7.3.2等比数列的和
- 格式:doc
- 大小:103.00 KB
- 文档页数:3
等比数列求和公式有哪些高中数学的等比数列求和公式还有哪些同学知道呢?如果不知道,请往下看。
下面是由小编为大家整理的“等比数列求和公式有哪些”,仅供参考,欢迎大家阅读。
等比数列求和公式有哪些1)等比数列:a(n+1)/an=q, n为自然数。
(2)通项公式:an=a1*q^(n-1);推广式:an=am·q^(n-m);(3)求和公式:Sn=n*a1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-a1q^n)/(1-q)=a1/(1-q)-a1/(1-q)*q^n ( 即a-aq^n)(前提:q不等于 1)(4)性质:①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;②在等比数列中,依次每 k项之和仍成等比数列.(5)“G是a、b的等比中项”“G^2=ab(G≠0)”.(6)在等比数列中,首项A1与公比q都不为零.注意:上述公式中A^n表示A的n次方。
拓展阅读:等比数列求和公式怎么推导首项a1,公比qa(n+1)=an*q=a1*q^(n )Sn=a1+a2+..+anq*Sn=a2+a3+...+a(n+1)qSn-Sn=a(n+1)-a1S=a1(q^n-1)/(q-1)1、等比数列的意义:一个数列,如果任意的后一项与前一项的比值是同一个常数,即:A(n+1)/A(n)=q (n∈N*),这个数列叫等比数列,其中常数q 叫作公比。
如:2、4、8、16......2^10 就是一个等比数列,其公比为2,可写为(A2)的平方=(A1)x(A3)。
2、求和公式等比数列求和公式:Sn=n×a1 (q=1)Sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1)=a1(q^n-1)/(q-1) (q为公比,n为项数)等比数列求和公式推导:Sn=a1+a2+a3+...+an(公比为q)q*Sn=a1*q+a2*q+a3*q+...+an*q=a2+a3+a4+...+a(n+1)Sn-q*Sn=a1-a(n+1)(1-q)Sn=a1-a1*q^nSn=(a1-a1*q^n)/(1-q)Sn=(a1-an*q)/(1-q)Sn=a1(1-q^n)/(1-q)3、数学:数学(mathematics),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
专题7.3等比数列及其前n 项和练基础1.(2021·全国高考真题(文))记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =()A .7B .8C .9D .10【答案】A 【解析】根据题目条件可得2S ,42S S -,64S S -成等比数列,从而求出641S S -=,进一步求出答案.【详解】∵n S 为等比数列{}n a 的前n 项和,∴2S ,42S S -,64S S -成等比数列∴24S =,42642S S -=-=∴641S S -=,∴641167S S =+=+=.故选:A.2.(2021·山东济南市·)已知S n 是递增的等比数列{a n }的前n 项和,其中S 3=72,a 32=a 4,则a 5=()A .116B .18C .8D .16【答案】C 【解析】设等比数列的公比为q ,根据题意列方程,解出1a 和q 即可.【详解】解:设递增的等比数列{a n }的公比为q ,且q >1,∵S 3=72,234a a =,∴1a (1+q +q 2)=72,21a q 4=1a q 3,解得1a =12,q =2;1a =2,q =12(舍去).则5a =4122⨯==8.故选:C .3.(2021·重庆高三其他模拟)设等比数列{}n a 的前n 项和为271,8,4n S a a =-=,则6S =()A .212-B .152C .212D .632【答案】C 【解析】设等比数列{}n a 公比为q ,由572a a q =结合已知条件求q 、1a ,再利用等比数列前n 项和公式求6S .【详解】设等比数列{}n a 公比为q ,则572a a q =,又2718,4a a =-=,∴12q =-,故116a =,又1(1)1-=-nn a q S q ,即666311616[1()]216421321()22S ⨯⨯--===--.故选:C4.(2021·合肥市第六中学高三其他模拟(理))若等比数列{}n a 满足12451,8a a a a +=+=,则7a =()A .643B .643-C .323D .323-【答案】A 【解析】设等比数列{}n a 的公比为q ,根据等比数列的通项公式建立方程组,解之可得选项.【详解】设等比数列{}n a 的公比为q ,则345128a a q a a +==+,所以2q =,又()11121+11,3a a a a q =+==,所以6671123643a a q ==⨯⨯=,故选:A.5.(2020·河北省曲阳县第一高级中学高一期末)中国古代数学著作《算法统宗》中记载了这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地,问此人第二天走了()A .6里B .24里C .48里D .96里【答案】D 【解析】根据题意,记每天走的路程里数为{}n a ,可知{}n a 是公比12q =的等比数列,由6378S =,得6161[1()]2378112-==-a S ,解可得1192a =,则211192962a a q =⨯=⨯=;即此人第二天走的路程里数为96;故选:D .6.(2021·江苏南通市·高三其他模拟)已知等比数列{}n a 的公比为q ,前n 项和为n S ,则“1q >”是“112n n n S S S -++>”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】D 【解析】由112n n n S S S -++>可得出1n n a a +>,取10a <,由101n n q a a +<⇔,进而判断可得出结论.