等差数列与等比数列基本公式
- 格式:ppt
- 大小:468.00 KB
- 文档页数:29
等差等比数列公式大全《起点家教班》1、 a n ={()2)1(11≥-=-n s s n s n n 注意:1--=n n n s s a 不是对一切正整数n 都成立,而是局限于n ≥22、 等差数列通项公式:n a =1a +(n-1)d = m a +(n-m)d ⇒ d=mn a a mn --(重要)3、 若{n a }是等差数列,m+n=p+q 则m a +n a =p a +q a4、 若{n a }是等比数列,m+n=p+q 则m a .n a =p a .q a5、 {n a }是等差数列,若m 、n 、p 、q ∈N *且m ≠n,p ≠q,则mn a a mn --=q p a a q p --=d6、 等差数列{n a }的前n 项和为n s ,则n s =()21na a n + (已知首项和尾项)=()211dn n na -+(已知首项和公差) =n d a dn ⎪⎭⎫⎝⎛-+212112(可以求最值问题)7、 等差数列部分和性质:m m m m m s s s s s 232,,--…仍成等差数列其公差是原来公差的m 28、 n s 的最值问题:若{n a }是等差数列,1a 为首项,d 为公差 ① 首项1a >0,d <0,n 满足n a ≥0,1+n a <0时前n 项和n s 最大 ② 首项1a <0,d >0,n 满足n a ≤0,1+n a >0时前n 项和n s 最小 9、 在等差数列{n a }中,奇s 与偶s 的关系:①当n 为奇数时,n s =n.a 21+n , 奇s -偶s =a 21+n ,偶奇s s =11-+n n ②当n 为奇数时,n s =n.2122++nn a a , 奇s -偶s =d n 2偶奇s s =122+nna a10、若{n a }是等比数列,a,G ,b 成等比数列则G 2=ab(等比中项) 11、若{n a },{}n b (项数相同)是等比数列则{}{}{}⎭⎬⎫⎩⎨⎧∙⎭⎬⎫⎩⎨⎧n n n n n n n b a b a a a a ,,,1,2λ仍是等比数列 12、等比数列单调性的问题①当1a ≥0时,若0<q <1则{n a }是递减数列; q >1则{n a }是递增数列 ②当1a <0时,若0<q <1则{n a }是递增数列; q >1则{n a }是递减数列 13、在等差数列中抽取新数列:一般地,对于公差为d 的等差数列{n a },若.,321k k k 成等差数列,那么,......,,,321kn k k k a a a a 仍成等差数列,而且公差为(12k k -)d 14、在等比数列中抽取新数列:,......,,,321kn k k k a a a a 组成新数列{}nk a ,如果序号...,321k k k 组成数列为{}n k ,且n k 成公差为m 的等差数列,那么数列{}nk a 是以q m 为公比的等比数列15、等比数列的前n 项和n s =()q q a n --111=qqa a n --11。
等比等差数列公式总结数列是数学中一个非常重要的概念。
在数列中,等差数列和等比数列是最为常见和基础的两种形式。
它们具有简单明了的规律性,用简洁的公式能够表达出来。
本文将对等差数列和等比数列的公式进行总结,希望可以帮助到对数列感兴趣的读者。
一、等差数列公式总结等差数列是指数列中相邻两项之间的差值保持相等的数列。
比如,1,3,5,7,9,11...就是一个等差数列,它的公差为2。
对于等差数列,我们可以通过以下公式进行总结。
1. 通项公式等差数列的通项公式可以用来求出数列中的任意一项。
设等差数列的首项为a₁,公差为d,第n项为aₙ,则通项公式可以表示为:aₙ = a₁ + (n-1)d 。
这个公式的原理是通过每一项之间的差值与公差之间的关系来确定每一项的值。
2. 前n项和公式在等差数列中,我们经常需要求出前n项和的值。
这可以通过前n项和公式来实现。
设等差数列的首项为a₁,公差为d,则前n项和公式可以表示为:Sₙ = n/2(2a₁ + (n-1)d) 。
这个公式的原理是通过将数列拆分成两个相同的递增序列,然后对每一项求和来计算前n项和的值。
二、等比数列公式总结等比数列是指数列中相邻两项之间的比值保持相等的数列。
比如,1,2,4,8,16...就是一个等比数列,它的公比为2。
对于等比数列,我们可以通过以下公式进行总结。
1. 通项公式等比数列的通项公式可以用来求出数列中的任意一项。
设等比数列的首项为a₁,公比为q,第n项为aₙ,则通项公式可以表示为:aₙ = a₁ * qⁿ⁻¹。
这个公式的原理是通过每一项与首项之间的比值与公比之间的关系来确定每一项的值。
2. 前n项和公式在等比数列中,我们同样需要求出前n项和的值。
这可以通过前n项和公式来实现。
设等比数列的首项为a₁,公比为q,则前n项和公式可以表示为:Sₙ = a₁(1-qⁿ)/ (1-q) 。
这个公式的原理是通过将数列拆分成n个相同的递增序列,然后对每一项求和来计算前n项和的值。
等差数列与等比数列的求和公式在数学中,等差数列和等比数列是常见且重要的数列类型。
对于这两种数列,我们可以使用求和公式来计算它们的和。
本文将介绍等差数列和等比数列的定义以及它们的求和公式,并通过具体例子进行说明。
一、等差数列(Arithmetic progression)等差数列是指数列中相邻两项之间的差都相等的数列。
设等差数列的首项为a₁,公差为d,则其通项公式为:aₙ = a₁ + (n-1)d其中,aₙ表示数列的第n项。
为了求解等差数列的和,我们介绍一个常用的求和公式,即等差数列的求和公式。
设等差数列的前n项和为Sₙ,则有:Sₙ = (a₁ + aₙ) * n / 2或者Sₙ = [2a₁ + (n-1)d] * n / 2其中,[]表示取整。
下面通过一个例子来说明等差数列的求和公式的应用。
例子:求等差数列1,4,7,10,...,前100项的和。
解:首先,我们可以得到等差数列的首项a₁为1,公差d为3(4-1=3)。
因此,我们可以使用等差数列的求和公式来计算前100项的和。
S₁₀₀ = [2*1 + (100-1)*3] * 100 / 2= (2 + 297) * 100 / 2= 299 * 100 / 2= 14950因此,等差数列1,4,7,10,...,前100项的和为14950。
二、等比数列(Geometric progression)等比数列是指数列中相邻两项之间的比值都相等的数列,这个比值称为公比。
设等比数列的首项为a₁,公比为q,则其通项公式为:aₙ = a₁ * q^(n-1)其中,aₙ表示数列的第n项。
为了求解等比数列的和,我们介绍一个常用的求和公式,即等比数列的求和公式。
设等比数列的前n项和为Sₙ,则有:Sₙ = a₁ * (1 - qⁿ) / (1 - q)下面通过一个例子来说明等比数列的求和公式的应用。
例子:求等比数列2,6,18,54,...,前8项的和。
解:首先,我们可以得到等比数列的首项a₁为2,公比q为3(6/2=3)。
