中考复习微专题----辅助圆问题及题例(二)
- 格式:pptx
- 大小:579.15 KB
- 文档页数:10
九年级数学尖子生辅导提升辅助圆问题考点一:共顶点等线段问题1. 如图1,在直角梯形ABCD 中90,3,4,6DAB ABC AD AB BC ∠=∠=︒===,点E 是线段AB 上一动点,将EBC ∆沿CE 翻折到EB C '∆,连结,B D B A ''.当点E 在AB 上运动时,分别求,,B D B A B D B A ''''+的最小值.2. 在ABC △中,BA BC BAC =∠=α,,M 是AC 的中点,P 是线段BM 上的动点,将线段PA 绕点P 顺时针旋转2α得到线段PQ .⑴ 若α=60︒且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出CDB ∠的度数;⑵ 在图2中,点P 不与点B M ,重合,线段CQ 的延长线与射线BM 交于点D , 猜想CDB ∠的大小(用含α的代数式表示),并加以证明;3. 已知:AOB △中,2AB OB ==,COD △中,3CD OC ==,ABO DCO =∠∠.连接AD 、BC ,点M 、N 、P 分别为OA 、OD 、BC 的中点.图1NMOPDCBA图2NM OPDCBA⑴ 如图1,若A 、O 、C 三点在同一直线上,且60ABO =∠°,则PMN △的形状是___________,此时ADBC=________; ⑵ 如图2,若A 、O 、C 三点在同一直线上,且2ABO α=∠,证明PMN BAO △∽△,并计算ADBC的值(用含α的式子表示);考点二:定边对定角问题1. 已知90AOB ∠=︒,OM 是AOB ∠的平分线.将一个直角RPS 的直角顶点P 在射线OM 上移动,点P 不与点O 重合.如图,当直角RPS 的两边分别与射线OA 、OB 交于点C 、D 时,请判断PC 与PD 的数量关系,并证明你的结论;RBPCAD OG S M321G N SH ODACMPBR2. 如图,正方形ABCD边长为2,点E是正方形ABCD内一动点,90AEB∠=︒,连结DE,求DE的最小值.3. 如图,四边形ABCD是正方形,M是BC上一点,ME AM⊥交BCD∠的外角平分线于E,求证:AM EM=.AB CDEM4.如图, 45XOY∠=︒,一把直角三角形尺ABC的两个顶点,A B分别在,OX OY 上移动,10AB=,求点O到AB距离的最大值.5. 如图,正三角形ABCAD BC,点E是射线AD上一动点(不∆边长为2,射线//与点A重合),AEC∆外接圆交EB于点F,求AF的最小值.6. 在矩形ABCD中,点P在AD上,AB=2,AP=1,将三角板的直角顶点放在点P 处,三角板的两直角边分别能与AB、BC边相交于点E、F,连接EF.⑴ 如图,当点E与点B重合时,点F恰好与点C重合,求此时PC的长;⑵ 将三角板从⑴中的位置开始,绕点P顺时针旋转,当点E与点A重合时停止,在这个过程中,请你观察、探究并解答:① ∠PEF的大小是否发生变化?请说明理由;② 直接写出从开始到停止,线段EF的中点所经过的路线长.D考点三:四点共圆问题1. 如图,在四边形ABCD 中,AC 是BAD ∠的平分线,若180B D ∠+∠=︒,求证:BC CD =.2. 如图,在正△ABC 中,点D ,E 分别在边AC ,AB 上,且AD=31AC ,AE=32AB ,BD ,CE 相交于点F 。
圆中辅助线应用的典型例题圆是数学中非常重要的一个几何图形,在数学教学中也经常涉及到相关内容。
圆中辅助线的应用也是数学教学中的一个重要内容。
在这里,我将为大家介绍一下圆中辅助线应用的典型例题。
例题一:如图,已知圆的半径OA和圆心角α,求BC 的长度。
解题思路:由于圆心角α是已知的,可以根据圆心角公式计算出弧长AC,即AC = αR,其中R为圆的半径。
又因为BC是弦,所以可以根据弦长公式计算出BC的长度:BC = 2√(R² - AC²/4)。
因此,只需把圆心角α和半径OA 代入公式,就可以得出BC的值。
例题二:如图,已知圆的半径OA和圆心角α,DE与BC平行,求DE的长度。
解题思路:由于DE与BC平行,所以可以构造辅助线EF与BC垂直,如图所示。