【详解】若112n n n S S S -++>,则11n n n n S S S S +-->-,即1n n a a +>,所以,数列{}n a 为递增数列,若10a <,101n n q a a +<<⇔>,所以,“1q >”是“112n n n S S S -++>”的既不充分也不必要条件.故选:D.7.(2021·黑龙江大庆市·大庆实验中学高三其他模拟(文))在数列{}n a 中,44a =,且22n n a a +=,则21nni a==∑___________.【答案】122n +-【解析】由44a =,22n n a a +=,得到22a =且22n na a +=,得出数列{}2n a 构成以2为首项,以2为公比的等比数列,结合等比数列的求和公式,即可求解.【详解】由22n n a a +=,可得22n na a +=,又由44a =,可得4224a a ==,所以22a =,所以数列{}2n a 构成以2为首项,以2为公比的等比数列,所以1212(12)2212n nn n i a +=-==--∑.故答案为:122n +-.8.(2021·浙江杭州市·杭州高级中学高三其他模拟)已知数列{}n a 满足21n n S a =-,则1a =_____,n S =_______.【答案】121n -【解析】利用1n n n a S S -=-求通项公式,再求出n S .【详解】对于21n n S a =-,当n =1时,有1121S a =-,解得:1a =1;当2n ≥时,有1121n n S a --=-,所以()112121=n n n n n a S S a a ----=--,所以1=2nn a a -,所以数列{}n a 为等比数列,111=2n n n a a q--=,所以122112nn n S -==--.故答案为:1,21n -.9.(2021·浙江杭州市·杭州高级中学高三其他模拟)已知数列{}n a 满足21n n S a =-,则3a =________,n S =________.【答案】421n -【解析】根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,求出数列的通项公式,再代入求出n S .【详解】解:因为21n n S a =-当1n =时,1121S a =-,解得11a =;当2n时,1121n n S a --=-,所以111(21)(21)22n n n n n n n a S S a a a a ---=-=---=-,即12n n a a -=于是{}n a 是首项为1,公比为2的等比数列,所以12n n a -=.所以34a =,11212212n nn n S a -=-⨯-==-故答案为:4;21n -;10.(2018·全国高考真题(文))等比数列中,1=1,5=43.(1)求的通项公式;(2)记为的前项和.若=63,求.【答案】(1)=(−2)K1或=2K1.(2)=6.【解析】(1)设{}的公比为,由题设得=K1.由已知得4=42,解得=0(舍去),=−2或=2.故=(−2)K1或=2K1.(2)若=(−2)K1,则=1−(−2)3.由=63得(−2)=−188,此方程没有正整数解.若=2K1,则=2−1.由=63得2=64,解得=6.综上,=6.练提升1.(辽宁省凌源二中2018届三校联考)已知数列{}n a 为等比数列,且2234764a a a a =-=-,则46tan 3a a π⎛⎫⋅= ⎪⎝⎭()A.B. C.33-D.【答案】B【解析】由等比数列的性质可得:32343364,4a a a a a ==-∴=-,4730a a q =<,结合2764a =可得:78a =-,结合等比数列的性质可得:463732a a a a ==,即:463222tan tan tan 10tan 3333a a πππππ⎛⎫⎛⎫⎛⎫⋅==+== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭本题选择B 选项.2.(2021·全国高三其他模拟(文))如图,“数塔”的第i 行第j 个数为12j -(其中i ,*j N ∈,且i j ≥).将这些数依次排成一列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,记作数列{}n a ,设{}n a 的前n 项和为n S .若1020n S =,则n =()A .46B .47C .48D .49【答案】C 【解析】根据“数塔”的规律,可知第i 行共有i 个数,利用等比数列求和公式求出第i 行的数字之和,再求出前m 行的和,即可判断1020n S =取到第几行,再根据每行数字个数成等差数列,即可求出n ;【详解】解:“数塔”的第i 行共有i 个数,其和为211212222112i i i --++++==-- ,所以前m 行的和为()()()123121222222212m m m m m m +-++++-=-=-+- 故前9行所有数学之和为102111013-=,因此只需要加上第10行的前3个数字1,2,4,其和为10131241020+++=,易知“数塔”前m 行共有()12m m +个数,所以9103482n ⨯=+=故选:C3.(2021·江苏高三其他模拟)已知数列{}n a 满足11a =,()1lg 1091n an a +=++,其前n 项和为n S ,则下列结论中正确的有()A .{}n a 是递增数列B .{}10n a +是等比数列C .122n n n a a a ++>+D .(3)2n n n S +<【答案】ACD 【解析】将递推公式两边同时取指数,变形得到1110109n n a a +-=+,构造等比数列可证{}1010n a+为等比数列,求解出{}n a 通项公式则可判断A 选项;根据()()()2132101010a a a ++≠+判断B 选项;根据{}n a 的通项公式以及对数的运算法则计算()122n n n a a a ++-+的正负并判断C 选项;将{}n a 的通项公式放缩得到()lg 2101n n a n <⨯<+,由此进行求和并判断D 选项.