等差数列和等比数列公式
- 格式:doc
- 大小:81.50 KB
- 文档页数:1
等差数列与等比数列的递推公式在数学中,等差数列和等比数列是两种常见的数列形式。
它们的递推公式分别用于描述数列中各项之间的关系。
本文将就等差数列和等比数列的递推公式展开探讨。
一、等差数列的递推公式等差数列是指数列中相邻两项之间的差值保持恒定。
假设等差数列的首项为a₁,公差为d,第n项为aₙ,则等差数列的递推公式可表示为:aₙ = a₁ + (n-1)d这个公式表示第n项等于首项a₁加上前n-1个公差d的和。
这样,我们就可以根据已知的首项和公差来求解数列中的任意一项。
例如,考虑等差数列3,6,9,12,15...,其中首项a₁ = 3,公差d = 3。
我们可以使用递推公式计算第5项:a₅ = 3 + (5-1)3= 3 + 12= 15二、等比数列的递推公式等比数列是指数列中相邻两项之间的比值保持恒定。
假设等比数列的首项为a₁,公比为r,第n项为aₙ,则等比数列的递推公式可表示为:aₙ = a₁ * r^(n-1)这个公式表示第n项等于首项a₁乘以公比r的n-1次幂。
同样地,我们可以利用已知的首项和公比来求解等比数列中的任意一项。
例如,考虑等比数列2,6,18,54,162...,其中首项a₁ = 2,公比r = 3。
我们可以使用递推公式计算第5项:a₅ = 2 * 3^(5-1)= 2 * 81= 162通过等差数列和等比数列的递推公式,我们可以轻松计算数列中的任意一项。
这些公式在数学和实际问题中具有极大的应用价值。
总结:等差数列的递推公式为 aₙ = a₁ + (n-1)d,其中a₁为首项,d为公差。
等比数列的递推公式为 aₙ = a₁ * r^(n-1),其中a₁为首项,r为公比。
以上就是等差数列和等比数列的递推公式的相关内容。
通过理解和应用这些公式,我们能够更好地处理数列问题,并在实际应用中发挥出它们的作用。
希望本文对您有所帮助!。
等比数列与等差数列
等比数列是指数列中的每一项与它前一项的比值相等的数列。
比如:1,2,4,8,16,32,64, ... 就是一个以2为比例的等比数列。
等差数列是指数列中的每一项与它前一项的差值相等的数列。
比如:1,3,5,7,9,11,13, ... 就是一个以2为公差的等差数列。
等比数列和等差数列都是常见的数列,它们都有一定的规律,可以使用数学公式来表示。
等比数列可以使用通项公式an = a1 * r^(n-1)来表示,其中a1为首项,r为公比,n为项数。
等差数列可以使用通项公式an = a1 + (n-1)d来表示,其中a1为首项,d为公差,n为项数。
这两种数列在数学中有很多应用,比如在金融领域中用于计算复利或利率,还可以用于计算物理中的运动问题,以及在计算机算法中的循环计算等。
等差等比数列的通项及求和公式等差数列是指数列中的相邻两项之间的差值保持恒定的数列。
等差数列的通项公式和求和公式非常重要,在数学中得到广泛的应用。
1.通项公式:设等差数列的首项为a₁,公差为d,则等差数列的通项公式为:aₙ=a₁+(n-1)*d其中,aₙ表示数列的第n项。
2.求和公式:设等差数列的首项为a₁,末项为aₙ,共有n项,公差为d,则等差数列的前n项和的求和公式为:Sn=(a₁+aₙ)*n/2其中,Sn表示数列的前n项和。
等比数列是指数列中的相邻两项之间的比值保持恒定的数列。
等比数列的通项公式和求和公式也具有重要的应用。
1.通项公式:设等比数列的首项为a₁,公比为q,则等比数列的通项公式为:aₙ=a₁*q^(n-1)其中,aₙ表示数列的第n项。
2.求和公式:设等比数列的首项为a₁,共有n项,公比为q,则等比数列的前n项和的求和公式为:Sn=a₁*(1-q^n)/(1-q)当q=1时,数列为等差数列,求和公式退化为等差数列的求和公式。
三、等差数列和等比数列的应用等差数列和等比数列的应用非常广泛,包括但不限于以下几个方面:1.数学应用:等差数列和等比数列的通项公式和求和公式在数学中有重要的应用,如解方程、求极限、推导函数的表达式等。
2.物理应用:在物理学中,很多现象和规律都可以用等差数列和等比数列来描述,如自由落体运动、等速直线运动等。
3.经济应用:在经济学中,很多经济指标的增长变化都可以用等差数列和等比数列来表达,如GDP增长、利润增长、市场份额等。
4.工程应用:在工程学中,等差数列和等比数列的应用也非常广泛,如计算机网络的数据传输速率、通信系统的信号强度衰减等。