则BE = EC = Rcos(α/2),EF = Rsin(α/2),因此BF = 2Rsin(α/2)。
根据正弦定理,在三角形BDF中,有sin(α/2)/BD = sin(γ)/BF,又因为sin(γ) = DE/BD,所以DE = BDsin(α/2)/sin(γ),代入BF的值即可求出DE的长度。
例题三:如图,已知圆上两个点A、B和点P到AB的距离为h,求圆心O到AB的距离d。
解题思路:首先,构造辅助线PC,并延长到圆上的交点D,如图所示。
则OP垂直于AB,所以POD是直角三角形。
由于PO = R - h,OD = √(R² - PD²),所以DP =√(R² - (R - h)²)。
在三角形PBD中,有d/BD = PO/DP,所以d = (R - h)BD/√(R² - (R - h)²),代入数据即可求出d的值。
以上就是三个典型的圆中辅助线应用例题。
这些例题的重点在于如何灵活应用几何知识,构造合适的辅助线,从而得出正确的解答。
在学习数学的过程中,需要不断地训练自己的思维能力,培养解决问题的能力。
PEF第 22 讲 辅助圆(2)1.共端点,等线段 2.两直角三角形共斜边(1)共斜边的两个直角三角形组成的四边形的四个顶点共圆.(两直角顶点位于斜边同侧)(2)共斜边的两个直角三角形组成的四边形的四个顶点共圆.(两直角顶点位于斜边异侧)【例 1】在等腰直角三角形 ABC 中,∠BAC =90°,D 为 BC 边的中点,E 、 F 分别为 AB 、AC 上的点,且满足∠EDF =90°.求证:DE =DF .A BD C【例 2】在△ABC 中,∠ABC = 90 , AB = 6 ,BC = 8 ,O 为 AC 的中点,过O 作OE ⊥ OF ,OE 、OF 分别交射线 AB , BC 于 E 、F ,则 EF 的最小值为多少?A EBFC 【例 3】如图, R t △ABC 中, AB ⊥ BC , AB = 6 , BC = 4 , P 是△ABC 内部的一个动点,且满足∠PAB = ∠PBC ,则线段CP 长的最小值为( )A .3 A2 B . 2 C .8 13 13 D .12 13 13BCO3 【例 4】如图,E 、F 是正方形 ABCD 的边 AD 上两个动点,满足 AE =DF . 连接CF 交 BD 于点G ,连接 BE 交 AG 于点 H .若正方形的边长为2 ,则线段 DH 长度的最小值是多少?A E F DB C【例 5】如图,等边△ABC 中, AB = 6 , P 为 AB 上一动点 PD ⊥ BC ,PE ⊥ AC ,则 DE 的最小值为多少?ABDC 【练习 1】如图,在 ABCD 中, ∠BCD =30︒ , BC =4 ,CD =3 ,M 是 AD 边的中点, N 是 AB 边上一动点,将△AMN 沿 MN 所在直线翻折得到 △PMN ,连接 PC ,则 PC 长度的最小值是多少?DCMPANB【练习 2】如图,在矩形 ABCD 中,AB = 2 ,AD = 3 ,点 E ,F 分别为 AD 、DC 边上的点,且 EF = 2 , G 为 EF 的中点, P 为 BC 边上一动点,则 PA + PG 的最小值为多少?AE D GFEP。
辅助圆模型模型讲解一、定点定长1、O为定点,OA=OB,且长度固定,那么O、A、B三点可以确定一个圆,动点P在圆弧AB上运动,如图所示,Q为圆外一定点,当P运动到OQ的连线上时,即:P落到P1处,O、P1、Q三点共线时,PQ最小。
二、定弦定角2、线段AB固定,Q为动点,且∠AQB为定值,那么Q、A、B三点可以确定一个圆,动点Q在圆弧AB上运动,如图所示,R为圆外一定点,当Q运动到OQ的连线上时,即:P落到P1处,O、P1、Q三点共线时,RQ最小。
方法点拨一、题型特征:①动点的运动轨迹为圆②圆外一点到圆上一点的距离最短:即圆外一点与圆心连线与圆的交点③常见确定圆的模型:定点定长、定弦定角。
二、模型本质:两点之间,线段最短。