【详解】因为()1lg 1091n an a +=++,所以()11lg 109n an a +-=+,从而1110109n n a a +-=+,110101090n n a a +=⨯+,所以()11010101010n n a a ++=⨯+,所以11010101010n na a ++=+,又1101020a +=,{}1010n a +是首项为20,公比为10的等比数列,所以110102010210n a n n -+=⨯=⨯,所以1021010n a n =⨯-,即()lg 21010nn a =⨯-,又因为21010n y =⨯-在[)1,,*n n N ∈+∞∈时单调递增,lg y x =在定义域内单调递增,所以{}n a 是递增数列,故A 正确;因为1231011,10lg19010lg1911,10lg199010lg19911a a a +=+=+=++=+=+,所以()()()()()222213101010lg191111lg19911lg 1922lg1911lg199a a a +-++=+-+=+-,所以()()()2222213361101010lg 1911lg1911lg199lg 1911lg0199a a a +-++=+-=+>,所以()()()2132101010a a a ++≠+,所以{}10n a +不是等比数列,故B 错误.因为()()()()121222lg 21010lg 21010lg 21010n n n n n n a a a ++++-+=⨯--⨯--⨯-()()()()()()2211211210102101 lglg210102101021012101n n n n n n +++-+⨯-⨯-=⨯-⨯-⨯-⨯-=,而()()()211221121012101210141041014102102101n n n n n n n n -++-⨯--⨯-⨯-=⨯-⨯+-⨯+⨯+⨯-20100.21041016.2100nnnn=⨯+⨯-⨯=⨯>,从而()()()211210121012101nn n -+⨯->⨯-⋅⨯-,于是,122n n n a a a ++>+,故C 正确.因为()()lg 21010lg 210lg 21nnn n a n =⨯-<⨯=+<+,所以()()21322nn n n n S +++<=,故D 正确.故选:ACD.4.(2019·浙江高三期末)数列{}n a 的前n 项和为n S ,且满足11a =,()11.n n a S n N ++=+∈(Ⅰ)求通项公式n a ;(Ⅱ)记12111n n T S S S =++⋯+,求证:31222n n T -≤<.【答案】(Ⅰ1) 2n n a -=;(Ⅱ)见解析【解析】(Ⅰ1)1n n a S +=+Q ①,∴当2n ≥时,11n n a S -=+②,∴-①②得()122n n a a n +=≥,又2112a S =+=Q ,212a a ∴=,∴数列{}n a 是首项为1,公比为2的等比数列,12n n a -∴=;证明:(Ⅱ1)2nn a += ,21n n S ∴=-,2n ≥Q 时,111122n n n S -≤≤,1121111113142112212n n n n T S S S -⎛⎫- ⎪⎝⎭∴=++⋯+≥+=--,同理:11111221221212n n n T -⎛⎫- ⎪⎝⎭≤+=-<-,故:31222n n T -≤<.5.(2021·河北衡水中学高三三模)已知数列{}n a 的前n 项和为n S ,且满足13a =,()122n n a xa n n -=+-≥,其中x ∈R .(1)若1x =,求出n a ;(2)是否存在实数x ,y 使{}n a yn +为等比数列?若存在,求出n S ,若不存在,说明理由.【答案】(1)2382n n n a -+=;(2)存在,()21242n n n n S ++=--.【解析】(1)将1x =代入,由递推关系求出通项公式,并检验当1n =时是否满足,即可得到结果;(2)先假设存在实数x ,y 满足题意,结合已知条件求出满足数列{}n a yn +是等比数列的实数x ,y 的值,运用分组求和法求出n S 的值.【详解】(1)由题可知:当1x =时有:12n n a a n --=-,当2n ≥时,()()()()()()121321213012232n n n n n a a a a a a a a n ---=+-+-+⋅⋅⋅+-=++++⋅⋅⋅+-=+,又13a =满足上式,故()()22138322nn n n n a ---+=+=.(2)假设存在实数x ,y 满足题意,则当2n ≥时,由题可得:()()111n n n n a yn x a y n a xa xy y n xy --+=+-⇔=+--⎡⎤⎣⎦,和题设12n n a xa n -=+-对比系数可得:1xy y -=,22xy x -=-⇔=,1y =.此时121n n a na n -+=+-,114a +=,故存在2x =,1y =使得{}n a yn +是首项为4,公比为2的等比数列.从而()()1112121224122nn n n n n nn n a n a n S a a a ++-++=⇒=-⇒=++⋅⋅⋅+=--.所以()21242n n n n S ++=--.6.(2021·辽宁本溪市·高二月考)已知数列{}n a ,满足11a =,121n n a a n +=+-,设n n b a n =+,n n c a n λ=+(λ为实数).(1)求证:{}n b 是等比数列;(2)求数列{}n a 的通项公式;(3)若{}n c 是递增数列,求实数λ的取值范围.【答案】(1)证明见解析;(2)2nn a n =-;(3)()1,-+∞.【解析】(1)由121n n a a n +=+-,变形为()11222n n n a n a n a n +++=+=+,再利用等比数列的定义证明;(2)由(1)的结论,利用等比数列的通项公式求解;(3)根据{}n c 是递增数列,由10n n c c +->,*n N ∈恒成立求解.