是增函数 (3)由(2)知, 当14x ≤≤时, 5()6f x ≤≤,又由(1)知, 函数()f x 是偶函数, ∴当1 || 4x ≤≤时, 6)x (f 5≤≤, ∴若11 || 4x ≤≤, 21 || 4x ≤≤, 则15()6f x ≤≤, 25()6f x ≤≤,∴121()()1f x f x -≤-≤, 即12|()()|1f x f x -≤例10已知函数)2lg(2)(),1lg()(t x x g x x f +=+=(t 为参数)(1)写出函数)(x f 的定义域和值域;(2)当]1,0[∈x 时,求函数)(x g 解析式中参数t 的取值范围; (3)当]1,0[∈x 时,如果)()(x g x f ≤,求参数t 的取值范围解:(1)函数)(x f 的定义域为),1(+∞-,值域为R(2)]1,0[,02∈>+x t x .0>∴t(3)当⇔⎩⎨⎧+≤+>+⇔≤≤≤tx x t x x g x f x 2102)()(,10时.)21()10(21max x x t x x x t -+≥⇔≤≤-+≥设,1,21,1,212-=≤≤+=-+=mx m x m x x U 则.281)41(222)1(2222++--=++-=--=∴m m m m m U当.1,)0(1max ===U x m 时 所以1t ≥巩固练习1对函数b ax x x f ++=23)(作代换x =g(t),则总不改变f (x )值域的代换是 ( )A t t g 21log)(= B t t g )21()(=C g(t)=(t -1)2D g(t)=cost2方程f (x ,y)=0的曲线如图所示,那么方程f (2-x ,y)=0的曲线是 ( )21-1-2o yxA21-1o yxB1-1-2o yxC21-1o yxD1-1-2o yx3已知命题p :函数)2(log25.0a x x y ++=的值域为R ,命题q :函数xa y )25(--=是减函数若p 或q 为真命题,p 且q 为假命题,则实数a 的取值范围是 A a ≤1 B a <2 C 1<a <2 D a ≤1或a ≥2 4方程lgx +x =3的解所在的区间为( )A (0,1)B (1,2)C (2,3)D (3,+∞)5如果函数f(x)=x 2+bx +c 对于任意实数t ,都有f(2+t)=f(2-t),那么( )A f(2)<f(1)<f(4)B f(1)<f(2)<f(4)C f(2)<f(4)<f(1)D f(4)<f(2)<f(1)6已知函数y =f(x)有反函数,则方程f(x)=a (a 是常数)( )A 有且仅有一个实根B 至多一个实根C 至少一个实根D 不同于以上结论7已知sin θ+cos θ=15,θ∈(π2,π),则tan θ的值是( )A -43 B -34 C 43 D 348已知等差数列的前n 项和为S n ,且p q S S =,则p q S +=____9关于x 的方程sin 2x +cosx +a =0有实根,则实数a 的取值范围是____10正六棱锥的体积为48,侧面与底面所成的角为45°,则此棱锥的侧面积为_________ 11 建造一个容积为8m 3,深为2m 的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,则水池的最低造价为_________12已知函数()f x 满足:()()()f a b f a f b +=⋅,(1)2f =,则2222(1)(2)(2)(4)(3)(6)(4)(8)(1)(3)(5)(7)f f f f f f f f f f f f +++++++=13已知,,a b c 为正整数,方程20ax bx c ++=的两实根为1212,()x x x x ≠,且12||1,||1x x <<,则a b c ++的最小值为_____________14设函数f(x)=lg(ax 2+2x+1)(1)若f(x)的定义域是R ,求实数a 的取值范围; (2)若f(x)的值域是R ,求实数a 的取值范围15设不等式2x -1>m(x 2-1)对满足|m|≤2的一切实数m 的取值都成立求x 的取值范围 16 设等差数列{a n }的前n 项的和为S n ,已知a 3=12,S 12>0,S 13<0①求公差d 的取值范围; ②指出S 1、S 2、…、S 12中哪一个值最大,并说明理由(1992年全国高考)17 