磨削加工
- 格式:docx
- 大小:23.11 KB
- 文档页数:4
问:什么是磨削加工?
答:在百科上磨削的定义为:磨削是指用磨料,磨具切除工件上多余材料的加工方法。
磨削加工是应用较为广泛的切削加工方法之一,他隶属于机械加工中的精加工,加工量少、精度高。
此外还有关于磨削加工的其他定义:磨削加工是借助磨具的切削作用,除去工件表面的多余层,使工件表面质量达到预定要求的加工方法。
磨削加工的特点总结如下:
(1)加工余量少,加工精度高;
(2)磨削加工范围广;
(3)磨削速度高、耗能多,切削效率低,磨削温度高,工件表面易产生烧伤、残余应力等缺陷。
(4)砂轮有一定的自锐性等。
在磨削过程中,磨具的选用是十分重要的,磨具包括砂轮、砂带。
砂轮的选择要考虑到砂轮的磨料、砂轮硬度、磨料粒度、砂轮的结合剂、砂轮的组织等。
磨削分为三个阶段:
1、初磨阶段:由于工艺系统弹性变形,实际磨削深度小于进给量。
2、稳磨阶段:实际磨削深度等于进给量。
3、光磨阶段:进给停止,由于工艺系统弹性恢复,实际磨削深度并不为零,增加磨削次数,磨削深度逐渐趋于零,工件的精度和表面质量逐渐提高。
常见的磨削加工形式通常有:外圆磨削、内圆磨削、无心磨削、螺纹磨削、工件平型表面的磨削、成形面磨削等。
下图为万能磨床外观图:。
磨削加工1. 简介磨削加工是一种常见的金属加工方法,通过使用磨料对工件表面进行摩擦磨损,以达到加工的目的。
它可以用于改善工件表面质量、调整尺寸精度和形状精度,以及去除杂质和残余应力等。
磨削加工广泛应用于机械制造、航空航天、汽车制造、模具制造等领域。
2. 磨削原理磨削加工是利用切削性能较差的材料(磨料)对工件进行切削,通过与工件表面的相对运动来实现切削作用。
其主要原理包括以下几个方面:•切削颗粒:磨料是由硬度较高的颗粒组成,通常为氧化铝、碳化硅等材料。
这些颗粒与工件表面摩擦产生很高的切向力,从而实现切削作用。
•切向力:当磨料与工件表面接触时,由于相对运动产生了摩擦力,使得磨料在切向方向上产生了切削力。
这种力对工件表面进行了切削作用。
•磨屑形成:在磨削过程中,磨料与工件表面的摩擦力和切向力使得工件表面的材料被切削下来,形成了磨屑。
这些磨屑会随着磨料的运动带走,并通过冷却液进行排出。
•热效应:由于切削过程中的摩擦力和切向力,会产生较高的温度。
为了避免温度过高引起工件变形或损坏,通常需要使用冷却液进行冷却。
3. 磨削方法根据加工目标和工件材料的不同,磨削加工可以采用多种方法。
下面介绍几种常见的磨削方法:3.1 平面磨削平面磨削是最基本、最常用的磨削方法之一。
它主要用于对平面工件进行加工,如平面零件、平底孔等。
平面磨削通常采用平面砂轮进行加工,通过对工件表面进行连续的摩擦来实现加工效果。
在平面磨削过程中,需要注意保持磨削面与砂轮之间的良好接触,以确保加工质量。
3.2 内圆磨削内圆磨削是用于加工孔内表面的一种方法。
它通常使用内圆砂轮进行加工,通过对孔内表面进行旋转磨削来实现加工效果。
在内圆磨削过程中,需要注意选择合适的砂轮尺寸和形状,并控制好加工参数,以确保加工质量。
3.3 外圆磨削外圆磨削是用于加工轴类零件外表面的一种方法。
它通常使用外圆砂轮进行加工,通过对零件外表面进行旋转磨削来实现加工效果。
在外圆磨削过程中,同样需要注意选择合适的砂轮尺寸和形状,并控制好加工参数。
磨削加工的概念
磨削加工是一种通过将磨削工具与工件表面接触并施加压力和运动来去除材料,使其达到所需的形状和尺寸的加工方法。
它通过在磨削工具与工件之间的相互磨擦作用下,去除工件上的材料,实现精确加工和表面质量的提高。
磨削加工常用于对硬脆材料(如金属、陶瓷、玻璃等)的加工,特别是对精密零件的加工和表面质量要求较高的工艺中。