总之,等差数列和等比数列的通项公式和求和公式是数学中的重要概念和工具,深入理解和熟练应用这些公式对于解决实际问题具有重要意义。
等比数列求和公式和等差数列求和公式
等比数列求和公式:设等比数列的首项为a,公比为r,求前n项和为Sn,则等比数列求和公式为:
Sn=a*(r^n1)/(r1)
其中,n为项数。
举例说明:
假设有一个等比数列,首项a为3,公比r为2,求前5项的和。
根据等比数列求和公式,代入a=3,r=2,n=5:
S5=3*(2^51)/(21)
=3*(321)/1
=3*31
=93
所以前5项的和为93。
等差数列求和公式:设等差数列的首项为a,公差为d,求前n项和为Sn,则等差数列求和公式为:
Sn=n*(a+l)/2
其中,n为项数,l为最后一项(第n项)。
举例说明:
假设有一个等差数列,首项a为2,公差d为3,求前6项的和。
首先需要确定最后一项l,可以通过等差数列通项公式
an=a+(n1)*d来计算,代入a=2,d=3,n=6:
l=a+(n1)*d
=2+(61)*3
=2+5*3
=2+15
=17
然后,代入公式Sn=n*(a+l)/2,代入n=6,a=2,l=17:
S6=6*(2+17)/2
=6*19/2
=6*9.5
=57
所以前6项的和为57。
等比等差数列公式总结数列是数学中一个非常重要的概念。
在数列中,等差数列和等比数列是最为常见和基础的两种形式。
它们具有简单明了的规律性,用简洁的公式能够表达出来。
本文将对等差数列和等比数列的公式进行总结,希望可以帮助到对数列感兴趣的读者。
一、等差数列公式总结等差数列是指数列中相邻两项之间的差值保持相等的数列。
比如,1,3,5,7,9,11...就是一个等差数列,它的公差为2。
对于等差数列,我们可以通过以下公式进行总结。
1. 通项公式等差数列的通项公式可以用来求出数列中的任意一项。
设等差数列的首项为a₁,公差为d,第n项为aₙ,则通项公式可以表示为:aₙ = a₁ + (n-1)d 。
这个公式的原理是通过每一项之间的差值与公差之间的关系来确定每一项的值。
2. 前n项和公式在等差数列中,我们经常需要求出前n项和的值。
这可以通过前n项和公式来实现。
设等差数列的首项为a₁,公差为d,则前n项和公式可以表示为:Sₙ = n/2(2a₁ + (n-1)d) 。
这个公式的原理是通过将数列拆分成两个相同的递增序列,然后对每一项求和来计算前n项和的值。
二、等比数列公式总结等比数列是指数列中相邻两项之间的比值保持相等的数列。
比如,1,2,4,8,16...就是一个等比数列,它的公比为2。
对于等比数列,我们可以通过以下公式进行总结。
1. 通项公式等比数列的通项公式可以用来求出数列中的任意一项。
设等比数列的首项为a₁,公比为q,第n项为aₙ,则通项公式可以表示为:aₙ = a₁ * qⁿ⁻¹。
这个公式的原理是通过每一项与首项之间的比值与公比之间的关系来确定每一项的值。
2. 前n项和公式在等比数列中,我们同样需要求出前n项和的值。
这可以通过前n项和公式来实现。
设等比数列的首项为a₁,公比为q,则前n项和公式可以表示为:Sₙ = a₁(1-qⁿ)/ (1-q) 。
这个公式的原理是通过将数列拆分成n个相同的递增序列,然后对每一项求和来计算前n项和的值。
数列的等差和等比公式及其应用数学中,数列是由一系列数字按照一定规律排列形成的序列。
在数学中,我们经常会遇到等差数列和等比数列,它们都有各自的公式和应用。
一、等差数列等差数列是指数列中相邻两项之差保持恒定的序列。
首项记作a,公差记作d,那么等差数列的通项公式可以表示为:an = a + (n - 1)d。
等差数列在实际生活中有广泛的应用。
例如,我们可以借助等差数列的概念计算每天的步数增量。
假设第一天我们走了1000步,每天步数增加100步,那么根据等差数列的公式,第n天的步数可以表示为an = 1000 + (n - 1)100,利用这个公式,我们可以方便地计算出任意一天的步数。
二、等比数列等比数列是指数列中相邻两项之比保持恒定的序列。
首项记作a,公比记作r,那么等比数列的通项公式可以表示为:an = ar^(n - 1)。
等比数列在许多实际问题中都有应用。
例如,我们可以通过等比数列来计算一笔存款在多年后的总额。
假设我们将1万元存入银行,年利率为5%,那么每年末的存款总额就可以用等比数列的公式来计算。