等差、等比数列的公式1.概念与公式:①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;2°.通项公式:;)()1(1d k n a d n a a k n -+=-+=3°.前n 项和公式:公式:.2)1(2)(11d n n na a a n S n n -+=+=②等比数列:1°.定义若数列q a a a nn n =+1}{满足(常数),则}{n a 称等比数列;2°.通项公式:;11kn k n n q a q a a --==3°.前n 项和公式:),1(1)1(111≠--=--=q qq a qq a a S nn n 当q=1时.1na S n =2.简单性质:①首尾项性质:设数列,,,,,:}{321n n a a a a a1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =⋅=⋅=⋅--n n n a a a a a a ②中项及性质:1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2b a A +=2°.设a ,G ,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±=③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ⋅=⋅④顺次n 项和性质:1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=nk n n k nn k kk kaa a 121312,,则组成公差为n 2d 的等差数列;2°. 若}{n a 是公差为q 的等比数列,∑∑∑=+=+=nk n n k nn k kk kaa a 121312,,则组成公差为q n 的等比数列.(注意:当q =-1,n 为偶数时这个结论不成立)⑤若}{n a 是等比数列,则顺次n 项的乘积n n n n n n n a a a a a a a a a 3221222121,, ++++组成公比这2nq的等比数列.⑥若}{n a 是公差为d 的等差数列,1°.若n 为奇数,则,,:(21+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S偶指所有奇数项、所有偶数项的和);2°.若n 为偶数,则.2nd S S =-奇偶练习 1.三个数,,1,,1,1,122成等比数列又成等差数列n m nm的值为则nm n m ++22 ( )A .-1或3B .-3或1C .1或3D .-3或-1 2.在等比数列1020144117,5,6,}{a a a a a a a n 则中=+=⋅=( )A .2332或B .2332--或 C .515--或 D .2131-或3.等比数列===302010,10,20,}{M MM M n a n n 则若项乘积记为前( )A .1000B .40C .425D .814.已知等差数列5,8,11,…与3,7,11,…都有100项,则它们相同项的个数 ( ) A .25 B .26 C .33 D .345.已知一个等差数列的前5项的和是120,最后5项的和是180,又所有项的和为360,则此数列的项数为 ( ) A .12项 B .13项 C .14项 D .15项 6.若两个等差数列)(27417,}{},{+∈++=N n n n B A B A n b a nn n n n n 且满足和项和分别为的前则的值是1111b a( )A .47 B .23 C .34 D .71781.B 2.A 3.D 4.A 5.A 6.C求通项方法(一)一 公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有1n n n a S S -=-(2)n ≥,等差数列或等比数列的通项公式。
2022高考数学满分讲义:第三章 数列第1讲 等差数列与等比数列[考情分析] 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.数列求和及数列的综合问题是高考考查的重点. 考点一 等差数列、等比数列的基本运算 核心提炼等差数列、等比数列的基本公式(n ∈N *) (1)等差数列的通项公式:a n =a 1+(n -1)d ; (2)等比数列的通项公式:a n =a 1·q n -1.(3)等差数列的求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d ;(4)等比数列的求和公式:S n =⎩⎪⎨⎪⎧a 1(1-q n)1-q =a 1-a n q 1-q ,q ≠1,na 1,q =1.例1 (1)《周髀算经》中有一个问题:从冬至日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影长依次成等差数列,若冬至、立春、春分的日影长的和为37.5尺,芒种的日影长为4.5尺,则冬至的日影长为( ) A .15.5尺 B .12.5尺 C .10.5尺 D .9.5尺 答案 A解析 从冬至起,十二个节气的日影长依次记为a 1,a 2,a 3,…,a 12,由题意,有a 1+a 4+a 7=37.5,根据等差数列的性质,得a 4=12.5,而a 12=4.5,设公差为d ,则⎩⎪⎨⎪⎧a 1+3d =12.5,a 1+11d =4.5,解得⎩⎪⎨⎪⎧a 1=15.5,d =-1,所以冬至的日影长为15.5尺.(2)已知点(n ,a n )在函数f (x )=2x-1的图象上(n ∈N *).数列{a n }的前n 项和为S n ,设b n =2164n s +,数列{b n }的前n 项和为T n .则T n 的最小值为________. 答案 -30解析 ∵点(n ,a n )在函数f (x )=2x -1的图象上,∴a n =2n -1(n ∈N *),∴{a n }是首项为a 1=1,公比q =2的等比数列,∴S n =1×(1-2n )1-2=2n-1,则b n =264n=2n -12(n ∈N *), ∴{b n }是首项为-10,公差为2的等差数列, ∴T n =-10n +n (n -1)2×2=n 2-11n =⎝⎛⎭⎫n -1122-1214. 又n ∈N *,∴T n 的最小值为T 5=T 6=⎝⎛⎭⎫122-1214=-30. 规律方法 等差数列、等比数列问题的求解策略 (1)抓住基本量,首项a 1、公差d 或公比q .(2)熟悉一些结构特征,如前n 项和为S n =an 2+bn (a ,b 是常数)的形式的数列为等差数列,通项公式为a n =p ·q n -1(p ,q ≠0)的形式的数列为等比数列.(3)由于等比数列的通项公式、前n 项和公式中变量n 在指数位置,所以常用两式相除(即比值的方式)进行相关计算.跟踪演练1 (1)(2020·全国Ⅱ)数列{a n }中,a 1=2,a m +n =a m a n ,若a k +1+a k +2+…+a k +10=215-25,则k 等于( ) A .2 B .3 C .4 D .5 答案 C解析 ∵a 1=2,a m +n =a m a n , 令m =1,则a n +1=a 1a n =2a n ,∴{a n }是以a 1=2为首项,2为公比的等比数列, ∴a n =2×2n -1=2n .又∵a k +1+a k +2+…+a k +10=215-25, ∴2k +1(1-210)1-2=215-25,即2k +1(210-1)=25(210-1), ∴2k +1=25,∴k +1=5,∴k =4.(2)(多选)(2020·威海模拟)等差数列{a n }的前n 项和记为S n ,若a 1>0,S 10=S 20,则( ) A .d <0 B .a 16<0 C .S n ≤S 15D .当且仅当n ≥32时,S n <0 答案 ABC解析 设等差数列{a n }的公差为d ,由S 10=S 20,得10a 1+10×92d =20a 1+20×192d ,化简得a 1=-292d .因为a 1>0,所以d <0,故A 正确;因为a 16=a 1+15d =-292d +15d =12d ,又d <0,所以a 16<0,故B 正确;因为a 15=a 1+14d =-292d +14d =-12d >0,a 16<0,所以S 15最大,即S n ≤S 15,故C 正确;S n =na 1+n (n -1)2d =n (n -30)2d ,若S n <0,又d <0,则n >30,故当且仅当n ≥31时,S n <0,故D 错误.考点二 等差数列、等比数列的性质 核心提炼1.通项性质:若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则对于等差数列,有a m +a n =a p +a q =2a k ,对于等比数列有a m a n =a p a q =a 2k . 2.前n 项和的性质:(1)对于等差数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列;对于等比数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列(q =-1且m 为偶数情况除外). (2)对于等差数列,有S 2n -1=(2n -1)a n .