【详解】(1)因为121n n a a n +=+-,所以()11222n n n a n a n a n +++=+=+,即12n n b b +=,又因为11120b a =+=≠,所以0n b ≠,所以12n nb b +=,所以{}n b 是等比数列.(2)由1112b a =+=,公比为2,得1222n n n b -=⋅=,所以2nn n a b n n =-=-.(3)因为()21nn n c a n n λλ=+=+-,所以()()11211n n c n λ++=+-+,所以1122121n n n n n c c λλ++-=-+-=+-,因为{}n c 是递增数列,所以*10,n n c c n N +->∈成立,故210n λ+->,*n N ∈成立,即12n λ>-,*n N ∈成立,因为{} 12n-是递减数列,所以该数列的最大项是121-=-,所以λ的取值范围是()1,-+∞.7.(2021·河南商丘市·高二月考(理))在如图所示的数阵中,从任意一个数开始依次从左下方选出来的数可组成等差数列,如:2,4,6,8,…;依次选出来的数可组成等比数列,如:2,4,8,16,….122344468858121616记第n 行第m 个数为(),f n m .(Ⅰ)若3n ≥,写出(),1f n ,(),2f n ,(),3f n 的表达式,并归纳出(),f n m 的表达式;(Ⅱ)求第10行所有数的和10S .【答案】(Ⅰ)(),1f n n =,()(),221f n n =-,()(),342f n n =-,()()12,1m m m f n n --+=;(Ⅱ)102036=S .【解析】(I )由数阵写出(),1f n n =,()(),221f n n =-,()(),342f n n =-,由此可归纳出()()12,1m m m f n n --+=.(II )()()()()1010,110,210,310,10S f f f f =++++ 291029282 1 =+⨯+⨯++⨯ ,利用错位相减法求得结果.【详解】(Ⅰ)由数阵可知:(),1f n n =,()(),221f n n =-,()(),342f n n =-,由此可归纳出()()12,1m m m f n n --+=.(Ⅱ)()()()()1010,110,210,310,10S f f f f =++++ 291029282 1 =+⨯+⨯++⨯ ,所以231010220292821S =+⨯+⨯++⨯ ,错位相减得291010102222S =-+++++ ()102121012-=-+-2036=.8.(2021·山东烟台市·高三其他模拟)已知数列{}n a 的前n 项和为n S ,且满足11a =,12n n S na +=,*n ∈N .(1)求{}n a 的通项公式;(2)设数列{}n b 满足11b =,12nn n b b +=,*n ∈N ,按照如下规律构造新数列{}n c :123456,,,,,,a b a b a b ,求{}n c 的前2n 项和.【答案】(1)n a n =,*n ∈N ;(2)数列{}n c 的前2n 项和为1222++-n n .【解析】(1)由()12n n n a S S n -=-≥可得1(2)1n na a n n n+=≥+可得答案;(2)由12nn n b b +=得1122n n n b b +++=,两式相除可得数列{}n b 的偶数项构成等比数列,再由(1)可得数列{}n c 的前2n 项的和.【详解】(1)由12n n S na +=,12(1)(2)n n S n a n -=-≥,得12(1)n n n a na n a +=--,所以1(2)1n na a n n n +=≥+.因为122S a =,所以22a =,所以212n a an ==,(2)n a n n =≥.又当1n =时,11a =,适合上式.所以n a n =,*n ∈N .(2)因为12nn n b b +=,1122n n n b b +++=,所以*22()n nb n b +=∈N ,又122b b =,所以22b =.所以数列{}n b 的偶数项构成以22b =为首项、2为公比的等比数列.故数列{}n c 的前2n 项的和()()21321242n n n T a a a b b b -=+++++++ ,()122212(121)22212nn n n n T n +-+-=+=+--所以数列{}n c 的前2n 项和为1222++-n n .9.(2019·浙江高考模拟)已知数列{}n a 中,()110,2*n n a a a n n N +==+∈,(1)令+11n n n b a a =-+,求证:数列{}n b 是等比数列;(2)令3nn n a c =,当n c 取得最大值时,求n 的值.【答案】(I)见解析(2)3,n n c =最大,即3k =【解析】(1)121221n n n n a a n a a n +++=+=++Q ,两式相减,得211221n n n n a a a a +++-=-+∴()211121n n n n a a a a +++-+=-+即:12n nb b +=21120a b ==≠Q 又,∴数列{}n b 是以2为首项,2为公比的等比数列(2)由(1)可知,2nn b =即121nn n a a +-=-2121a a -=-23221a a -=-⋅⋅⋅⋅⋅⋅()11212n n n a a n ---=-≥()211222121n n n a a n n -∴-=++⋅⋅⋅+--=--2,21n n n a n ∴≥=--11,0n a ∴==也满足上式21n n a n ∴=--111212233n n n n nn n n c c +++----=∴=11112221212333n n nn n n n n n n n c c ++++----+-∴-=-=令()212nf n n =+-,则()11232n f n n ++=+-,()()122nf n f n ∴+-=-()()()()()()12,234f f f f f f n ∴=>>>⋅⋅⋅>()()()()1210,310,3,0f f f n f n ==>=-<∴≥<Q 123345...c c c c c c ∴>,∴3,n n c =最大,即3k =10.