每年的总额等于上一年的总额乘以(1 + 5%),也就是说an = 10000 * (1 + 5%)^(n - 1)。
三、应用实例除了上述的步数增量和存款总额等计算问题,等差和等比数列还在其他问题中有着广泛的应用。
1. 等差数列应用实例:求和等差数列的一个重要应用是求和问题。
我们可以很方便地利用等差数列的求和公式来计算一段连续整数的和。
假设我们要计算从1到100的所有整数的和,可以利用等差数列的求和公式:Sn = (n/2)(a + l),其中Sn表示前n项和,n为项数,a为首项,l为末项。
在这个例子中,n=100,a=1,l=100,代入公式得到Sn = (100/2)(1 + 100) = 5050,因此从1到100的和为5050。
2. 等比数列应用实例:不断蔓延的细菌假设有一种细菌,每隔一小时会繁殖出两倍的数量。
等比等差数列的所有公式等差数列和等比数列是数学领域里比较基础且常见的两种数列。
它们不仅在高中阶段的数学学习中出现,同时也在大学的高级数学科目中应用广泛。
本文将会全面介绍等差数列和等比数列的定义、公式以及应用,以期为读者提供一个全面且清晰的了解。
一、等差数列等差数列是指一种数列,其任意两个相邻项之间的差值是相等的,这个相等的差值叫做公差。
举个例子,1,3,5,7,9....,就是一个公差为2的等差数列。
等差数列的通项公式对于任意一个等差数列,其通项公式可以表示为an=a1+(n-1)d,其中an表示该数列的第n项,a1表示该数列的首项,d表示该数列的公差。
这个公式用起来非常方便,读者只需要知道该数列的首项和公差,就可以轻松地得出该数列的任意一项。
等差数列的和公式等差数列的和公式就是数列的所有数值之和,它能够帮助我们快速计算数列中所有数值之和。
韦达定理是该公式的基础,韦达定理是指求等差数列和时将数列上下颠倒,在叠加两个相同的数列使其首项与末项分别相加后,其中的所有项均相等,其和是所求等差数列的和的两倍。
求和公式: Sn=n(a1+an)/2其中n表示项数,a1表示首项,an表示末项。
(特殊情况下)如果公差为1,那么求和公式可以变为:Sn=n(a1+an)/2=n(a1+1)/2 。
二、等比数列等比数列是指一种数列,其任意两个相邻项之间的比值是相等的,这个相等的比值叫做公比。
例如,1,2,4,8,16....就是一个公比为2的等比数列。
等比数列的通项公式对于任意一个等比数列,其通项公式可以表示为an=a1×r^(n-1),其中an表示该数列的第n项,a1表示该数列的首项,r表示该数列的公比。
与等差数列的情况类似,知道等比数列的首项和公比,就可以很容易地得出该数列的任意一项。
等比数列的和公式等比数列的和公式可以帮助我们快速计算数列中所有数值之和。
其中,如果公比r=1,那么求和公式就是Sn=na1,这个公式表示如果公比为1的等比数列中有n个元素,那么这个数列的和就是该数列第一个元素的值与这n 个元素数值之和相等。
等差、等比数列的公式1.概念与公式:①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;2°.通项公式:;)()1(1d k n a d n a a k n -+=-+=3°.前n 项和公式:公式:.2)1(2)(11d n n na a a n S n n -+=+=②等比数列:1°.定义若数列q a a a nn n =+1}{满足(常数),则}{n a 称等比数列;2°.通项公式:;11kn k n n q a q a a --==3°.前n 项和公式:),1(1)1(111≠--=--=q qq a qq a a S nn n 当q=1时.1na S n =2.简单性质:①首尾项性质:设数列,,,,,:}{321n n a a a a a1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =⋅=⋅=⋅--n n n a a a a a a ②中项及性质:1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2b a A +=2°.设a ,G ,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±=③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ⋅=⋅④顺次n 项和性质:1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=nk n n k nn k kk kaa a 121312,,则组成公差为n 2d 的等差数列;2°. 