例2 (1)已知正项等差数列{a n }的前n 项和为S n (n ∈N *),若a 5+a 7-a 26=0,则S 11的值为( ) A .11 B .12 C .20 D .22 答案 D解析 结合等差数列的性质,可得a 5+a 7=2a 6=a 26, 又该数列为正项数列,可得a 6=2, 所以由S 2n +1=(2n +1)a n +1, 可得S 11=S 2×5+1=11a 6=22.(2)已知函数f (x )=21+x 2(x ∈R ),若等比数列{a n }满足a 1a 2 020=1,则f (a 1)+f (a 2)+f (a 3)+…+f (a 2 020)等于( )A .2 020B .1 010C .2 D.12答案 A解析 ∵a 1a 2 020=1, ∴f (a 1)+f (a 2 020)=21+a 21+21+a 22 020=21+a 21+21+1a 21=21+a 21+2a 211+a 21=2, ∵{a n }为等比数列,则a 1a 2 020=a 2a 2 019=…=a 1 010a 1 011=1, ∴f (a 2)+f (a 2 019)=2,…,f (a 1 010)+f (a 1 011)=2, 即f (a 1)+f (a 2)+f (a 3)+…+f (a 2 020)=2×1 010=2 020. 规律方法 等差、等比数列的性质问题的求解策略(1)抓关系,抓住项与项之间的关系及项的序号之间的关系,从这些特点入手,选择恰当的性质进行求解.(2)用性质,数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等,可利用函数的性质解题.跟踪演练2 (1)(2020·全国Ⅰ)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8等于( )A .12B .24C .30D .32 答案 D解析 设等比数列{a n }的公比为q , 则q =a 2+a 3+a 4a 1+a 2+a 3=21=2,所以a 6+a 7+a 8=(a 1+a 2+a 3)·q 5=1×25=32.(2)已知正项等比数列{a n }的前n 项和为S n ,且S 10=10,S 30=130,则S 40等于( ) A .-510 B .400 C .400或-510 D .30或40答案 B解析 ∵正项等比数列{a n }的前n 项和为S n , ∴S 10,S 20-S 10,S 30-S 20,S 40-S 30也成等比数列, ∴10×(130-S 20)=(S 20-10)2, 解得S 20=40或S 20=-30(舍), 故S 40-S 30=270,∴S 40=400.考点三 等差数列、等比数列的探索与证明 核心提炼等差数列 等比数列 定义法 a n +1-a n =d a n +1a n=q (q ≠0) 通项法 a n =a 1+(n -1)d a n =a 1·q n -1 中项法2a n =a n -1+a n +1a 2n =a n -1a n +1证明数列为等差(比)数列一般使用定义法.例3 (2019·全国Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.(1)证明 由题设得4(a n +1+b n +1)=2(a n +b n ), 即a n +1+b n +1=12(a n +b n ).因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8, 即a n +1-b n +1=a n -b n +2. 又a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)解 由(1)知,a n +b n =12n -1,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12(n ∈N *),b n =12[(a n +b n )-(a n -b n )]=12n -n +12(n ∈N *).易错提醒 a 2n =a n -1a n +1(n ≥2,n ∈N *)是{a n }为等比数列的必要不充分条件,也就是判断一个数列是等比数列时,要注意各项不为0.跟踪演练3 已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a n n .(1)求b 1,b 2,b 3;(2)判断数列{b n }是不是等比数列,并说明理由; (3)求{a n }的通项公式.解 (1)由条件可得a n +1=2(n +1)na n .将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.理由如下: 由条件可得a n +1n +1=2a nn,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a n n=2n -1,所以a n =n ·2n -1(n ∈N *).专题强化练一、单项选择题1.在等比数列{a n }中,若a 3=2,a 7=8,则a 5等于( ) A .4 B .-4 C .±4 D .5 答案 A解析 ∵数列{a n }为等比数列,且a 3=2,a 7=8, ∴a 25=a 3·a 7=2×8=16,则a 5=±4, ∵等比数列奇数项的符号相同,∴a 5=4.2.(2020·全国Ⅱ)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S n a n 等于( )A .2n -1B .2-21-n C .2-2n -1 D .21-n -1答案 B解析 方法一 设等比数列{a n }的公比为q , 则q =a 6-a 4a 5-a 3=2412=2.由a 5-a 3=a 1q 4-a 1q 2=12a 1=12得a 1=1. 所以a n =a 1qn -1=2n -1,S n =a 1(1-q n )1-q=2n-1,所以S n a n =2n -12n -1=2-21-n .方法二 设等比数列{a n }的公比为q ,则⎩⎪⎨⎪⎧a 3q 2-a 3=12, ①a 4q 2-a 4=24, ② ②①得a 4a 3=q =2. 将q =2代入①,解得a 3=4. 所以a 1=a 3q2=1,下同方法一.3.已知等差数列{a n }和等比数列{b n }的各项都是正数,且a 1=b 1,a 11=b 11.那么一定有( ) A .a 6≤b 6 B .a 6≥b 6 C .a 12≤b 12 D .a 12≥b 12 答案 B解析 因为等差数列{a n }和等比数列{b n }的各项都是正数,且a 1=b 1,a 11=b 11,所以a 1+a 11=b 1+b 11=2a 6,所以a 6=a 1+a 112=b 1+b 112≥b 1b 11=b 6.当且仅当b 1=b 11时,取等号,此时数列{b n }的公比为1. 4.在数列{a n }中,a 1=2,a n +1n +1=a n n +ln ⎝⎛⎭⎫1+1n ,则a n 等于( ) A .2+n ln n B .2n +(n -1)ln n C .2n +n ln n D .1+n +n ln n答案 C解析 由题意得a n +1n +1-a nn =ln(n +1)-ln n ,n 分别用1,2,3,…,n -1(n ≥2)取代, 累加得a n n -a 11=ln n -ln 1,即a nn =2+ln n ,即a n =2n +n ln n (n ≥2),又a 1=2符合上式,故a n =2n +n ln n .5.已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1),则( )A .a 9=17B .a 10=19C .S 9=81D .S 10=91 答案 D解析 ∵对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1), ∴S n +1-S n =S n -S n -1+2, ∴a n +1-a n =2.