(2021·浙江高三其他模拟)已知数列{}n a 满足112a =,123n n a a ++=,数列{}n b 满足11b =,()211n n nb n b n n +-+=+.(1)数列{}n a ,{}n b 的通项公式;(2)若()1n n n n c b b a +=-,求使[][][][]1222021n c c c c +++⋅⋅⋅+≤成立([]n c 表示不超过n c 的最大整数)的最大整数n 的值.【答案】(1)112nn a ⎛⎫=+- ⎪⎝⎭,2n b n =;(2)最大值为44.【解析】(1)由题得数列{}1n a -是等比数列,即求出数列{}n a 的通项;由题得{}n b n 是一个以111b=为首项,以1为公差的等差数列,即得数列{}n b 的通项公式;(2)先求出[]()*1,16,2,2,21,21,22n n n c k N n n k n n k =⎧⎪=⎪=∈⎨=+⎪⎪+=+⎩,再求出[][][][]()2*12221,1,3,2,231,2122n n c c c c n n n k k N n n n k ⎧⎪=⎪⎪++++=+=∈⎨⎪⎪+-=+⎪⎩即得解.【详解】解:(1)由123n n a a ++=得()11112n n a a +-=--,所以数列{}1n a -是等比数列,公比为12-,解得112nn a ⎛⎫=+- ⎪⎝⎭.由()211n n nb n b n n +-+=+,得111n nb b n n+-=+,所以{}n b n 是一个以111b=为首项,以1为公差的等差数列,所以1(1)1n bn n n=+-⨯=,解得2n b n =.(2)由()1n n n n c b b a +=-得()12121121(1)22n nn n n c n n ⎛⎫+⎛⎫=++-=++- ⎪ ⎪ ⎪⎝⎭⎝⎭,记212n n n d +=,1112321120222n n n n n n n nd d +++-++-=-=<,所以{}n d 为单调递减且132d =,254d =,3718d =<,所以[]()*1,16,2,2,21,21,22n n n c k N n n k n n k =⎧⎪=⎪=∈⎨=+⎪⎪+=+⎩,因此[][][][]()2*12221,1,3,2,231,2122n n c c c c n n n k k N n n n k ⎧⎪=⎪⎪++++=+=∈⎨⎪⎪+-=+⎪⎩ ,当2n k =时,2320212n n +≤的n 的最大值为44;当2+1n k =时,231202122n n +-≤的n 的最大值为43;故[][][][]1222021n c c c c +++⋅⋅⋅+≤的n 的最大值为44.练真题1.(2021·全国高考真题(理))等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B 【解析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案.【详解】由题,当数列为2,4,8,--- 时,满足0q >,但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件.故选:B .2.(2020·全国高考真题(文))记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则nnS a =()A.2n–1B.2–21–nC.2–2n –1D.21–n–1【答案】B 【解析】设等比数列的公比为q ,由536412,24a a a a -=-=可得:421153111122124a q a q q a a q a q ⎧-==⎧⎪⇒⎨⎨=-=⎪⎩⎩,所以1111(1)122,21112n nn n n n n a q a a qS q ----=====---,因此1121222n n n n n S a ---==-.故选:B.3.(2019·全国高考真题(文))已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =()A.16B.8C.4D.2【答案】C 【解析】设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩,解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C.4.(2019·全国高考真题(文))记S n 为等比数列{a n }的前n 项和.若13314a S ==,,则S 4=___________.【答案】58.【解析】设等比数列的公比为q ,由已知223111314S a a q a q q q =++=++=,即2104q q ++=解得12q =-,所以441411()(1)521181()2a q S q ---===---.5.(2020·海南省高考真题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-.【答案】(1)2nn a =;(2)2382(1)55n n +--【解析】(1)设等比数列{}n a 的公比为q (q >1),则32411231208a a a q a q a a q ⎧+=+=⎨==⎩,整理可得:22520q q -+=,11,2,2q q a >== ,数列的通项公式为:1222n n n a -=⋅=.(2)由于:()()()1121111122112n n n n n n n n a a --++-+=-⨯⨯=--,故:112231(1)n n n a a a a a a -+-+⋯+-35791212222(1)2n n -+=-+-+⋯+-⋅()()3223221282(1)5512nn n +⎡⎤--⎢⎥⎣⎦==----.6.(2021·浙江高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.【答案】(1)33(4nn a =-⋅;(2)31λ-≤≤.