例题演练1.如图,已知AB=AC=BD=6,AB⊥BD,E为BC的中点,则DE的最小值为()A.3﹣3B.3C.3﹣3D.2【解答】解:取AB的中点O,连接AE,OE,OD.∵AB=AC,BE=EC,∴AE⊥BC,∴∠AEB=90°,∵OA=OB,∴OE=AB=3,∵AB⊥BD,∴∠OBD=90°,∵OB=3,BD=6,∴OD===3,∵DE≥OD﹣OE,∴DE≥3﹣3,∴DE的最小值为3﹣3,故选:C.强化训练1.如图,矩形ABCD中,AB=3,BC=8,点P为矩形内一动点,且满足∠PBC =∠PCD,则线段PD的最小值为()A.5B.1C.2D.3 2.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE ⊥BE,则线段CE的最小值为.3.如图,△ABC为等边三角形,AB=2.若P为△ABC内一动点,且满足∠P AB =∠ACP,则线段PB长度的最小值为.4.如图,在矩形ABCD中,AB=4,BC=6,E是平面内的一个动点,且满足∠AEB=90°,连接CE,则线段CE长的最大值为.5.如图1,P是⊙O外的一点,直线PO分别交⊙O于点A,B,则P A是点P 到⊙O上的点的最短距离.(1)探究一:如图2,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是上的一个动点,连接AP,则AP的最小值是.(2)探究二:如图3,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,请求出A′C长度的最小值.(3)探究三,在正方形ABCD中,点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,若AD=4,试求出线段CP的最小值.1.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.辅助圆模型模型讲解一、定点定长1、O为定点,OA=OB,且长度固定,那么O、A、B三点可以确定一个圆,动点P在圆弧AB上运动,如图所示,Q为圆外一定点,当P运动到OQ的连线上时,即:P落到P1处,O、P1、Q三点共线时,PQ最小。
巧作辅助圆解决问题在近几年中考试卷中,常出现这样一类题目,从表面上看是一个三角形或四边形问题,用三角形或四边形的知识来解决非常困难,甚至根本无法解决,但我们可以从已知条件中发现蛛丝马迹,也就是发现图形中的隐含特征,从而通过构造辅助圆,借助圆的知识来解决问题这样的问题一般具有以下特征一、到定点的距离等于定长例1如图1,在正方形ABCD外侧作直线DE,使45°<∠CDE<90°,点C关于直线DE的对称点为M,连接CM,AM,其中AM交直线DE 于点N,若MN=4,AN=3,则正方形ABCD的边长为( )。
A. B.5C.5D.解析:如图2,连接DM,由于点C、M关于直线DE对称,故直线DE垂直平分线段CM,因而DC=DM.四边形ABCD是正方形,故DA=DC=DM,即点A、C、M到点D的距离相等,根据这一特征,我们可以想到,以点D为圆心,DA的长为半径画圆,则点C、M必在⊙D上.由∠ADC=90°,可得∠AMC=45°.连接CN,则CN=MN=4,故∠MCN=∠AMC=45°,从而∠ANC=90°,连接AC,我们不难求出AC=,选D。
点评:随着直线DE位置的变化,点M的位置也在变化,但它一定在以点D为圆心,DA的长为半径的圆上,这就是运动变化中的不变关系,解决这类问题的关键是抓住“A、C、M三点到点D的距离相等”这一特征,但这个特征比较隐蔽,不容易发现,要综合考虑本题中的所有条件,而且要有一定的洞察力和解题经验.事实上,这类问题中的隐含条件往往都不是一眼就能看出来的。
二、张角为直角例2如图3,在等腰R△ABC中,∠BAC=90º,AB=AC,BC=2,点D 是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为()。
A、2-2B、C、-1D、-1解析:本题中点D在动,直径AD的大小在变,线段BD在动,点E也在动,运动变化中有不变的量吗?有!如图4,连接AE,由于AD为直径,故∠AED的大小保持不变,为直角,从而∠AEB始终为直角,∠AEB的两边经过线段AB的两个端点,我们不妨称∠AEB为线段AB所对的张角。