如图,AB 是圆O 的直径,PA 垂直于圆O 所在平面,C 是圆周上任一点,设∠BAC =θ,PA =AB=2r ,求异面直线PB 和AC 的距离=2+3,又知顶点C 的对18 已知△ABC 三内角A 、B 、C 的大小成等差数列,且tanA ·tanCOPCBA边c 上的高等于43,求△ABC 的三边a 、b 、c 及三内角19 设f(x)=lg1243++xxa,如果当x ∈(-∞,1]时f(x)有意义,求实数a 的取值范围20已知偶函数f (x )=cos θsin x -sin(x -θ)+(tan θ-2)sin x -sin θ的最小值是0,求f (x )的最大值 及此时x 的集合21已知x R ∈,奇函数32()f x x ax bx c =--+在[1,)+∞上单调 (Ⅰ)求字母,,a b c 应满足的条件;(Ⅱ)设001,()1x f x ≥≥,且满足00[()]f f x x =,求证:00()f x x =参考答案1不改变f (x )值域,即不能缩小原函数定义域选项B ,C ,D 均缩小了()f x 的定义域,故选A2先作出f (x ,y)=0关于y 轴对称的函数的图象,即为函数f (-x ,y)=0的图象,又f (2-x ,y)=0即为((2),)0f x y --=,即由f (-x ,y)=0向右平移2个单位故选C3命题p 为真时,即真数部分能够取到大于零的所有实数,故二次函数22x x a ++的判别式440a ∆=-≥,从而1a ≤;命题q 为真时,5212a a ->⇒<若p 或q 为真命题,p 且q 为假命题,故p 和q 中只有一个是真命题,一个是假命题若p 为真,q 为假时,无解;若p 为假,q 为真时,结果为1<a <2, 故选C4图像法解方程,也可代入各区间的一个数(特值法或代入法),选C ; 5函数f(x)的对称轴为2,结合其单调性,选A ; 6从反面考虑,注意应用特例,选B ;7设tanθ2=x (x>0),则212x x++1122-+x x=15,解出x =2,再用万能公式,选A ;8利用S nn 是关于n 的一次函数,设S p =S q =m ,S p qp q ++=x ,则(m p,p )、(m q,q)、(x ,p+q)在同一直线上,由两点斜率相等解得x =0,则答案:0;9设cosx =t ,t ∈[-1,1],则a =t 2-t -1∈[-54,1],所以答案:[-54,1];10设高h ,由体积解出h =23,答案:246;11设长x ,则宽4x,造价y =4×120+4x ×80+16x×80≥1760,答案:176012运用条件知:(1)(1)()f n f f n +==2,且2222(1)(2)(2)(4)(3)(6)(4)(8)(1)(3)(5)(7)f f f f f f f f f f f f +++++++=2(2)2(4)2(6)2(8)(1)(3)(5)(7)f f f f f f f f +++=1613依题意可知21212400b ac b x x a c x x a⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩,从而可知12,(1,0)x x ∈-,所以有21240(1)01b ac f a b c c x x a ⎧⎪->⎪-=-+>⎨⎪⎪=<⎩24b ac b a c c a ⎧>⎪⇒<+⎨⎪<⎩,又,,a b c 为正整数,取1c =, 则1a b a b +>⇒≥,所以22444a b ac a a ≥>=⇒>,从而5a ≥,所以2420b ac >≥,又516b <+=,所以5b =, 因此a b c ++有最小值为11下面可证2c ≥时,3a ≥,从而2424b ac >≥,所以5b ≥, 又5a c b +>≥,所以6a c +≥,所以11a b c ++≥,综上可得:a b c ++的最小值为1114分析:这是有关函数定义域、值域的问题,题目是逆向给出的,解好本题要运用复合函数,把f(x)分解为u=ax 2+2x+1和y=lgu 并结合其图象性质求解解:(1)2()lg(21)f x ax x =++的定义域是R 2210u ax x ⇔=++>对一切实数x 恒成立因为a=0或a <0不合题意,所以00a >⎧⎨∆<⎩,解得a >1(2)2()lg(21)f x ax x =++的值域是R 221u ax x ⇔=++能取遍一切正实数当a <0时不合题意;当a=0时,u=2x+1,u 能取遍一切正实数;当a >0时,其判别式Δ=22-4×a ×1≥0,解得0<a ≤1所以当0≤a ≤1时f(x)的值域是R15分析:此问题由于常见的思维定势,易把它看成关于x 的不等式讨论然而,若变换一个角度以m 为变量,即关于m 的一次不等式(x 2-1)m -(2x -1)<0在[-2,2]上恒成立的问题对此的研究,设f(m)=(x 2-1)m -(2x -1),则问题转化为求一次函数(或常数函数)f(m)的值在[-2,2]内恒为负值时参数x 应该满足的条件f f ()()2020<-<⎧⎨⎩ 解:问题可变成关于m 的一次不等式:(x 2-1)m -(2x -1)<0在[-2,2] 恒成立,设f(m)=(x 2-1)m -(2x-1), 则 f x x f x x ()()()()()()22121022121022=---<-=----<⎧⎨⎪⎩⎪ 解得x ∈(712-,312+)说明 本题的关键是变换角度,以参数m 作为自变量而构造函数式,不等式问题变成函数在闭区间上的值域问题本题有别于关于x 的不等式2x -1>m(x 2-1)的解集是[-2,2]时求m 的值、关于x 的不等式2x -1>m(x 2-1)在[-2,2]上恒成立时求m 的范围一般地,在一个含有多个变量的数学问题中,确定合适的变量和参数,从而揭示函数关系,使问题更明朗化或者含有参数的函数中,将函数自变量作为参数,而参数作为函数,更具有灵活性,从而巧妙地解决有关问题16分析: ①问利用公式a n 与S n 建立不等式,容易求解d 的范围;②问利用S n 是n 的二次函数,将S n 中哪一个值最大,变成求二次函数中n 为何值时S n 取最大值的函数最值问题解:① 由a 3=a 1+2d =12,得到a 1=12-2d ,所以 S 12=12a 1+66d =12(12-2d)+66d =144+42d>0, S 13=13a 1+78d =13(12-2d)+78d =156+52d<0解得:-247<d<-3② S n =na 1+12n(n1-1)d =n(12-2d)+12n(n -1)d=d 2[n -12(5-24d)]2-d 2[12(5-24d)]2因为d<0,故[n -12(5-24d)]2最小时,S n 最大由-247<d<-3得6<12(5-24d )<65,故正整数n =6时[n -12(5-24d)]2最小,所以S 6最大说明: 数列的通项公式及前n 项和公式实质上是定义在自然数集上的函数,因此可利用函数思想来分析或用函数方法来解决数列问题也可以利用方程的思想,设出未知的量,建立等式关系即方程,将问题进行算式化,从而简洁明快由次可见,利用函数与方程的思想来解决问题,要求灵活地运用、巧妙的结合,发展了学生思维品质的深刻性、独创性本题的另一种思路是寻求a n >0、a n +1<0 ,即:由d<0知道a 1>a 2>…>a 13,由S 13=13a 7<0得a 7<0,由S 12=6(a 6+a 7)>0得a 6>0所以,在S 1、S 2、…、S 12中,S 6的值最大17分析:异面直线PB 和AC 的距离可看成求直线PB 上任意一点到AC 的距离的最小值,从而设定变量,建立目标函数而求函数最小值解:在PB 上任取一点M ,作MD ⊥AC 于D ,MH ⊥AB 于H , 设MH =x ,则MH ⊥平面ABC ,AC ⊥HD∴MD 2=x 2+[(2r -x)sin θ]2=(sin 2+1)x 2-4rsin 2θx +4r 2sin 2θ =(sin 2θ+1)[x -2122r sin sin θθ+]2+41222r sin sin θθ+即当x =2122r sin sin θθ+时,MD 取最小值212r sin sin θθ+为两异面直线的距离说明:本题巧在将立体几何中“异面直线的距离”变成“求异面直线上两点之间距离的最小值”,并设立合适的变量将问题变成代数中的“函数问题”一般地,对于求最大值、最小值的实际问题,先将文字说明转化成数学语言后,再建立数学模型和函数关系式,然后利用函数性质、重要不等式和有关知识进行解答比如再现性题组第8题就是典型的例子18分析:已知了一个积式,考虑能否由其它已知得到一个和式,再用方程思想求解 解: 由A 、B 、C 成等差数列,可得B =60°;由△ABC 中tanA +tanB +tanC =tanA ·tanB ·tanC ,得tanA +tanC =tanB(tanA ·tanC -1)=3 (1+3) 设tanA 、tanC 是方程x 2-(3+3)x +2+3=0的两根, 解得x 1=1,x 2=2+3设A<C ,则tanA =1,tanC =2+3,∴A =π4,C =512π由此容易得到a =8,b =46,c =43+4说明:本题的解答关键是利用“△ABC 中tanA +tanB +tanC =tanA ·tanB ·tanC ”这一条性质得到tanA +tanC ,从而设立方程求出tanA 和tanC 的值,使问题得到解决H DMOPCBA19分析:当x ∈(-∞,1]时f(x)=lg1243++x xa有意义的函数问题,转化为1+2x +4x a>0在x ∈(-∞,1]上恒成立的不等式问题解:由题设可知,不等式1+2x +4x a>0在x ∈(-∞,1]上恒成立,即:(12)2x +(12)x +a>0在x ∈(-∞,1]上恒成立设t =(12)x , 则t ≥12,又设g(t)=t 2+t +a ,其对称轴为t =-12∴ t 2+t +a =0在[12,+∞)上无实根,即 g(12)=(12)2+12+a>0,得a>-34所以a 的取值范围是a>-34说明:对于不等式恒成立,引入新的参数化简了不等式后,构造二次函数利用函数的图像和单调性进行解决问题,其中也联系到了方程无解,体现了方程思想和函数思想一般地,我们在解题中要抓住二次函数及图像、二次不等式、二次方程三者之间的紧密联系,将问题进行相互转化在解决不等式(12)2x +(12)x +a>0在x ∈(-∞,1]上恒成立的问题时,也可使用“分离参数法”: 设t =(12)x , t ≥12,则有a =-t 2-t ∈(-∞,-34],所以a 的取值范围是a>-34其中最后得到a 的范围,是利用了二次函数在某区间上值域的研究,也可属应用“函数思想”20解:f (x )=cos θsin x -(sin x cos θ-cos x sin θ)+(tan θ-2)sin x -sin θ =sin θcos x +(tan θ-2)sin x -sin θ因为f (x )是偶函数,所以对任意x ∈R ,都有f (-x )=f (x ),即sin θcos(-x )+(tan θ-2)sin(-x )-sin θ=sin θcos x +(tan θ-2)sin x -sin θ, 即(tan θ-2)sin x =0, 所以tan θ=2由22sin cos 1,sin 2,cos θθθθ⎧+=⎪⎨=⎪⎩解得⎪⎪⎩⎪⎪⎨⎧==;,55cos 552sin θθ或⎪⎪⎩⎪⎪⎨⎧-=-=.55cos 552sin θθ,此时,f (x )=sin θ(cos x -1)当sin θ=552时,f (x )=552(cos x -1)最大值为0,不合题意最小值为0,舍去;当sin θ=552-时,f (x )=552-(cos x -1)最小值为0,当cos x =-1时,f (x )有最大值为554,自变量x 的集合为{x |x =2k π+π,k ∈Z }21解:(1)(0)00f c =⇒= ;()()00f x f x a +-=⇒=2'()3f x x b =- ,若()f x [1,)x ∈+∞上是增函数,则'()0f x ≥恒成立,即2min (3)3b x ≤= 若()f x [1,)x ∈+∞上是减函数,则'()0f x ≤恒成立,这样的b 不存在综上可得:0,3a c b ==≤(2)(证法一)设0()f x m =,由00[()]f f x x =得0()f m x =,于是有30030 (1) (2)x bx m m bm x ⎧-=⎪⎨-=⎪⎩,(1)-(2)得:33000()()x m b x m m x ---=-,化简可得22000()(1)0x m x mx m b -+++-=,001,()1x f x m ≥=≥ ,22001410x mx m b b ∴+++-≥-≥>,故00x m -=,即有00()f x x =(证法二)假设00()f x x ≠,不妨设00()1f x a x =>≥,由(1)可知()f x 在[1,)+∞上单调递增,故000[()]()()f f x f a f x x =>>,这与已知00[()]f f x x =矛盾,故原假设不成立,即有00()f x x =。