【解析】(1)由1439n n S S +=-,结合n S 与n a 的关系,分1,2n n =≥讨论,得到数列{}n a 为等比数列,即可得出结论;(2)由3(4)0n n b n a +-=结合(1)的结论,利用错位相减法求出n T ,n n T b λ≤对任意N n *∈恒成立,分类讨论分离参数λ,转化为λ与关于n 的函数的范围关系,即可求解.【详解】(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-,当2n ≥时,由1439n n S S +=-①,得1439n n S S -=-②,①-②得143n na a +=122730,0,164n n n a a a a +=-≠∴≠∴=,又213,{}4n a a a =∴是首项为94-,公比为34的等比数列,1933(3(444n n n a -∴=-⋅=-⋅;(2)由3(4)0n n b n a +-=,得43(4)(34n n n n b a n -=-=-,所以234333333210(4)44444nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝+⎭⎭ ,2413333333321(5)(4)444444nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ ,两式相减得234113333333(4)4444444nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯++++--⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1193116493(4)34414n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+-- ⎪⎝⎭-111993334(4)44444n n n n n +++⎛⎫⎛⎫⎛⎫=-+---⋅=-⋅ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以134()4n n T n +=-⋅,由n n T b λ≤得1334((4)()44n nn n λ+-⋅≤-⋅恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式恒成立;4n <时,312344n n n λ≤-=----,得1λ≤;4n >时,312344n n n λ≥-=----,得3λ≥-;所以31λ-≤≤.。
等比数列的求和在数学中,等比数列是一种常见的数列形式。
它的每一项与前一项相乘得到下一项,比如1,2,4,8,16...就是一个等比数列,其中每一项都是前一项的两倍。
求和是数学中常见的操作,而对于等比数列来说,求和也有相应的方法。
本文将详细介绍等比数列的求和公式及其应用,帮助读者更好地理解和运用这一概念。
一、等比数列的定义与性质首先,我们来了解等比数列的定义和性质。
等比数列的定义如下:定义1:若数列a₁,a₂,a₃,...,an,...的每一项与它的前一项的比相等(不为零),即a(n+1)/an=d(称为等比数列的公比),则称该数列为等比数列。
在等比数列中,每一项与它的前一项的比值为常数d,这个常数也被称为等比数列的公比。
等比数列的公比决定了数列中每一项之间的关系。
而等比数列的性质主要有以下几点:性质1:等比数列的前两项之比不为零,即a₂/a₁≠0。
性质2:等比数列的任意三项可以构成一个比例,即a₁/a₂=a₂/a₃。
性质3:等比数列的任意两项都可以构成一个等比,即an/am=a(n-m)。
性质4:等比数列中,除了首项之外,任意一项与它前一项的比值都等于公比,即a(n+1)/an=d。
通过这些性质,我们可以更好地理解等比数列的特点和规律。
二、等比数列求和公式的推导接下来,我们将推导出等比数列求和公式。
设等比数列的首项为a₁,公比为q,首项与公比都已知。
现在我们考虑等比数列的前n项和S(n),即S(n)=a₁+a₂+...+an。
我们将这个等比数列重复放置一次,并将两个数列按位相减,得到:a₁+a₂+...+ana₁*q+a₂*q+...+an*q------------------------------(a₁+a₁*q)+(a₂+a₂*q)+...+(an+an*q)可以观察到,相邻两项之间的“相同元素”(例如a₁*a₁*q)可以相加并合并为一个公比q,这样我们得到一个新的数列:(a₁+a₁*q)+(a₂+a₂*q)+...+(an+an*q)这个新的数列中,每一项都是原数列中对应项的公比倍。
数列与数列求和等比数列求和公式及应用数列与数列求和等比数列求和公式及应用数列是一组按特定规律排列的数的集合,而数列求和则是计算数列中所有数之和的过程。
在数学中,等比数列是一种特殊的数列,它的每一项都是前一项与相同的常数(称为公比)相乘得到的。
在本文中,我们将介绍等比数列的求和公式以及其应用。
一、等比数列求和公式设等比数列的首项为a₁,公比为r,项数为n。
我们需要求解等比数列的前n项之和Sn。
1. 当公比r不等于1时,等比数列求和公式为:Sn = a₁ * (1 - r^n) / (1 - r)2. 当公比r等于1时,等比数列求和的结果就是其首项与项数的乘积,即:Sn = a₁ * n二、应用实例等比数列求和公式在实际问题中有广泛的应用,以下是一些常见的例子。
1. 财务应用:假设你每天存款的利率是0.03,第一天存入100元,第二天存入100 * 0.03 = 103元,以此类推。
问存了10天后,一共存入了多少钱?第一项a₁ = 100,公比r = 0.03,项数n = 10。
代入等比数列求和公式可得:Sn = 100 * (1 - 0.03^10) / (1 - 0.03) ≈ 1038.55元因此,存了10天后,一共存入了约1038.55元。
2. 物理应用:在物理学中,速度、加速度等与时间有关的量常常构成等比数列。
例如,一个物体以每秒钟减速50m/s²的速度匀减速运动,从初始速度200m/s开始,问经过5秒钟后,物体的总位移是多少?第一项a₁ = 200,公比r = -50/200 = -0.25,项数n = 5。