2022年中考数学考前30天迅速提分复习方案(全国通用)专题2.9辅助圆三种模型与真题训练题型一:定点定长构造辅助圆一.解答题(共3小题)1.(2019•新城区校级三模)圆的定义:在同一平面内,到定点的距离等于定长的所有点所组成的图形.(1)已知:如图1,OA=OB=OC,请利用圆规画出过A、B.C三点的圆.若∠AOB=70°,则∠ACB=.如图,Rt△ABC中,∠ABC=90°,∠BCA=30°,AB=2.(2)已知,如图2.点P为AC边的中点,将AC沿BA方向平移2个单位长度,点A、P、C的对应点分别为点D、E、F,求四边形BDFC的面积和∠BEA的大小.(3)如图3,将AC边沿BC方向平移a个单位至DF,是否存在这样的a,使得直线DF上有一点Q,满足∠BQA=45°且此时四边形BADF的面积最大?若存在,求出四边形BADF面积的最大值及平移距离a,若不存在,说明理由.2.(2021•内乡县一模)(1)【学习心得】于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且AD=AC,求∠BDC的度数.若以点A为圆心,AB为半径作辅助⊙A,则点C、D必在⊙A上,∠BAC是⊙A的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC=°.(2)【问题解决】如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的数.(3)【问题拓展】如图3,如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.3.(2021•红谷滩区校级模拟)(1)学习心得:小刚同学在学习完“圆”这一章内容后,感觉到有一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在△ABC中,AB=AC,∠BAC=80°,D是△ABC外一点,且AD=AC,求∠BDC的度数.若以点A为圆心,AB为半径作辅助圆⊙A,则点C、D必在⊙A上,∠BAC是⊙A 的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC=.(2)问题解决:如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的度数.(3)问题拓展:抛物线与y轴交于点A,顶点为B,对称轴BC与x轴交于点C,点P在抛物线上,直线PQ∥BC交x轴于点Q,连接BQ.①若含45°角的直线三角板如图所示放置,其中,一个顶点与C重合,直角顶点D在BQ上,另一顶点E在PQ上,求Q的坐标;②若含30°角的直角三角板一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上,求点P的坐标.题型二:定弦定角构造辅助圆一.选择题(共3小题)1.(2022•睢阳区模拟)如图,正方形OABC中,A(8,0),B(8,8),点D坐标为(﹣6,0),连接CD,点P为边OA上一个动点,连接CP,过点D作DE⊥CP于点E,连接AE,当AE取最小值时,点E的纵坐标为()A.3﹣B.4﹣C.D.2.(2021•永嘉县校级模拟)如图,△ABC,AC=3,BC=4,∠ACB=60°,过点A作BC的平行线l,P为直线l上一动点,⊙O为△APC的外接圆,直线BP交⊙O于E点,则AE的最小值为()A.B.7﹣4C.D.13.(2021•安徽二模)如图,在矩形ABCD中,AD=5,AB=3,点E在AB上,=,在矩形内找一点P,使得∠BPE=60°,则线段PD的最小值为()A.2﹣2B.C.4D.2二.填空题(共2小题)4.(2021•郯城县校级模拟)如图,半径为4的⊙O中,CD为直径,弦AB⊥CD且过半径OD的中点,点E为⊙O上一动点,CF⊥AE于点F.当点E从点B出发顺时针运动到点D时,点F所经过的路径长为.5.(2020•碑林区校级模拟)如图,等边△ABC中,AB=6,点D、点E分别在BC和AC上,且BD =CE,连接AD、BE交于点F,则CF的最小值为.三.解答题(共3小题)6.(2019•新城区校级三模)圆的定义:在同一平面内,到定点的距离等于定长的所有点所组成的图形.(1)已知:如图1,OA=OB=OC,请利用圆规画出过A、B.C三点的圆.若∠AOB=70°,则∠ACB=.如图,Rt△ABC中,∠ABC=90°,∠BCA=30°,AB=2.(2)已知,如图2.