它能够实现高精度、高度重复性和高表面质量的加工。
磨削过程一般需要使用磨削机床和磨料,磨削机床通过驱动磨削工具的转动或线性运动,使其与工件表面接触并产生相对运动。
磨料则是用于磨削的工具,一般为具有较高硬度和较好耐磨性的磨料颗粒,磨削时通过与工件表面的相互磨擦来去除材料。
磨削加工的优点包括可以实现高精度和高质量的加工、适用于各种材料和形状的工件、加工过程稳定等。
然而,磨削加工也存在一些缺点,如加工效率低、成本较高、对操作人员技术要求高等。
因此,在实际应用中需要根据具体情况来选择是否采用磨削加工。
磨削加工一.磨削的起源、发展及磨削的特点:1.磨削加工是利用磨料去除材料的加工方法。
用磨料去除材料的加工是人类最早使用的生产技艺方法。
远在石器时代,以开始使用磨料研磨加工各种贝壳、石头、及兽骨等,用于生活和狩猎工具。
青铜器出现以后磨削加工技术得到了进一步的发展,用来制造兵器和及生产工具,用磨料研磨铜镜已达到镜面的要求。
铁器的出现,使磨料加工成为一种普遍的工艺技巧得到应用。
2.磨削加工的特点:(1)磨削速度高磨削时砂轮具有较高的线速度。
一般在35m/s左右,高速磨削线速度可达40m/s、最高可达50m/s以上。
阿享工科大学(Aachen),进行砂轮线速度500m/s为目标的超高速磨削实验,一般认为告诉磨削工艺不适于加工大平面或圆柱型表面的精加工,主要用于沟槽和缺口件的磨削及切入磨削。
(2)能达到较高的加工精度和很低的表面粗糙度例如:车床上能达到的精度等级为IT7~10级。
普通的磨削可达到IT5~7级、表面粗糙度可达到Ra0.2~0.8um。
镜面磨削Ra0.01um,工件表面光如镜面尺寸精度和形状精度可达1um以内,其误差相当于一个人头发丝粗细的1/70或更小。
(头发丝的直径一般在0.06mm左右)IT为国家精度等级标准,共分20级。
IT01级、IT0级、IT1级、IT2级……IT18级。
(3)可磨削高硬材料,又可以磨削软材料。
磨粒是一种高硬度的非金属晶体。
它不但可以磨削铜、铝等较软的材料,又可以磨削各种淬硬钢、高速钢刀具和硬质合金等及一些超硬材料。
(如氮化硅)例:可磨削车刀、铣刀。
一般认为当硬度超过HRC40以上,普通的车、铣就无法进行加工。
(4)磨削是一种少切屑的加工例:车床上初加工是的进给量可以是3~5mm,而磨床上一般为0.02mm。
高精度镜面磨削一般为0.02mm的1/4左右。
二.磨床产生、现状及发展趋势18世纪中期出现了第一台外圆磨床,有石英石、石榴石等天然磨料敲凿成磨具,进而用天然磨料和粘土烧结成砂轮,随后又研制成功平面磨床,应用磨削技术形成。
磨削加工1. 磨削加工的概述磨削加工是一种通过研磨工具对工件表面进行切削的加工方法。
它通过切削工具与工件之间的相对运动,在切削、研磨和磨痕的共同作用下,将工件表面不平整层次的高点消除,从而得到平整、光滑的表面。
2. 磨削加工的原理磨削加工的原理是力学切削。
在磨削过程中,磨粒对工件表面的切削作用类似于多个微小切削刃对工件表面的切削作用,因此磨削可以看成是由许多微小切削刃共同作用的切削过程。
3. 磨削加工的分类磨削加工根据磨粒的尺寸和磨粒与工件之间的相对运动情况可以分为不同的类型,主要包括:3.1 粗磨粗磨是指在切削速度较低、磨粒尺寸较大的条件下进行的磨削加工,主要目的是迅速去除工件表面的大量金属,使其达到一定的粗糙度,为后续磨削过程提供条件。
3.2 精磨精磨是指在切削速度适中、磨粒尺寸适当的条件下进行的磨削加工,主要目的是进一步消除工件表面的细小凹坑和凸起,提高工件表面的精度和光洁度。
3.3 超精磨超精磨是指在切削速度较高、磨粒尺寸小的条件下进行的磨削加工,主要用于加工高精度、高光洁度的工件,以提高工件表面的质量。