若}{n a 是公差为q 的等比数列,∑∑∑=+=+=nk n n k nn k kk kaa a 121312,,则组成公差为q n 的等比数列.(注意:当q =-1,n 为偶数时这个结论不成立)⑤若}{n a 是等比数列,则顺次n 项的乘积n n n n n n n a a a a a a a a a 3221222121,, ++++组成公比这2nq的等比数列.⑥若}{n a 是公差为d 的等差数列,1°.若n 为奇数,则,,:(21+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S偶指所有奇数项、所有偶数项的和);2°.若n 为偶数,则.2nd S S =-奇偶练习 1.三个数,,1,,1,1,122成等比数列又成等差数列n m nm的值为则nm n m ++22 ( )A .-1或3B .-3或1C .1或3D .-3或-1 2.在等比数列1020144117,5,6,}{a a a a a a a n 则中=+=⋅=( )A .2332或B .2332--或 C .515--或 D .2131-或3.等比数列===302010,10,20,}{M MM M n a n n 则若项乘积记为前( )A .1000B .40C .425D .814.已知等差数列5,8,11,…与3,7,11,…都有100项,则它们相同项的个数 ( ) A .25 B .26 C .33 D .345.已知一个等差数列的前5项的和是120,最后5项的和是180,又所有项的和为360,则此数列的项数为 ( ) A .12项 B .13项 C .14项 D .15项 6.若两个等差数列)(27417,}{},{+∈++=N n n n B A B A n b a nn n n n n 且满足和项和分别为的前则的值是1111b a( )A .47 B .23 C .34 D .71781.B 2.A 3.D 4.A 5.A 6.C求通项方法(一)一 公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有1n n n a S S -=-(2)n ≥,等差数列或等比数列的通项公式。
数列1. ⑴等差、等比数列:⑵看数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数).⑶看数列是不是等比数列有以下四种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n②112-+⋅=n n n a a a (2≥n ,011≠-+n n n a a a )①i. ac b =,是a 、b 、c 成等比的双非条件,即ac b =a 、b 、c 等比数列.ii. ac b =(ac >0)→为a 、b 、c 等比数列的充分不必要. iii. ac b ±=→为a 、b 、c 等比数列的必要不充分. iv. ac b ±=且0 ac →为a 、b 、c 等比数列的充要.注意:任意两数a 、c 不一定有等比中项,除非有ac >0,则等比中项一定有两个. ③n n cq a =(q c ,为非零常数).④正数列{n a }成等比的充要条件是数列{n x a log }(1 x )成等比数列.等差数列等比数列定义 d a a n n =-+1)0(1≠=+q q a a nn 递推公式 d a a n n +=-1;md a a n m n +=- q a a n n 1-=;m n m n q a a -=通项公式 d n a a n )1(1-+=11-=n n q a a (0,1≠q a )中项2kn k n a a A +-+=(0,,* k n N k n ∈))0( k n k n k n k n a a a a G +-+-±=(0,,* k n N k n ∈)前n 项和)(21n n a a nS +=d n n na S n 2)1(1-+=()⎪⎩⎪⎨⎧≥--=--==)2(111)1(111q q qa a qq a q na S n n n 重要性质),,,,(*q p n m N q p n m a a a a q p n m +=+∈+=+),,,,(*q p n m N q p n m a a a a q p n m +=+∈⋅=⋅⑷数列{n a }的前n 项和n S 与通项n a 的关系:⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn[注]: ①()()d a nd d n a a n -+=-+=111(d 可为零也可不为零→为等差数列充要条件(即常数列也是等差数列)→若d 不为0,则是等差数列充分条件). ②等差{n a }前n 项和n d a n d Bn An S n ⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛=+=22122 →2d可以为零也可不为零→为等差的充要条件→若d 为零,则是等差数列的充分条件;若d 不为零,则是等差数列的充分条件.③非零..常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列) 2. ①等差数列依次每k 项的和仍成等差数列,其公差为原公差的k 2倍...,,232k k k k k S S S S S --;②若等差数列的项数为2()+∈N n n ,则,奇偶nd S S =-1+=n n a a S S 偶奇;③若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇,1-=n n S S 偶奇 得到所求项数到代入12-⇒n n . 3. 常用公式:①1+2+3 …+n =()21+n n ②()()61213212222++=+++n n n n③()2213213333⎥⎦⎤⎢⎣⎡+=++n n n[注]:熟悉常用通项:9,99,999,…110-=⇒n n a ; 5,55,555,…()11095-=⇒nn a . 4. 等比数列的前n 项和公式的常见应用题:⑴生产部门中有增长率的总产量问题. 例如,第一年产量为a ,年增长率为r ,则每年的产量成等比数列,公比为r +1. 其中第n 年产量为1)1(-+n r a ,且过n 年后总产量为:.)1(1])1([)1(...)1()1(12r r a a r a r a r a a n n +-+-=+++++++-⑵银行部门中按复利计算问题. 例如:一年中每月初到银行存a 元,利息为r ,每月利息按复利计算,则每月的a 元过n 个月后便成为n r a )1(+元. 因此,第二年年初可存款:)1(...)1()1()1(101112r a r a r a r a ++++++++=)1(1])1(1)[1(12r r r a +-+-+. ⑶分期付款应用题:a 为分期付款方式贷款为a 元;m 为m 个月将款全部付清;r 为年利率.()()()()()()()()1111111 (1112)1-++=⇒-+=+⇒++++++=+--m m m mm m mr r ar x r r x r a x r x r x r x r a练习 1.在83和272之间插入三个数,使五个数成等比数列,则插入的三个数的乘积 .2.已知等差数列{}n a 满足10,45342=+=+a a a a ,则它的前十项的和=10S .3.等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为 .4.等差数列{n a }的公差是2,a 1+a 4+…+a 97 = 50,则a 3+a 6+…+a 99 = .5.设S n 和T n 分别为等差数列{}n a 和{}n b 的前n 项和,且27417++=n n T S n n ,则=1111b a . 6.设n S 是等差数列{}n a 的前n 项和,若9535=a a ,则=59S S. 7.若等差数列{}n a 的前n 项和为n S ,,36,963==S S 则=++987a a a . 8.已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差d =_______ 9.设n S 为等差数列{}n a 的前n 项和,4S =14,10S -7S =30,则8S = .10.设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k =_____ 11.在等比数列{n a }中,4021=+a a ,6043=+a a ,那么=+87a a .12.