点P为AC边的中点,将AC沿BA方向平移2个单位长度,点A、P、C的对应点分别为点D、E、F,求四边形BDFC的面积和∠BEA的大小.(3)如图3,将AC边沿BC方向平移a个单位至DF,是否存在这样的a,使得直线DF上有一点Q,满足∠BQA=45°且此时四边形BADF的面积最大?若存在,求出四边形BADF面积的最大值及平移距离a,若不存在,说明理由.7.(2019•新城区校级一模)问题提出:如图1:在△ABC中,BC=10且∠BAC=45°,点O为△ABC的外心,则△ABC的外接圆半径是.问题探究:如图2,正方形ABCD中,E、F分别是边BC、CD两边上点且∠EAF=45°,请问线段BE、DF、EF有怎样的数量关系?并说明理由.问题解决:如图3,四边形ABCD中,AB=AD=4,∠B=45°,∠D=135°,点E、F分别是射线CB、CD上的动点,并且∠EAF=∠C=60°,试问△AEF的面积是否存在最小值?若存在,请求出最小值.若不存在,请说明理由.8.(2019•碑林区校级一模)(1)如图1,已知△ABC中,∠ABC=30°,AB=AC=1,则S△ABC=.(2)如图2,在平面直角坐标系xOy中,点A在y轴上运动,点B在x轴上运动,且AB=4,求△AOB面积的最大值.(3)如图3,⊙O的半径为2,弦AB=2,点C为优弧上一动点,AM⊥AC交射线CB于点M,请问,△ABM的周长存在最大值还是最小值?若存在,求出相应的最值;若不存在,说明理由.题型三:对角互补构造辅助圆一.解答题(共5小题)1.(2020•碑林区校级模拟)问题提出:(1)如图①,半圆O的直径AB=10,点P是半圆O上的一个动点,则△PAB的面积最大值是.问题探究:(2)如图②,在边长为10的正方形ABCD中,点G是BC边的中点,E、F分别是AD和CD边上的点,请探究并求出四边形BEFG的周长的最小值.问题解决:(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD 的周长是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.2.(2018•大荔县一模)(1)如图①,点A、点B在线段l的同侧,请你在直线l上找一点P,使得AP+BP的值最小(不需要说明理由).(2)如图②,菱形ABCD的边长为6,对角线AC=6,点E,F在AC上,且EF=2,求DE+BF的最小值.(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD 的周长是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.3.(2021•内乡县一模)(1)【学习心得】于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且AD=AC,求∠BDC的度数.若以点A为圆心,AB为半径作辅助⊙A,则点C、D必在⊙A上,∠BAC是⊙A的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC=°.(2)【问题解决】如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的数.(3)【问题拓展】如图3,如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.4.(2021•红谷滩区校级模拟)(1)学习心得:小刚同学在学习完“圆”这一章内容后,感觉到有一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在△ABC中,AB=AC,∠BAC=80°,D是△ABC外一点,且AD=AC,求∠BDC的度数.若以点A为圆心,AB为半径作辅助圆⊙A,则点C、D必在⊙A上,∠BAC是⊙A 的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC=.(2)问题解决:如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的度数.(3)问题拓展:抛物线与y轴交于点A,顶点为B,对称轴BC与x轴交于点C,点P在抛物线上,直线PQ∥BC交x轴于点Q,连接BQ.