4. 磨削加工的过程磨削加工通常包括以下几个基本工序:4.1 磨削前准备在进行磨削加工之前,需要对磨削工具进行选择和准备,包括选用合适的磨粒、绑定磨料和磨具、选择适当的磨削液等。
4.2 磨削磨削是磨削加工的核心过程,主要包括以下几个步骤:固定工件,调整磨削参数,启动磨削机床,进行磨削操作。
4.3 表面质量检测在磨削加工完成后,需要对工件表面的质量进行检测。
常用的表面质量检测方法有视觉检测、触觉检测和测量仪器检测等。
4.4 后续处理在完成磨削加工后,还需要进行一些后续处理工序,例如清洗工件、除去残留物和保护处理等,以确保工件表面的质量和性能满足要求。
5. 磨削加工的优点和局限性磨削加工具有以下优点:•可加工具有复杂形状的工件•可加工高硬度材料•可获得高精度的加工结果•可提高工件表面的质量和光洁度然而,磨削加工也存在一些局限性:•生产效率低,加工速度较慢•工艺过程较为复杂,需要一定的技术和经验•磨具和磨料的消耗较大,成本较高6. 磨削加工的应用领域磨削加工在各个制造行业中都得到广泛应用,特别是对高精度、高光洁度的工件加工需求较高的领域,例如:•汽车制造业:发动机缸体、曲轴等零部件的加工•刀具制造业:高精度刀具的生产加工•航空航天业:航空发动机叶片、轴承等零部件的加工•电子制造业:半导体芯片、磁头等精密元件的加工7. 磨削加工的未来发展趋势随着制造技术和加工要求的不断提高,磨削加工也在不断发展和改进。
磨削加工工艺简介磨削是指利用高速旋转的砂轮等磨具加工工件表面的切削加工方法。
磨削的主运动是砂轮的循转运动,进给运动是工件随工作台的移动(或砂轮的移动)。
磨削加工方法的形式很多,生产中主要是指用砂轮进行磨削,为了便于使用和管理,通常根据磨床产品的磨削加工形式及其加工对象,将磨削加工方法划为四种方式:1、按磨削精度分粗磨、半精磨、精磨、镜面磨削、超精加工。
2、按进给形式分切入磨削、纵向磨削、缓进给磨削、无进给磨削、定压研磨、定量研磨。
3、按磨削形式分砂带磨削、无心磨削、端面磨削、周边磨削、宽砂轮磨削、成型磨削、仿形磨削、振荡磨削、高速磨削、强力磨削、恒压力磨削、手动磨削、干磨削、湿磨削、研磨、珩磨等。
4、按加工表面分外圆磨削、内圆磨削、平面磨削和刃磨(齿轮磨削和螺纹磨削)。
工艺特点磨削与其他切削加工方式,如车削、铣削、刨削等比较,具有以下特点:1、磨削速度很高,每秒可达30m~50m;磨削温度较高,可达1000℃~1500℃;磨削过程历时很短,只有万分之一秒左右。
2、磨削加工可以获得较高的加工精度和很小的表面粗糙度值。
3、磨削不但可以加工软材料,如未淬火钢、铸铁等,而且还可以加工淬火钢及其他刀具不能加工的硬质材料,如瓷件、硬质合金等。
4、磨削时的切削深度很小,在一次行程中所能切除的金属层很薄。
5、当磨削加工时,从砂轮上飞出大量细的磨屑,而从工件上飞溅出大量的金属屑。
磨屑和金属屑都会使操作者的眼部遭受危害,尘未吸入肺部也会对身体有害。
6、由于砂轮质量不良、保管不善、规格型号选择不当、安装出现偏心,或给进速度过大等原因,磨削时可能造成砂轮的碎裂,从而导致工人遭受严重的伤害。
7、在靠近转动的砂轮进行手工操作时,如磨工具、清洁工件或砂轮修正方法不正确时,工人的手可能碰到砂轮或磨床的其他运动部件而受到伤害。
8、磨削加工时产生的噪音最高可达110dB以上,如不采取降低噪声措施,也会影响健康。
应用范围磨削用于加工各种工件的内外圆柱面、圆锥面和平面,以及螺纹、齿轮和花键等特殊、复杂的成形表面。
机械制造技术–磨削加工概述简介磨削加工是机械制造中常用的一种加工方法。
通过磨削将工件的表面剥离,实现工件的加工精度提高和表面质量改善。
磨削加工通常用于硬度较高、形状复杂、精度要求较高的工件加工,如汽车发动机曲轴、齿轮、精密模具等。