∴数列{a n }在n >1,n ∈N *时是等差数列,公差为2, 又a 1=1,a 2=2,a n =2+(n -2)×2=2n -2(n >1,n ∈N *),∴a 9=2×9-2=16,a 10=2×10-2=18,S 9=1+8×2+8×72×2=73,S 10=1+9×2+9×82×2=91.故选D.6.侏罗纪蜘蛛网是一种非常有规律的蜘蛛网,如图是由无数个正方形环绕而成的,且每一个正方形的四个顶点都恰好在它的外边最近一个正方形四条边的三等分点上,设外围第1个正方形的边长是m ,侏罗纪蜘蛛网的长度(蜘蛛网中正方形的周长之和)为S n ,则( )A .S n 无限大B .S n <3(3+5)mC .S n =3(3+5)mD .S n 可以取100m答案 B解析 由题意可得,外围第2个正方形的边长为⎝⎛⎭⎫13m 2+⎝⎛⎭⎫23m 2=53m ; 外围第3个正方形的边长为⎝⎛⎭⎫13×53m 2+⎝⎛⎭⎫23×53m 2=59m ; ……外围第n 个正方形的边长为⎝⎛⎭⎫53n -1m .所以蜘蛛网的长度 S n =4m ⎣⎡⎦⎤1+53+59+…+⎝⎛⎭⎫53n -1 =4m ×1-⎝⎛⎭⎫53n1-53<4m ×11-53=3(3+5)m .故选B. 二、多项选择题7.(2020·厦门模拟)记S n 为等差数列{a n }的前n 项和,若a 1+3a 5=S 7,则以下结论一定正确的是( ) A .a 4=0 B .S n 的最大值为S 3 C .S 1=S 6 D .|a 3|<|a 5|答案 AC解析 设等差数列{a n }的公差为d ,则a 1+3(a 1+4d )=7a 1+21d ,解得a 1=-3d ,则a n =a 1+(n -1)d =(n -4)d ,所以a 4=0,故A 正确;因为S 6-S 1=5a 4=0,所以S 1=S 6,故C 正确;由于d 的取值情况不清楚,故S 3可能为最大值也可能为最小值,故B 不正确;因为a 3+a 5=2a 4=0,所以a 3=-a 5,即|a 3|=|a 5|,故D 错误.8.已知等比数列{a n }的各项均为正数,公比为q ,且a 1>1,a 6+a 7>a 6a 7+1>2,记{a n }的前n 项积为T n ,则下列选项中正确的是( )A .0<q <1B .a 6>1C .T 12>1D .T 13>1答案 ABC解析 由于等比数列{a n }的各项均为正数,公比为q ,且a 1>1,a 6+a 7>a 6a 7+1>2,所以(a 6-1)(a 7-1)<0,由题意得a 6>1,a 7<1,所以0<q <1,A ,B 正确;因为a 6a 7+1>2,所以a 6a 7>1,T 12=a 1·a 2·…·a 11·a 12=(a 6a 7)6>1,T 13=a 137<1,所以满足T n >1的最大正整数n 的值为12,C 正确,D 错误. 三、填空题9.(2020·江苏)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n +2n -1(n ∈N *),则d +q 的值是________. 答案 4解析 由题意知q ≠1,所以S n =(a 1+a 2+…+a n )+(b 1+b 2+…+b n ) =na 1+n (n -1)2d +b 1(1-q n )1-q=d 2n 2+⎝⎛⎭⎫a 1-d 2n +b 11-q -b 1q n1-q =n 2-n +2n -1,所以⎩⎪⎨⎪⎧d2=1,a 1-d 2=-1,b11-q =-1,-b11-q q n=2n,解得d =2,q =2,所以d +q =4.10.(2020·北京市顺义区质检)设S n 为公比q ≠1的等比数列{a n }的前n 项和,且3a 1,2a 2,a 3成等差数列,则q =________,S 4S 2=________.答案 3 10解析 设等比数列的通项公式a n =a 1q n -1,又因为3a 1,2a 2,a 3成等差数列,所以2×2a 2=3a 1+a 3,即4a 1q =3a 1+a 1q 2,解得q =3或q =1(舍),S 4S 2=a 1(1-34)1-3a 1(1-32)1-3=1-341-32=10.11.(2020·潍坊模拟)九连环是我国从古至今广泛流传的一种益智游戏.在某种玩法中,用a n表示解下n (n ≤9,n ∈N *)个圆环所需移动的最少次数,{a n }满足a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1(n 为偶数),2a n -1+2(n 为奇数),则解下5个圆环需最少移动________次. 答案 16解析 因为a 5=2a 4+2=2(2a 3-1)+2=4a 3,所以a 5=4a 3=4(2a 2+2)=8a 2+8=8(2a 1-1)+8=16a 1=16, 所以解下5个圆环需最少移动的次数为16.12.已知等比数列{a n }的首项为32,公比为-12,前n 项和为S n ,且对任意的n ∈N *,都有A ≤2S n-1S n ≤B 恒成立,则B -A 的最小值为________. 答案136解析 ∵等比数列{a n }的首项为32,公比为-12,∴S n =32⎣⎡⎦⎤1-⎝⎛⎭⎫-12n 1+12=1-⎝⎛⎭⎫-12n , 令t =⎝⎛⎭⎫-12n ,则-12≤t ≤14,S n =1-t , ∴34≤S n ≤32, ∴2S n -1S n 的最小值为16,最大值为73,又A ≤2S n -1S n ≤B 对任意n ∈N *恒成立,∴B -A 的最小值为73-16=136.四、解答题13.(2020·聊城模拟)在①a 5=b 3+b 5,②S 3=87,③a 9-a 10=b 1+b 2这三个条件中任选一个,补充在下面问题中,并给出解答.设等差数列{a n }的前n 项和为S n ,数列{b n }的前n 项和为T n ,________,a 1=b 6,若对于任意n ∈N *都有T n =2b n -1,且S n ≤S k (k 为常数),求正整数k 的值. 解 由T n =2b n -1,n ∈N *得, 当n =1时,b 1=1;当n ≥2时,T n -1=2b n -1-1, 从而b n =2b n -2b n -1,即b n =2b n -1,由此可知,数列{b n }是首项为1,公比为2的等比数列,故b n =2n -1.①当a 5=b 3+b 5时,a 1=32,a 5=20,设数列{a n }的公差为d ,则a 5=a 1+4d ,即20=32+4d ,解得d =-3,所以a n =32-3(n -1)=35-3n ,因为当n ≤11时,a n >0,当n >11时,a n <0,所以当n =11时,S n 取得最大值.因此,正整数k 的值为11.②当S 3=87时,a 1=32,3a 2=87,设数列{a n }的公差为d ,则3(32+d )=87,解得d =-3,所以a n =32-3(n -1)=35-3n ,因为当n ≤11时,a n >0,当n >11时,a n <0,所以当n =11时,S n 取得最大值,因此,正整数k 的值为11.③当a 9-a 10=b 1+b 2时,a 1=32,a 9-a 10=3,设数列{a n }的公差为d ,则-d =3,解得d =-3,所以a n =32-3(n -1)=35-3n ,因为当n ≤11时,a n >0,当n >11时,a n <0,所以当n =11时,S n 取得最大值,因此,正整数k 的值为11.14.已知等比数列{a n }的公比q >1,a 1=2,且a 1,a 2,a 3-8成等差数列,数列{a n b n }的前n项和为(2n -1)·3n +12. (1)分别求出数列{a n }和{b n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,任意n ∈N *,S n ≤m 恒成立,求实数m 的最小值. 解 (1)因为a 1=2,且a 1,a 2,a 3-8成等差数列,所以2a 2=a 1+a 3-8,即2a 1q =a 1+a 1q 2-8,所以q 2-2q -3=0,所以q =3或q =-1,又q >1,所以q =3,所以a n =2·3n -1(n ∈N *).因为a 1b 1+a 2b 2+…+a n b n =(2n -1)·3n +12, 所以a 1b 1+a 2b 2+…+a n -1b n -1=(2n -3)·3n -1+12(n ≥2),两式相减,得a n b n =2n ·3n -1(n ≥2), 因为a n =2·3n -1,所以b n =n (n ≥2), 当n =1时,由a 1b 1=2及a 1=2,得b 1=1(符合上式), 所以b n =n (n ∈N *).(2)因为数列{a n }是首项为2,公比为3的等比数列,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为12,公比为13的等比数列, 所以S n =12⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13=34⎣⎡⎦⎤1-⎝⎛⎭⎫13n <34. 因为任意n ∈N *,S n ≤m 恒成立,所以m ≥34,即实数m 的最小值为34.。