代入等比数列求和公式可得:Sn = 200 * (1 - (-0.25)^5) / (1 - (-0.25)) ≈ 268.75m因此,经过5秒钟后,物体的总位移约为268.75m。
3. 经济应用:在经济学中,利润、市场份额等指标常常构成等比数列。
例如,某公司的利润在第一年为1万美元,每年增长20%。
等比数列求和的方法等比数列是指一个数列中,从第二项起,每一项与它的前一项的比值都是一个常数。
这个常数被称为公比,通常用字母q表示。
等比数列在数学中有着重要的应用,其中求和是一个常见且重要的问题。
本文将介绍等比数列求和的方法,帮助读者更好地理解和掌握这一数学知识。
首先,我们来看等比数列的一般形式。
一个等比数列可以表示为,a,ar,ar^2,ar^3,...,ar^(n-1),其中a为首项,r为公比,n为项数。
要求解等比数列的和,我们可以利用以下的方法。
方法一,利用通项公式求和。
对于一个等比数列,我们可以利用通项公式来求和。
等比数列的通项公式为,an = a1 r^(n-1),其中an为第n项,a1为首项,r为公比。
利用这个通项公式,我们可以将等比数列的和表示为Sn = a1 (1 r^n) / (1 r)。
方法二,利用公式直接求和。
除了利用通项公式求和,我们还可以利用一个直接的求和公式来求解等比数列的和。
对于一个等比数列,其前n项和可以表示为Sn = a1 (1 r^n) / (1 r),其中a1为首项,r为公比。
这个公式可以直接用来求解等比数列的和,非常方便实用。
方法三,利用数学归纳法证明。
除了利用公式求和,我们还可以利用数学归纳法来证明等比数列求和的公式。
通过数学归纳法,我们可以证明Sn = a1 (1 r^n) / (1 r)这一求和公式的正确性,从而加深对等比数列求和公式的理解。
综上所述,等比数列求和的方法主要包括利用通项公式求和、利用公式直接求和和利用数学归纳法证明。
通过掌握这些方法,我们可以更好地理解和应用等比数列的求和知识,为数学学习打下坚实的基础。
希望本文对读者能有所帮助,谢谢阅读!。
知识点:1求和公式,如果q=1,那么S n=na1备注:针对等比数列,无论题目中给出何种条件的等式,最终均可以根据公式化成只有a1跟q两个未知量,从而进行求解。
2等比中项如果2m=p+q,则a2m=a p·a q备注:题目中如果给出三项的积,通常都可求出中间项为多少。
例如已知等比数列a1·a2·a3=8,即可知a2=2,因为a2是a1跟a3的中间项;再如已知等差数列a1·a5·a9=64,即可知a5=4,因为a5是a1跟a9的中间项推论:如果m+n=p+q,那么一定有a m·a n=a p·a q3等比性质1.如果{a n}是等比数列,S n是数列{a n}前n项和,那么S n,S2n-S n,S3n-S2n,……也是成比差数列例题:已知等比数列{a n},S n是它的前n项和,S6/S3=3,求S12/S3=?解析:根据上面性质可知,S3,S6-S3,S9-S6,S12-S9也是成等比数列,令S3=m,则S6=3m,则这个新的等比数列的首项是m(S3),第二项是2m(S6-S3),所以公比d=2m/m=2,即可算出第三项S9-S6=4m,又S6=3m,所以S9=7m,同理可算出S12=15m,则S15/S3=15变式:等比数列{a n}中,若a1+a2=324,a3+a4=36,则a5+a6=?2.如果{a n}是等比数列,公比为q,每隔k项之后( a m, a m+k, a m+2k, a m+3k……)也是等比数列,公差为q k视频教学:练习:课本温习1. 设S n是等比数列{a n}的前n项和,若a1=1,a6=32,则S3=()A. 5B. 6C. 7D. 82. 若{a n}为等比数列,且a2=6,S3=26,则{a n}的通项公式a n=()A. 2×3n-1B. 2×33-nC. 2×3n-1或2×33-nD. 以上都不对3. 已知{a n}是由正数组成的等比数列,S n表示{a n}的前n项和.若a1=3,a2a4=144,则S10的值是()A. 2 019B. 1 023C. 2 046D. 3 0694. 已知等比数列{a n}的前n项和为S n,且S3=a2+10a1,a5=9,则a1等于()A. -19B. 19C. 16D. 135. 已知数列{a n}满足3a n+1+a n=0,a2=-43,则{a n}的前10项和等于()A. -6(1-3-10)B. 19(1-3-10)C. 3(1-3-10)D. 3(1+3-10)固基强能6. 已知等比数列的公比为2,且前5项和为1,则前10项和为()A. 33B. 36C. 39D. 657. (多选)已知正项等比数列满足,,若设其公比为,前项和为,则()A. B. C. D.8. (多选)已知等比数列中,满足,则()A.数列是等比数列 B.数列是递增数列C.数列是等差数列 D.数列中,仍成等比数列9. 记S n为等比数列{a n}的前n项和,已知S2=2,S3=-6.则{a n}的通项公式为;S n= .10. 已知等比数列{a n}中,a1=13,公比q=13.(1) S n为数列{a n}的前n项和,求证:S n=1-an2;(2) 设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.课件:教案:【教学目标】1. 理解并掌握等比数列前n项和公式,并会应用公式解决简单的问题.2.逐步熟练等比数列通项公式与前n项和公式的综合应用,培养学生的运算能力.3. 通过公式的探索、发现,培养学生观察、猜想、归纳、分析、综合推理的能力,渗透类比与转化的思想.【教学重点】等比数列前n项和公式的应用.【教学难点】等比数列前n项和公式的推导和灵活运用.【教学方法】本节课在公式推导中宜采用类比教学法和自主探究教学法.师生共同参与整个教学活动,教师是活动的主导,学生是活动的主体,教师在引导的同时,让学生在等差数列的基础上用类比的方法自己去分析、探索,在探索过程中研究和领悟得出的结论,从而达到使学生既获得知识又发展智能的目的.环节教学内容师生互动设计意图导印度一国王与国际象棋发明家的故事:发明者要国王教师讲故事,并提出问题.利用学生好奇心理,让学。