数列{}n a 为单调递减的等比数列,且a 1+a 2+a 3 =7,a 1·a 2·a 3 = 8,则其通项a n = _______. 13.等比数列{}n a 中,a 4·a 7512-=,a 3+a 8=124,且公比q 为整数,则a 10 = . 14.在由正数组成的等比数列{}n a 中,a 4·a 5·a 6=3,则log 3a 1+log 3a 2+log 3a 8+log 3a 9=____ .15.一个首项为正数的等差数列中,前3项的和等于前11项的和,当这个数列的前n 项和最大时,n= . 16.设等比数列{}n a 的前n 项和为S n ,若S 3+S 6=2S 9,则数列{}n a 的公比q = . 17.在数列{}n a 中,a 1=14,且3a n =3a n+1+2,则使a n ·a n+2<0成立的n 值是 . 18.数列{}n a 的通项a n =2n +1,=++=n a a a b nn 21 .19.随着科技发展计算机价格不断降低,每年计算机价格降低13,2002年价格为8100元的计算机,2006年价格可降为__________.20.等差数列{}n a 中共有12+n 项,且此数列中的奇数项之和为77,偶数项之和为66,11a =,则其项数为_________ ,中间项为__________;21.若等差数列{}n a 中,n S 是其前n 项和,20,10455==S S ,则=50S .22.有四个数前三个成等差,后三个成等比,首末两数和为16,中间两数和为12,求四个数.23.已知数列{}n a 的通项65()2()n nn n a n -⎧=⎨⎩为奇数为偶数,求其前n 项和n S .24.数列{}n a 以1000为首项,公比为110的等比数列,数列{b }n 满足121(lg lg lg )k k b a a a k=+++ *()k N ∈,(1)求数列{b }n 的前n 项和的最大值; (2)求数列{|b |}n 的前n 项和n S '.25.已知数列{}n a 是等差数列,,12,23211=++=a a a a(1)求数列{}n a 的通项公式; (2)令n n n a b 3⋅=,求数列{b }n 的前n 项和n S .26.已知数列{}n a 为等差数列,公差0≠d ,其中1k a ,2k a ,…,n k a 恰为等比数列,若11=k ,52=k ,173=k ,求.321n k k k k ++++。
数列与数列的通项公式等差数列与等比数列的性质与求和公式数列与数列的通项公式——等差数列与等比数列的性质与求和公式数列是数学中的重要概念,它是由一些按照特定规律排列的数字组成的序列。
本文将重点介绍两种常见的数列:等差数列和等比数列,包括它们的性质和求和公式。
一、等差数列等差数列是指一个数列中的每一项与其前一项之差都相等的数列。
设等差数列的首项为a₁,公差为d,则其通项公式可以表示为:aₙ = a₁ + (n - 1)d (1)其中,aₙ表示第n项,n表示项数。
1.1 等差数列的性质等差数列具有以下一些重要的性质:性质1:首项与末项的和等于中间各项的和。
对于等差数列 Sₙ = a₁ + a₂ + ... + aₙ,其中a₁为首项,aₙ为末项,n为项数,其和Sₙ可以表示为:Sₙ = (a₁ + aₙ) * n / 2 (2)性质2:等差数列项数的求解。
设Sₙ为等差数列的和,首项为a₁,公差为d,则项数n可以通过如下公式求解:n = (aₙ - a₁) / d + 1 (3)1.2 等差数列的求和公式对于等差数列的求和,我们可以利用公式(2)来进行求解。
例如,对于等差数列1,4,7,10,13,其首项a₁为1,公差d为3,项数n为5,可以使用公式(2)来计算其和S₅:S₅ = (1 + 13) * 5 / 2 = 35二、等比数列等比数列是指一个数列中的每一项与其前一项之比都相等的数列。
设等比数列的首项为a₁,公比为q,则其通项公式可以表示为:aₙ = a₁ * q^(n - 1) (4)其中,aₙ表示第n项,n表示项数。
2.1 等比数列的性质等比数列具有以下一些重要的性质:性质1:首项与末项的比等于中间各项的比。
对于等比数列 Sₙ = a₁ + a₂ + ... + aₙ,其中a₁为首项,aₙ为末项,n为项数,其和Sₙ可以表示为:Sₙ = a₁ * (1 - qⁿ) / (1 - q) (5)性质2:等比数列项数的求解。