等比等差数列公式大全等比数列和等差数列是高中数学中常见的数列形式,它们在数学和实际问题中都有着重要的应用。
本文将详细介绍等比数列和等差数列的定义、性质、公式以及相关的应用,希望能够帮助读者更好地理解和运用这两种数列。
一、等差数列的定义和性质。
等差数列是指数列中相邻两项之差都相等的数列,这个相等的差值称为公差,通常用字母d表示。
假设等差数列的首项为a1,公差为d,则等差数列的通项公式为,an = a1 + (n-1)d,其中n为项数。
等差数列的性质包括,1. 任意三项成等差数列;2. 等差数列的和公式Sn = n/2 (a1+an);3. 等差数列的前n项和公式Sn = n/2 (2a1+(n-1)d)。
二、等比数列的定义和性质。
等比数列是指数列中相邻两项的比值都相等的数列,这个相等的比值称为公比,通常用字母q表示。
假设等比数列的首项为a1,公比为q,则等比数列的通项公式为,an = a1 q^(n-1),其中n为项数。
等比数列的性质包括,1. 任意三项成等比数列;2. 等比数列的和公式Sn = a1 (q^n-1)/(q-1);3. 等比数列的前n项和公式Sn = a1 (1-q^n)/(1-q)。
三、等差数列和等比数列的应用。
等差数列和等比数列在现实生活和数学问题中都有着广泛的应用。
例如,等差数列可以用来描述等间隔的数值变化规律,比如每年增加固定金额的存款利息;等比数列可以用来描述成倍递增或递减的数值规律,比如细菌繁殖、利滚利等。
除此之外,等差数列和等比数列还可以应用于数学证明和数学问题的解决中。
例如,利用等差数列的性质可以简化数学证明的过程,利用等比数列的性质可以解决一些复杂的数学问题。
综上所述,等差数列和等比数列是数学中重要的数列形式,它们具有一些固定的性质和公式,同时也有着广泛的应用。
通过对这两种数列的深入理解和掌握,可以帮助我们更好地解决数学问题,理解实际生活中的规律。
希望本文的介绍对读者有所帮助,谢谢阅读!。
等差、等比的公式性质以及数列的求和方法第一节:等差数列的公式和相关性质1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:d aa n n=--1(d为公差)(2³n ,*n N Î)注:下面所有涉及n ,*n N Î省略,你懂的。
2、等差数列通项公式:1(1)n a a n d =+-,1a 为首项,d 为公差 推广公式:()nma a n m d =+-变形推广:变形推广:mn a a d mn --= 3、等差中项、等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2b a A +=或b a A +=2(2)等差中项:数列{}n a 是等差数列是等差数列)2(211-³+=Û+n a a a n n n 212+++=Ûn n n a a a 4、等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+(其中(其中A A 、B 是常数,所以当是常数,所以当d d ≠0时,时,S S n 是关于是关于n n 的二次式且常数项为项为00)特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项中间项()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数乘以中间项)和等于项数乘以中间项)5、等差数列的判定方法、等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*ÎN n )Û {}n a 是等差数列.等差数列.(2)等差中项:数列{}n a 是等差数列是等差数列)2(211-³+=Û+n aa a n n n212+++=Ûn n n aa a((3)数列{}n a 是等差数列Ûbkn a n +=(其中b k ,是常数)。
等差等比数列通项及前N项和公式数列是数学中的一个重要概念,它是由一组按照一定规律排列的数所组成的序列。
在数列中,等差数列和等比数列是最基本的两种形式。
而通项公式和前N项和公式则是用来表示等差数列和等比数列的重要公式。
本文将详细介绍等差数列和等比数列的概念,并给出它们的通项公式和前N 项和公式。
一、等差数列等差数列是指数列中相邻两项之间的差值是一个常数d,这个常数称为公差。
等差数列的通项公式和前N项和公式如下:1.通项公式:设等差数列的首项为a1,公差为d,第n项为an,则等差数列的通项公式为:an = a1 + (n - 1)d2.前N项和公式:设等差数列的首项为a1,公差为d,前N项的和为Sn,则等差数列的前N项和公式为:Sn = (a1 + an) * n / 2在等差数列中,从第一项到第N项的和可以用前N项和公式来表示。
根据这个公式,我们可以很方便地计算等差数列的前N项和。
二、等比数列等比数列是指数列中相邻两项之间的比值是一个常数q,这个常数称为公比。
等比数列的通项公式和前N项和公式如下:1.通项公式:设等比数列的首项为a1,公比为q,第n项为an,则等比数列的通项公式为:an = a1 * q^(n-1)2.前N项和公式:设等比数列的首项为a1,公比为q,前N项的和为Sn,则等比数列的前N项和公式为:Sn=(a1*(q^N-1))/(q-1)(当q≠1时)在等比数列中,从第一项到第N项的和可以用前N项和公式来表示。
需要注意的是,当公比q等于1时,等比数列通项公式中含有0的指数项,这时候通项公式的形式为an = a1,等比数列变成了一个常数数列。
三、等差数列和等比数列的应用等差数列和等比数列在数学中有着广泛的应用。
在实际生活中,很多事物的变化规律都可以用等差数列或等比数列来描述。
1.等差数列应用举例:(1)一些数学问题中常常出现等差数列的求和问题,比如计算一些等差数列的前N项和,这在数学竞赛中是经常出现的题型。
等差数列与等比数列的知识点总结等差数列与等比数列是数学中常见的数列类型。
它们在数学应用、物理学、经济学等领域中都有广泛的应用。
本文将针对等差数列与等比数列的定义、特点、常见性质和应用进行总结。
一、等差数列1. 定义等差数列是指数列中相邻两项之差保持恒定的数列。
设数列的通项公式为an,公差为d,则等差数列可以表示为:an = a1 + (n-1)d,其中a1为首项,n为项数。
2. 特点(1)相邻两项之差保持恒定,即公差d是常数。
(2)首项和公差可以确定一个等差数列。
(3)等差数列的通项公式为an = a1 + (n-1)d。
3. 常见性质(1)首项和末项之和等于中间各项之和的和。
(2)等差数列的和可以用以下公式计算:Sn = (n/2)(2a1 + (n-1)d),其中Sn为前n项和。
(3)若相邻两项互换,则公差不变。
(4)数列中的每一项都可以表示为首项与公差的线性组合。
等差数列常被用于描述随时间变化的一些规律,比如每年增长固定数量的人口、一段时间内的温度变化等等。
在计算机科学中,等差数列的性质也被广泛应用于算法设计与分析。
二、等比数列1. 定义等比数列是指数列中相邻两项之比保持恒定的数列。
设数列的通项公式为an,公比为q,则等比数列可以表示为:an = a1 * q^(n-1),其中a1为首项,n为项数。