①若含45°角的直线三角板如图所示放置,其中,一个顶点与C重合,直角顶点D在BQ上,另一顶点E在PQ上,求Q的坐标;②若含30°角的直角三角板一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上,求点P的坐标.5.(2020•梁园区一模)如图1,点B在直线l上,过点B构建等腰直角三角形ABC,使∠BAC=90°,且AB=AC,过点C作CD⊥直线l于点D,连接AD.(1)小亮在研究这个图形时发现,∠BAC=∠BDC=90°,点A,D应该在以BC为直径的圆上,则∠ADB的度数为°,将射线AD顺时针旋转90°交直线l于点E,可求出线段AD,BD,CD的数量关系为;(2)小亮将等腰直角三角形ABC绕点B在平面内旋转,当旋转到图2位置时,线段AD,BD,CD的数量关系是否变化,请说明理由;(3)在旋转过程中,若CD长为1,当△ABD面积取得最大值时,请直接写AD的长.【真题训练】一.选择题(共1小题)1.(2021•攀枝花)如图,在矩形ABCD中,已知AB=3,BC=4,点P是BC边上一动点(点P不与B,C重合),连接AP,作点B关于直线AP的对称点M,则线段MC的最小值为()A.2B.C.3D.二.解答题(共2小题)2.(2015•汕尾)在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.(1)如图1,当α=90°时,线段BD1的长等于,线段CE1的长等于;(直接填写结果)(2)如图2,当α=135°时,求证:BD1=CE1,且BD1⊥CE1;(3)求点P到AB所在直线的距离的最大值.(直接写出结果)3.(2014•淄博)如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.(1)使∠APB=30°的点P有个;(2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标;(3)当点P在y轴上移动时,∠APB是否有最大值?若有,求点P的坐标,并说明此时∠APB 最大的理由;若没有,也请说明理由.。
2020年中考数学总复习最值系列:辅助圆最值问题的必要条件是至少有一个动点,因为是动态问题,所以才会有最值.在将军饮马问题中,折点P 就是那个必须存在的动点.并且它的运动轨迹是一条直线,解题策略就是作端点关于折点所在直线的对称即可.当然,动点的运动轨迹是可以变的,比如P 点轨迹也可以是一个圆,就有了第二类最值问题——辅助圆.在这类题目中,题目很少直接告诉我们动点轨迹是个圆,也很少把这个圆画出来,因此,结合题目给的条件,分析出动点的轨迹图形,将是我们面临的最大的问题.若已经确定了动点的轨迹圆,接下来求最最值的问题就会变得简单了,比如:如下图,A 为圆外一点,在圆上找一点P 使得P A 最小.A当然,也存在耿直的题目直接告诉动点轨迹是个圆的,比如:【2017四川德阳】如图,已知圆C 的半径为3,圆外一定点O 满足OC =5,点P 为圆C 上一动点,经过点O 的直线l 上有两点A 、B ,且OA =OB ,∠APB =90°,l 不经过点C ,则AB 的最小值为________.l【分析】连接OP ,根据△APB 为直角三角形且O 是斜边AB 中点,可得OP 是AB 的一半,若AB 最小,则OP 最小即可. ll连接OC ,与圆C 交点即为所求点P ,此时OP 最小,AB 也取到最小值.一、从圆的定义构造圆圆的定义:平面内到定点的距离等于定值的所有点构成的集合.构造思路:若动点到平面内某定点的距离始终为定值,则其轨迹是圆或圆弧.【2014成都中考】如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A ’MN ,连接A ’C ,则A ’C 长度的最小值是__________.A'N MA B CD【分析】考虑△AMN 沿MN 所在直线翻折得到△A ’MN ,可得MA ’=MA =1,所以A ’轨迹是以M 点为圆心,MA 为半径的圆弧.A'N MA BCD连接CM ,与圆的交点即为所求的A ’,此时A ’C 的值最小.DCB A M N A'构造直角△MHC ,勾股定理求CM ,再减去A ’M 即可.HA'N M A BCD。