§7.3 等比数列(2)【知识梳理】1. 若{a n } 为等比数列,且k +l =m +n (k 、l 、m 、n ∈N *)则a k a l =a m a n .2. 若{a n }为等比数列,公比为q ,则{a 2n }也是等比数列,公比为q 2.3. 若{a n }为等比数列,公比为q (q ≠-1),则{a 2n -1+a 2n }也是等比数列,公比为q 2.4. 若{a n }、{b n }是等比数列,则{a n b n }也是等比数列.【例题精选】例1、在等比数列{a n }中,a 1a 3=36,a 2+a 4=60,求a 1和公比q 。
例1、 若a 、b 、c 成等比数列,试证:a 2+b 2,ac +bc ,b 2+c 2也成等比数列.例3、设数列{a n }的首项a 1=a ≠41,且⎪⎪⎩⎪⎪⎨⎧+=+)(41)(211为奇数为偶数n a n a a n n n ,记Λ,3,2,1,4112=-=-n a b n n (1)求a 2, a 3;(2)判断数列{b n }是否为等比数列,并证明你的结论。
例4、在等差数列{a n }中,公差d ≠0,a 2是a 1与a 4的等比中项,又已知ΛΛ,,,,,,2131n k k k a a a a a 成等比数列,求数列{k n }的通项公式。
【课后作业】1. 在各项都为正数的等比数列{a n }中,若a 5·a 6=9,则log 3a 1+log 3a 2+log 3a 3+…+log 3a 10等于 。
2. 一个直角三角形三边的长成等比数列,则(A)三边边长之比为3∶4∶5(B)三边边长之比为1∶3∶3 (C)较小锐角的正弦为215- (D)较大锐角的正弦为215- 3. 公差不为0的等差数列第二、三、六项构成等比数列,则公比为 。
4. 已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 9成等比数列,则1042931a a a a a a ++++的值为______。
等比数列的和
等比数列的和是指由若干个等比数列的元素相加所得的结果。
在等比数列中,每个元素都是前一个元素乘以同一个常数(称为公比)得到的。
因此,若给定等比数列的首项a1和公比q,则该等比数列的第n项为an=a1*q^(n-1)。
对于有限等比数列,其求和公式为:S_n=a_1*(q^n-1)/(q-1),其中S_n为等比数列的前n项和。
这个公式的推导过程可以通过数学归纳法得到。
对于无穷等比数列,其和收敛当且仅当公比q的绝对值小于1。
此时的和为S=a_1/(1-q)。
当q的绝对值大于或等于1时,无穷等比数列的和不存在。
在实际应用中,等比数列的求和公式常常用于金融计算、工程设计、物理学等领域。
- 1 -。
等比数列求和公式及其概念是什么等比数列求和公式q≠1时 Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)q=1时Sn=na1(a1为首项,an为第n项,d为公差,q 为等比)这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠0。
注:q=1时,{an}为常数列。
利用等比数列求和公式可以快速的计算出该数列的和。
等比数列的概念1、等比数列的定义:一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于一个常数(不为0),那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用q来表示。
定义可以用公式表达为:a(n+1)/an=q(式中n为正整数,q为常数)。
特别注意的是,q是一个与项数n无关的常数2、等比中项:三个数 a、G、b依次组成等比数列,则G叫做的等比中项,且G2=a+b(等比中项的平方等于前项与后项之积)。
如何学好高中数学1.背诵数学公式数学的出题方式有很多种,但是解题方法却是相对固定的,需要熟练掌握数学公式。
在学习高中数学的时候,我们一定要先把数学公式背诵清楚,做到在考试的时候能够记得起计算公式,这是学好高中数学的关键步骤。
如果连数学公式都不记得,那做题和解题就无从谈起了。
2、高质量的题海战术与文科相比,数学这门学科更重视“刷题”。
一般来说,数学是“刷题”越多,成绩越好,但我们在采取题海战术的同时,一定注意效率。
首先,我们需要明白我们正在做的题属于什么类型;其次,要根据自己的考试情况灵活学习,基本的策略是:哪里薄弱,就重点学习哪里;实在搞不懂的部分,就暂时放弃。
有针对性的练习,才进步得快。
所以要想数学成绩进步快,专项训练绝对是必要的。
有些学生好高骛远,一开始就每天练一套高考试卷,以为这样考得越多越能吃透高考,殊不知,这种练习有很大的侥幸成分,倘能各个击破,全都扎实了,还怕高考不成?3.学会独立思考高中数学的学习需要具备一定的逻辑思维能力,通过独立思考可以提高学习效果。
等比数列求和公式是怎样的
数学方面有公式计算可能朋友们都不知道是怎样的,比如我们常说的等比数列求和公式,今天小编就带大家来了解下这方面的详细内容,想深入了解的朋友可以参考下。
等比数列求和公式是怎样的
公式:q≠1时Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)q=1时,Sn=na1。
1.等比数列求和公式是求等比数列之和的公式。
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列,常用G、P表示,这个常数叫做等比数列的公比。
2.数列是函数概念的继续和延伸,是定义在自然集或它的子集{1,2,…,n}上的函数。
对于等差数列而言,可以把它看作自然数n的“一次函数”,前n项和是自然数n的“二次函数”。
等比数列可看作自然数n的“指数函数”。
3.形如y=a^x(a>0且a≠1) (x∈R)的函数叫作指数函数。
也就是说以指数为自变量,底数为大于0且不等于1的常量的函数称为指数函数,它是初等函数中的一种。
它是定义在实数域上的单调、下凸、无上界的可微正值函数。
数学术语指数函数是数学中重要的函数。
上述文章就是小编要给大家分享的内容了,希望朋友们看完等比数列求和公式是怎样的后都能完全理解。
关注我们,每天更新不一样的文章知识点。