2. 特点(1)相邻两项之比保持恒定,即公比q是常数。
(2)首项和公比可以确定一个等比数列。
(3)等比数列的通项公式为an = a1 * q^(n-1)。
3. 常见性质(1)首项和末项之比等于中间各项之比的积。
(2)等比数列的和(若存在)可以用以下公式计算:Sn = a1 * (1-q^n)/(1-q),其中Sn为前n项和,需满足|q|<1。
(3)若相邻两项互换,则公比不变。
(4)数列中的每一项都可以表示为首项与公比的幂的乘积。
等比数列常被用于描述随时间变化的指数增长或指数衰减,比如复利计算、物种繁殖等。
等比数列等差数列求和公式在数学中,等比数列和等差数列是两个非常重要的概念,经常被使用于各种数学问题中。
在本文中,我们将详细介绍等比数列和等差数列,并给出它们的求和公式,帮助读者更好地理解它们的特点和应用。
一、等差数列等差数列是指一个数列中每一项与其后一项之间的差值都相等的数列。
例如:1,3,5,7,9就是一个公差为2的等差数列。
等差数列的求和公式可以用以下公式表示:Sn=n×[2a1+(n–1)d]/2其中,Sn表示等差数列的前n项和,a1表示等差数列的首项,d 表示等差数列的公差,n表示等差数列的项数。
二、等比数列等比数列是指一个数列中每一项与其前一项之间的比值都相等的数列。
例如:1,2,4,8,16就是一个公比为2的等比数列。
等比数列的求和公式可以用以下公式表示:S=a1×(1–qn)/(1–q)其中,S表示等比数列的前n项和,a1表示等比数列的首项,q表示等比数列的公比,n表示等比数列的项数。
三、应用举例1、等差数列在数列求和、算数平均数、时间、距离等领域都有广泛的应用。
例如,假设小明从6:00开始在操场边上跑步,他每分钟的跑步速度增加了2米,而他最后一次记录进入7:00时跑了3200米,并且在训练期间从未停止,求他在训练期间跑了多少米?解:随着时间的推移,小明每分钟的速度都增加了2米,这意味着他的距离满足等差数列的形式,即3200,a2,a3,…,an。
我们可以根据等差数列的和公式计算小明跑了多少米。
首先,我们需要知道小明共训练了多少分钟。
假设小明训练了n 分钟,则a1=0,q=2,d=2,因此根据等差数列的求和公式,有:3200=n×[2×0+(n–1)×2]/23200=n×(2n–2)/23200=n×(n–1)n^2–n–3200=0n≈64.8故小明共跑了64.8分钟,跑了64个完整的1分钟和最后一次跑步不到1分钟,因此跑了64×120+80=77120米。
1、等比数列求和公式:Sn=a1(1-q^n)/(1-q)(q≠1)。
通项公式:an=a1×q^(n-1)2、等差数列求和公式:Sn=na1+n(n-1)d/2。
3、文字公式:末项=首项+(项数-1)×公差;项数=(末项-首项)÷公差+1;首项=末项-(项数-1)×公差;和=(首项+末项)×项数÷2;末项:最后一位数;首项:第一位数等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。
这个常数叫做等差数列的公差。
前n项和公式为: Sn=a1*n+ [n* (n-1)*d]/2或Sn= [n* (al+an)]/2。
等差数列:an=a1+(n-1)d;知道首尾==> Sn = (a1+an)n/2;知道首项==> Sn = [2na1+n(n-1)d]/2;等比数列:an = a1*q^(n-1)Sn = a1(1-q^n)/1-q当-1<q<1时,Sn非零当n趋于无穷,Sn = a1/1-q等差数列求和公式有①等差数列公式an=a1+(n-1)d、②前n项和公式为:Sn=na1 +n(n-1③若公差d= 1时:Sn=(a1+an④若m+n=p+q则:存在am+an=a⑤若m+n=2p则:am+an=2ap,以上n均等差数列是常见数列的一种可以用AP表示,如果一个数列从第二项起,每-项与它的前一项的差等于同一个常数这个数列就叫做等差数列,而这个常数叫做等差数列的公差公差常用字母d表示。
①若m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;②在等比数列中,依次每k项之和仍成等比数列;③若m、n、q∈N,且m+n=2q,则am×an=(aq)^2;④ 若G是a、b的等比中项,则G^2=ab(G ≠ 0);⑤在等比数列中,首项a1与公比q都不为零;注意:上述公式中an表示等比数列的第n 项。
数列的等差与等比关系数列是数学中一种常见的数学对象,它是由一系列按照特定规律排列的数字组成。
在数列中,有两种常见的关系,即等差关系和等比关系。
这两种关系在数学中有着广泛的应用,不仅在数学本身,还在物理、经济等领域中起着重要的作用。
一、等差关系等差数列是指数列中相邻两项之间的差值保持不变。
也就是说,如果一个数列满足每个数与它的前一个数之差等于一个常数d,那么这个数列就是等差数列。
等差数列的通项公式可以表示为An = A1 + (n-1)d,其中An表示第n项,A1表示第一项,d表示公差。
等差数列的性质非常有趣。
首先,等差数列的前n项和可以通过求和公式Sn = (A1 + An) * n / 2来计算。
其次,等差数列的平均值等于它的中项,即平均值等于首项与末项的和除以2。
此外,等差数列还有一个重要的性质,即任意三项成等差数列的充要条件是它们的中项等于它们的平均值。
等差数列在实际生活中有着广泛的应用。
例如,在物理学中,等差数列可以用来描述物体匀速运动的位置随时间的变化。
在经济学中,等差数列可以用来描述人口增长、物价上涨等现象。
二、等比关系等比数列是指数列中相邻两项之比保持不变。
也就是说,如果一个数列满足每个数与它的前一个数之比等于一个常数r,那么这个数列就是等比数列。
等比数列的通项公式可以表示为An = A1 * r^(n-1),其中An表示第n项,A1表示第一项,r 表示公比。
等比数列也有一些有趣的性质。
首先,等比数列的前n项和可以通过求和公式Sn = A1 * (1 - r^n) / (1 - r)来计算。
其次,等比数列的平均值等于它的首项与末项的几何平均数。
此外,等比数列还有一个重要的性质,即任意三项成等比数列的充要条件是它们的中项等于它们的平均值的平方根。
等比数列在实际生活中也有着广泛的应用。
例如,在生物学中,等比数列可以用来描述细胞的分裂过程。
在金融学中,等比数列可以用来描述复利的计算过程。
一、等差等比数列基础知识点(一)知识归纳: 1.概念与公式:①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2)1(2)(11d n n na a a n S n n -+=+=②等比数列:1°.定义若数列q a a a nn n =+1}{满足(常数),则}{n a 称等比数列;2°.通项公式:;11kn k n n qa q a a --==3°.前n 项和公式:),1(1)1(111≠--=--=q qq a q q a a S n n n 当q=1时.1na S n =2.简单性质:①首尾项性质:设数列,,,,,:}{321n n a a a a a1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =⋅=⋅=⋅--n n n a a a a a a ②中项及性质:1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2ba A +=2°.设a ,G ,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ⋅=⋅ ④顺次n 项和性质:1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=nk n n k nn k kkk aa a 121312,,则组成公差为n 2d 的等差数列;2°. 若}{n a 是公差为q 的等比数列,∑∑∑=+=+=nk nn k nn k kkk aa a 121312,,则组成公差为q n 的等比数列.(注意:当q =-1,n 为偶数时这个结论不成立)⑤若}{n a 是等比数列,则顺次n 项的乘积:n n n n n n n a a a a a a a a a 3221222121,, ++++组成公比这2n q 的等比数列.