磨削加工的原理磨削加工的原理是利用磨削颗粒的高速旋转和工件的间隙之间的相互作用力,使工件表面颗粒被剥离。
磨削加工主要应用砂轮作为磨削工具,通过磨削工具和工件之间的相对运动,实现对工件表面的切削。
砂轮的分类砂轮是磨削加工中常用的磨削工具,根据不同的磨削任务和工件材料,砂轮可以分为不同的类型,包括磨削砂轮、抛光砂轮、磨床砂轮等。
砂轮的选择不仅取决于工件的材料和形状,还取决于磨削的精度要求和表面质量要求。
砂轮的组成和结构砂轮通常由磨削颗粒、结合剂和孔隙三个部分组成。
砂轮的磨削颗粒可以是石英、氧化铝等硬质颗粒,结合剂可以是陶瓷、橡胶、金属等材料,孔隙可以提高砂轮的散热性能和剥离颗粒的能力。
砂轮的结构可以分为两种类型:单层结构和多层结构。
单层结构的砂轮由一层磨削颗粒和结合剂构成,适用于较粗糙的磨削。
多层结构的砂轮由多层磨削颗粒和结合剂构成,适用于较精细的磨削。
磨削加工的过程磨削加工通常包括粗磨、半精磨和精磨三个阶段。
在粗磨阶段,砂轮的颗粒与工件表面进行大范围的剥离,以消除工件的毛刺和大尺寸误差。
在半精磨阶段,砂轮的颗粒与工件表面进行中等范围的剥离,以改善工件的表面质量和减小尺寸误差。
在精磨阶段,砂轮的颗粒与工件表面进行微小范围的剥离,以获得工件的高精度和高表面质量。
磨削加工的优点和局限性磨削加工具有以下优点:1.可以实现高精度和高表面质量的加工。
2.可以加工复杂形状和高硬度的工件。
3.可以控制加工过程中的温度和应变。
然而,磨削加工也有一些局限性:1.加工效率低,加工速度慢。
2.磨削过程中产生的热量和应力可能会导致工件表面的损伤和变形。
3.砂轮的磨损较快,需要经常更换。
磨削加工的应用磨削加工广泛应用于各个行业,特别是需要高精度和高表面质量的领域。
磨削加工
一、磨削特点
磨削是在磨床上用砂轮作为切削刀具对工件进行切削加工的方法。
该方法的特点是:
1.由于砂轮磨粒本身具有很高的硬度和耐热性,因此磨削能加工硬度很高的材料,如淬硬的钢、硬质合金等。
2.砂轮和磨床特性决定了磨削工艺系统能作均匀的微量切削,一般
ap=0.001~0.005mm;磨削速度很高,一般可达v=30~50m/s;磨床刚度好;采用液压传动,因此磨削能经济地获得高的加工精度(IT6~IT5)和小的表面粗糙度(Ra=0.8~0.2μm)。
磨削是零件精加工的主要方法之一。
3.由于剧烈的磨擦,而使磨削区温度很高。
这会造成工件产生应力和变形,甚至造成工件表面烧伤。
因此磨削时必须注入大量冷却液,以降低磨削温度。
冷却液还可起排屑和润滑作用。
4.磨削时的径向力很大。
这会造成机床—砂轮—工件系统的弹性退让,使实际切深小于名义切深。
因此磨削将要完成时,应不进刀进行光磨,以消除误差。
5.磨粒磨钝后,磨削力也随之增大、致使磨粒破碎或脱落,重新露出锋利的刃口,此特性称为“自锐性”。
自锐性使磨削在一定时间内能正常进行,但超过一定工作时间后,应进行人工修整,以免磨削力增大引起振动、噪声及损伤工件表面质量。
二、砂轮
砂轮是磨削的切削工具,它由许多细小而坚硬的磨粒和结合剂粘而成的多孔物体。
磨粒直接担负着切削工作,必须锋利并具有高的硬度,耐热性和一定的韧性。
常用的磨料有氧化铝(又称刚玉)和碳化硅两种。
氧化铝类磨料硬度高、韧性好,适合磨削钢料。
碳化硅类磨料硬度更高、更锋利、导热性好,但较脆,适合磨削铸铁和硬质合金。
同样磨料的砂轮,由于其粗细不同,工件加工后的表面粗糙度和加工效率就不相同,磨粒粗大的用于粗磨,磨粒细小的适合精磨、磨料愈粗,粒度号愈小。
结合剂起粘结磨料的作用。
常用的是陶瓷结合剂,其次是树脂结合剂。
结合剂选料不同,影响砂轮的耐蚀性、强度、耐热性和韧性等。
磨粒粘结愈牢,就愈不容易从砂轮上掉下来,就称砂轮的硬度,即砂轮的硬度是指砂轮表面的磨粒在外力作用下脱落的难易程度。
容易脱落称为软,反之称为硬。
砂轮的硬度与磨料的硬度是两个不同的概念。
被磨削工件的表面较软,磨粒的刃口(棱角)就不易磨损,这样磨粒使用的时间可以长些,也就是说可选粘接牢固些的砂轮(硬度较高的砂轮)。
反之,硬度低的砂轮适合磨削硬度高的工件。
砂轮在高速条件下工作,为了保证安全,在安装前应进行检查,不应有裂纹等缺陷;为了使砂轮工作平稳,使用前应进行动平衡试验。
砂轮工作一定时间后,其表面空隙会被磨屑堵塞,磨料的锐角会磨钝,原有的几何形状会失真。
因此必须修整以恢复切削能力和正确的几何形状。
砂轮需用金刚石笔进行修整。
三、平面磨床的结构与磨削运动
磨床的种类很多,主要有平面磨床、外圆磨床、内圆磨床、万能外圆磨床(也可磨内孔)、齿轮磨床、螺纹磨床,导轨磨床、无心磨床(磨外圆)和工具磨床(磨刀具)等。
这里介绍平面磨床及其运动。
1.平面磨床的结构(以M7120A为例,其中:M——磨床类机床;71——卧轴矩台式平面磨床;20——工作台面宽度为200mm;A——第一次重大改进。
)
1)砂轮架——安装砂轮并带动砂轮作高速旋转,砂轮架可沿滑座的燕尾导轨作手动或液动的横向间隙运动。
2)滑座——安装砂轮架并带动砂轮架沿立柱导轨作上下运动。
3)立柱——支承滑座及砂轮架。
4)工作台——安装工件并由液压系统驱动作往复直线运动。
5)床身——支承工作台、安装其它部件。
6)冷却液系统——向磨削区提供冷却液(皂化油)。
7)液压传动系统——其组成有:
(1)动力元件——为油泵,供给液压传动系统压力油;(2)执行元件——为油缸,带动工作台等部件运动;(3)控制元件——为各种阀,控制压力、速度、方向等;(4)辅助元件——如油箱、压力表等。
液压传动与机械传动相比具有传动平稳,能过载保护,可以在较大范围实现无级调速等优点。
2.平面磨削运动
1)主运动——砂轮的高速旋转运动。
2)进给运动
(1)纵向进给——工作台带动工件的往复直线运动;(2)垂直进给——砂轮向工件深度方向的移动;
(3)横向进给——砂轮沿其轴线的间隙运动。
四、平面磨削工艺
1.工件装夹
平面磨削时,对于铁磁性工件多利用电磁吸盘将工件吸住,这样装夹比较方便。
当磨削尺寸较小零件时,由于工件与工作台接触面积小,吸力弱,容易被磨削力弹出造成事故,所以当夹这类工件时,需在工件四击或左右两端用挡铁周住,以防工件移动。
对于非铁磁性工件如铜、铝及其合金等用其他的夹具(如平口钳)等装夹好后,装在工作台或电磁吸盘上进行磨削加工。
2.磨削方法
磨削平面,一般以一个平面为定位基准,磨削另一个平面,如果两个平面都要求磨削时,可互为基准反复磨削。
平面磨削方法有两种,一种是端磨法,
用砂轮的端面进行磨削,因其接触面大,易发热,且冷却液难以浇到工件易发热变形,因而磨削精度较低,但生产率较高。
另一种是周磨法。
刚好和端磨法相反,它的磨削效率较低,但加工精度较高。
3.平面磨削操作
首先把台面与工件擦干净,测量工件厚度,放上工件,开启电磁吸盘吸住工件,推位一下工作,以检查工件是否被吸住。
开启液压系统,初步调整工作台行程大小与位置,工作台行程长度由工作台两侧的挡块控制,工作台的运动速度由节流阀来调节。
然后对刀,对刀前砂轮底部应该高于工件表面,逐渐进刀,当擦着有火花产生时,即开冷却液,此时垂直进给手传输线刻度即为零位。
然后调整好工作台与砂轮架的行程大小与位置。
调整时运动速度应该低,以免捶缸。
调整完后即可磨削。
根据需要调整进给速度。
磨削中可停机,以较精确检查尺寸。
磨削将近结束时,垂直进给量要小,甚至不进给进行光磨,以保证磨削精度。
磨完后退磁取下工件。
操作时,人应站在机床右边,预防工件,砂轮碎片等飞出伤人。
关机时,工作台应停在中心位置,砂轮架在工作台的后部,并擦拭干净。