⑥若}{n a 是公差为d 的等差数列,1°.若n 为奇数,则,,:(21+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S 偶指所有奇数项、所有偶数项的和);2°.若n 为偶数,则.2nd S S =-奇偶 (二)学习要点:1.学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差d ≠0的等差数列的通项公式是项n 的一次函数a n =an +b ;②公差d ≠0的等差数列的前n 项和公式项数n 的没有常数项的二次函数S n =an 2+bn ;③公比q ≠1的等比数列的前n 项公式可以写成“S n =a (1-q n )的形式;诸如上述这些理解对学习是很有帮助的.2.解决等差、等比数列问题要灵活运用一些简单性质,但所用的性质必须简单、明确,绝对不能用课外的需要证明的性质解题.3.巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m (或a-m,a,a+m )”②三数成等比数列,可设三数为“a,aq,aq 2(或qa,a,aq )”③四数成等差数列,可设四数为“);3,,,3(3,2,,m a m a m a m a m a m a m a a ++--+++或”④四数成等比数列,可设四数为“),,,,(,,,3332aq aq q aqa aq aq aq a ±±或”等等;类似的经验还很多,应在学习中总结经验. [例1]解答下述问题:(Ⅰ)已知c b a 1,1,1成等差数列,求证:(1)c ba b a c a c b +++,,成等差数列; (2)2,2,2bc b b a ---成等比数列.[解析]该问题应该选择“中项”的知识解决,.2,2,2,)2(4)(2)2)(2)(2(;,,.)(2)()(2)()1(),(222112222222成等比数列成等差数列bc b b a bb c a b ac b c b a c b a b a c a c b bc a c a b c a ac c a c a b ac ab a c bc c b a a c b c a b ac bac c a b c a ---∴-=++-=--+++∴+=++=+++=+++=++++=⇒=+⇒=+(Ⅱ)设数列),1(2,1,}{2-==n n n n a n S a S n a 且满足项和为的前 (1)求证:}{n a 是等差数列; (2)若数列:}{满足n b62)12(531321+=-+++++n n n a b n b b b 求证:{n b }是等比数列.[解析](1)⎩⎨⎧-+=-=++)1)(1(2)1(211n n n n a n S a n S②-①得,1)1(1)1(211+=-⇒--+=++n n n n n na a n na a n a:,32,32,1,11321用数学归纳法证明猜想得令得令-===∴=-==n a a n a a n n1)当;,3221,3121,121结论正确时-⨯==-⨯=-==a a n 2),32,)2(-=≥=k a k k n k 即时结论正确假设)1)(12(1321)32(1)1(,121--=+-=+-=+=-+=∴+k k k k k k ka a k k n k k 时当 .,3)1(212,21结论正确-+=-=∴≥+k k a k k 由1)、2)知,,32,-=∈*n a N n n 时当① ②.2}{,2,2,,26)1(4),2(2,2)12()52(2)32(2)12(2,6)32(262)2(;2}{,2)32()12(1111111的等比数列是公比为即时当也适合而时当设的等差数列是公差为即n nn n n n n n n n n n n n n n n n n n b b b b N n b n b n n n T T b n n n a T a n n a a =∴=∈∴=+-⨯=≥=∴⨯-=---=-=-≥∴+-=+==---=-∴+*+-+++[评析]判断(或证明)一个数列成等差、等比数列主要方法有:根据“中项”性质、根据“定义”判断,或通过“归纳猜想”并证明.[例2]解答下述问题:(Ⅰ)等差数列的前n 项和为),(,,Q P QPS P Q S S Q P n ≠==若 求).,(表示用Q P S Q P +[解析]选择公式""2bn an S n +=做比较好,但也可以考虑用性质完成.[解法一]设⎪⎪⎩⎪⎪⎨⎧+=+=∴+=bQ aQ QP bP aP PQbn an S n 222,①-②得:,],)()[(22Q P b Q P a Q P PQ P Q ≠++-=-.)(])()[(,)(,2PQQ P b Q P a Q P S PQQP b Q P a Q P QP +-=+++=∴+-=++∴≠+[解法二]不妨设P Q Q Q P a a a S S QPP Q Q P +++=-=-∴>++ 21, .)(,2))((2))((211PQQ P S S QP Q P a a Q P Q P Q P a a Q P Q P Q P Q P P Q +-=∴+-=++⋅+-=+-=++++(Ⅱ)等比数列的项数n 为奇数,且所有奇数项的乘积为1024,所有偶数项的乘积为2128,求项数n.①②[解析]设公比为2421281024,142531==-n n a a a a a a a q)1(24211=⋅⇒-n qa.7,23525,2)2()1(,2)(2)1(221281024235252352112353211235321==∴==⋅⇒=-+⋅⇒=⨯=-++n n q a n qa a a a a nn n n 得代入得将而(Ⅲ)等差数列{a n }中,公差d ≠0,在此数列中依次取出部分项组成的数列:,17,5,1,,,,32121===k k k a a a n k k k 其中恰为等比数列求数列.}{项和的前n k n[解析],,,,171251751a a a a a a ⋅=∴成等比数列.1313132}{,132)1(2)1(323,34}{,2,00)2()16()4(111111115111121--=---⨯=-⋅=-+=-+=⋅=⋅=∴=+==∴=∴≠=-⇒+⋅=+⇒---n n S n k k d k d d k a a d a a a da a a q a d a d d a d d a a d a n n n n n n n n k n n k k n n n 项和的前得由而的公比数列[评析]例2是一组等差、等比数列的基本问题,熟练运用概念、公式及性质是解决问题的基本功.[例3]解答下述问题:(Ⅰ)三数成等比数列,若将第三项减去32,则成等差数列;再将此等差数列的第二项减去4,又成等比数列,求原来的三数.[解析]设等差数列的三项,要比设等比数列的三项更简单, 设等差数列的三项分别为a -d , a , a +d ,则有.9338,926,9250,10,2,92610,388,06432316803232))(()4()32)((22222或原三数为或得或∴===∴=+-⇒⎪⎩⎪⎨⎧+==-+⇒⎪⎩⎪⎨⎧+-=-=++-a d d d d da a d d d a d a a a d a d a(Ⅱ)有四个正整数成等差数列,公差为10,这四个数的平方和等于一个偶数的平方,求此四数.①②①,②[解析]设此四数为)15(15,5,5,15>++--a a a a a ,⎩⎨⎧=+=-⇒⎩⎨⎧=+=-∴+<-+-⨯=⨯==+-⇒=+⇒∈=++++-+-∴*2521251,,,2551251125,125))((45004)()2()15()5()5()15(2222222a m a m a m a m a m a m a m a m a m a m m a N m m a a a a 且均为正整数与解得∴==),(1262不合或a a 所求四数为47,57,67,77[评析]巧设公差、公比是解决等差、等比数列问题的重要方法,特别是求若干个数成等差、等比数列的问题中是主要方法.二、等差等比数列复习题一、 选择题1、如果一个数列既是等差数列,又是等比数列,则此数列 ( )(A )为常数数列(B )为非零的常数数列(C )存在且唯一 (D )不存在 2.、在等差数列{}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为( ) (A )13+=n a n (B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a 3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则ycx a +的值为( ) (A )21(B )2- (C )2 (D ) 不确定4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项,y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( )(A )成等差数列不成等比数列 (B )成等比数列不成等差数列(C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列5、已知数列{}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( ) (A )22-=n a n (B )28-=n a n (C )12-=n n a (D )n n a n -=26、已知))((4)(2z y y x x z --=-,则( )(A )z y x ,,成等差数列 (B )z y x ,,成等比数列(C )z y x 1,1,1成等差数列 (D )zy x 1,1,1成等比数列7、数列{}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有( )①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列(A )4 (B )3 (C )2 (D )1 8、数列1⋯,1617,815,413,21,前n 项和为( )(A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212112+--+n n n9、若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则135135b b a a ++的值为( )(A )97 (B )78 (C )2019 (D )8710、已知数列{}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为( )(A )56 (B )58 (C )62 (D )6011、已知数列{}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列的前n 项和为( )(A )2)133(+n n (B )53+n(C )23103-+n n (D )231031-++n n12、下列命题中是真命题的是( ) A .数列{}n a 是等差数列的充要条件是q pn a n +=(0≠p )B .已知一个数列{}n a 的前n 项和为a bn an S n ++=2,如果此数列是等差数列,那么此数列也是等比数列C .数列{}n a 是等比数列的充要条件1-=n n ab aD .如果一个数列{}n a 的前n 项和c ab S n n +=)1,0,0(≠≠≠b b a ,则此数列是等比数列的充要条件是0=+c a二、填空题13、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q = 14、已知等差数列{}n a ,公差0≠d ,1751,,a a a 成等比数列,则18621751a a a a a a ++++=15、已知数列{}n a 满足n n a S 411+=,则n a =16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 二、 解答题17、已知数列{}n a 是公差d 不为零的等差数列,数列{}n b a 是公比为q 的等比数列,46,10,1321===b b b ,求公比q 及n b 。
等差数列与等比数列的知识点总结等差数列与等比数列是数学中常见的两种数列,它们在数学和实际生活中都有着重要的应用。
下面将从定义、性质、求和公式和应用等几个方面对等差数列和等比数列进行全面总结。
**一、等差数列的基本概念**等差数列是指一个数列中,从第二项起,每一项与它的前一项的差等于同一个常数的数列。
一般来说,等差数列的通项公式为:a_n=a_1+(n-1)d,其中a_n表示数列的第n项,a_1表示数列的首项,n表示项数,d表示公差。
**二、等差数列的性质**1. 等差数列的通项公式:a_n=a_1+(n-1)d2. 等差数列的前n项和公式:S_n=\frac{n}{2}(2a_1+(n-1)d)3. 等差数列的性质:任意三项成等差数列,等差中项相等。
4. 等差数列的性质:首项与末项的关系。
**三、等差数列的应用**等差数列在实际生活中有着广泛的应用,比如在金融领域中的等额还款、在物理学中的匀速运动等等。
**四、等比数列的基本概念**等比数列是指一个数列中,从第二项起,每一项与它的前一项的比等于同一个常数的数列。
一般来说,等比数列的通项公式为:a_n=a_1 \cdot q^{n-1},其中a_n表示数列的第n项,a_1表示数列的首项,n表示项数,q表示公比。
**五、等比数列的性质**1. 等比数列的通项公式:a_n=a_1 \cdot q^{n-1}2. 等比数列的前n项和公式:S_n=\frac{a_1(1-q^n)}{1-q},当|q|<1时成立3. 等比数列的性质:首项、末项、项数的关系。
4. 等比数列的性质:任意三项成等比数列,等比中项与等比积。
**六、等比数列的应用**等比数列同样在实际中有着广泛的应用,比如在利息计算中的等比增长、在生物学中的细胞分裂等等。
**结语**等差数列与等比数列是数学中基础而重要的概念,它们不仅在数学理论中有着重要的意义,而且在实际生活中也有着广泛的应用。
等比数列等差数列的公式好的,以下是为您生成的文章:咱先来说说这等比数列和等差数列,这俩可是数学里挺重要的知识点呢。
我记得有一次,我去商场逛街,想买双运动鞋。
到了一家店,发现他们正在搞促销活动。
那双我心仪已久的鞋子,原价 500 块,第一天打 8 折,第二天打 6.4 折,第三天打 5.12 折,以此类推。
这可不就是个等比数列嘛!先来说说等差数列。
等差数列的通项公式是:\(a_{n}=a_{1}+(n-1)d\) ,这里的\(a_{n}\)表示第\(n\)项的值,\(a_{1}\)是首项,\(n\)是项数,\(d\)是公差。
比如说,一组数 1,3,5,7,9 ,这就是一个公差为2 的等差数列。
首项\(a_{1}\)就是 1 ,公差\(d\)是 2 。
要想知道第 10 个数是多少,那就是\(a_{10}= 1 + (10 - 1)×2 = 19\) 。
再看等比数列,它的通项公式是:\(a_{n}=a_{1}×q^{(n - 1)}\) ,其中\(q\)是公比。
比如说,一组数 2,4,8,16 ,这就是一个公比为 2 的等比数列。
首项\(a_{1}\)是 2 ,公比\(q\)是 2 。
要算第 5 个数,那就是\(a_{5}= 2 × 2^{(5 - 1)} = 32\) 。
在实际生活里,等差数列和等比数列的应用可多了去了。
像存钱,每个月固定存一定数额,这就是等差数列。
投资收益按照一定比例增长,这就是等比数列。
回到开头我买鞋的事儿,每天折扣越来越低,这就是一个公比小于1 的等比数列。
要是我能算出第几天买最划算,那可就太棒啦!可这计算过程也不简单,得仔细琢磨琢磨。
等差数列求和公式是:\(S_{n}=\frac{n(a_{1}+a_{n})}{2}\) 。
比如 1 到 100 所有整数的和,就可以用这个公式,首项 1 ,末项 100 ,项数100 ,算出来就是 5050 。
等比数列求和公式分两种情况,当公比\(q≠1\)时,\(S_{n}=\frac{a_{1}(1 - q^{n})}{1 - q}\) ;当公比\(q = 1\)时,\(S_{n}=na_{1}\) 。