车多线螺纹
- 格式:ppt
- 大小:3.83 MB
- 文档页数:21
随着机械行业的快速发展,对各种零件的螺纹精度和加工效率提出了更高的要求。
多线螺纹是螺纹加工中常见的一种,可以成倍提高传动效率,传统制造中利用普通车床加工多线螺纹,由于效率低、精度差以及劳动强度高等弊端,逐渐被数控加工所取代。
螺纹的加工原理螺纹的加工是靠刀具的移动与主轴回转同步运动来实现的,装在数控机床主轴上的位置编码器实时读取主轴的转速,并转换为刀具的进给速度。
通常,螺纹的切削是沿着同样的刀具轨迹从粗切到精切重复进行,因为螺纹切削是在主轴上的位置编码器输出一转信号时开始的,所以螺纹切削是从固定点开始且刀具在工件上的切削轨迹不变。
多线螺纹的分线方法多线螺纹是在普通螺纹的基础上增加分线的工序,常采用的有轴向分线法和圆周角度分线法。
轴向分线法是在车好一条螺旋线之后,把车刀沿螺纹轴线方向移动一个螺距再车第二条螺旋槽,这种方法适合主轴上没有安装位置检测装置的机床,它适合加工一些起始点在工件的任何一侧而不是中部的螺纹,否则可能会发生刀具与工件干涉。
圆周角度分线法是根据螺旋线在圆周上等距分布的特点,利用等分圆周角度来分线。
采用圆周角度分线法需要机床主轴具有分度功能,但在加工过程中不受任何限制,这种方法对于一些有特殊要求的螺纹更为实用。
实例验证以加工如下图所示产品外表面6线矩形螺纹为例,用两种方法来说明在数控车床上是如何加工多线螺纹的。
工件的6线矩形螺纹首先,分析该工件螺纹为6线矩形螺纹,螺纹的起始点在工件的中间部位,如果采用轴向分线法,两端的退刀槽都没有足够的刀具移动空间,轴向移动螺纹起点必然造成刀尖与工件干涉。
因此,选用圆周角度分线法,该螺纹为6条螺旋线,分线角度为360°/6=60°。
选用与螺旋槽相同宽度且带有螺旋升角的矩形螺纹刀,以减少刀具与工件的切削抗力。
螺旋升角的计算公式为:tanψ=nP/πd 2 ,其中ψ为螺纹升角,nP为螺纹导程(n为螺纹线数,P为螺距),d 2 为中径。
(1)此程序利用机床螺纹加工指令G32,并由宏指令控制加工该6线螺纹(FANUC 0i系统):G54 工件坐标系选择G28 U0 W0 返回原点(换刀点)T0101 选刀S50 M03 主轴50r/min,正转M08 冷却开N10 #1=0 为变量赋初值N20 #2=68 为变量赋初值N30 G00 Z-31 到螺纹起刀点X#2G32 Z-121 F44 Q#1 螺纹切削指令,Q为螺纹起始角度值,单位为0.001°G00 X70 退刀#2=#2-0.1 切削以每次0.1mm为吃刀量IF[#2 GE 64.5] GOTO30 如果变量值≥64.5,则跳到N30句,否则向下#1=#1+60000 变量以60°递增(分线角度为60°)IF[#1 LT 360000] GOTO20 如果变量值<360°,跳到N20句,否则向下G28 U0 W0 返回原点(换刀点)M05 主轴停转M09 冷却关M30 程序结束并返回(2)此程序为车削中心利用C轴与Z轴两轴联动插补功能,采用圆柱坐标编程,并由宏指令控制加工该6线螺纹:G54 工件坐标系选择G28 U0 W0 返回原点(换刀点)T0101 选刀M43 启动C轴功能G00 C0 C轴定位0°M08 冷却开N10 #1=0 为变量赋初值N20 #2=68 为变量赋初值N30 G00 C#1 到螺纹起刀点X#2G01 G98 Z-122 H-744.545 F1200 H为C的增量地址,利用Z、C轴联动加工,进给速度1 200mm/minG00 X70 退刀Z-31#2=#2-0.1 切削以每次0.1mm为吃刀量IF[#2 GE 64.5] GOTO30 如果变量值≥64.5,则跳到N30句,否则向下#1=#1+60 变量以60°递增(分线角度为60°)IF[#1 LT 360] GOTO20 如果变量值<360°,跳到N20句执行,否则向下G28 U0 W0 返回原点(换刀点)M40 C轴功能取消M09 冷却关M30 程序结束并返回其中C轴所转角度计算如下:H=(螺纹起始点与终止点的距离/螺纹导程)×360°。
浅论多线螺纹的实践教学多线螺纹的加工主要是解决螺纹的分线问题,根据多线螺纹各螺旋线在轴向和圆周方向等距分布特点,常见的分线方法有轴向分线法和圆周分线法两种。
一、轴向分线法当车好一条螺旋槽后,把车刀沿轴线方向移动一个螺距,再车第二条螺旋槽。
这种方法主要是解决如何精确移动螺距的问题。
具体方法如下。
1.小滑板刻度分线法这种方法是利用小滑板刻度盘的刻线值使车刀沿轴向移动一个螺距,以达到分线的目的。
这种方法不需要其他附件和装置,利用车床固有的小滑板及刻度就能达到分线的目的,其分线精度取决于小滑板刻线移动的精确度和操作方法的正确性。
分线是的注意事项有:(1)分线前必须保证小滑板导轨与工作轴线的平行度,否则会产生误差。
简单校正的方法是:在车床上车长度约150mm的外圆(100mm以上)处量其直径,看有无锥度误差,然后将百分表安装在刀架上,使百分表测头与加工的表面接触,移动小滑板就可得工件轴线与小滑板移动轨迹的平行度。
一般校正差值在0.02范围内。
(2)螺纹分线时应注意小滑板手柄旋转方向,否则会产生误差。
每次分线小滑板手柄转动方向要相同,转动时要消除空行程,以免因丝杆与螺母的间隙而产生分线误差。
(3)车削精度较高、导程较大的多线螺纹时,应把各条螺旋槽都粗车完毕后,再进行精车。
精车时小滑板手柄进给方向要相同,小滑板进给数要正确,并最后反复2~3次以免各线(侧面)由于余量不匀而产生分线误差。
2.利用百分表(或千分表)和量块分线法车好一条螺旋线后,移动小滑板使百分表读数等于多线螺纹的一个螺距,再车下―个螺旋槽。
当车削较大螺距的多线螺纹时,百分表移动的数值受到限制,可在百分表与挡块之间垫一厚度等于所车多线螺纹螺距的量块,车好第一条螺旋槽后,取掉量块、移动小滑板,使百分数表测头与挡块接触,其读数与量块接触时一样;然后再车下一螺旋槽,依次分线。
这种方法可获较高的分线精度,但操作时除上述三点之外还应注意:百分表必须固定牢固可靠并经常找正,以防工作时产生走动,而产生分线误差。
韶关市高级技工学校一、课前准备:1、图纸:2、料:材料为45#,规格Φ40×152mm。
3、根据课题需要备好刀具、量具、工具等。
4、检查学生的穿戴安全等事项。
5、集中点名考勤。
二、教学过程(二)讲授指导:1、多线螺纹的特点及应用:(1)纹旋转一周,移动单头螺纹的几倍螺距(L=np)。
(2)导程大,螺旋升角大比加工单头螺纹困难常应用在快速传动机构。
2、螺纹车刀的几何参数。
刃磨多线螺纹车刀,刀尖角、刀头宽度,前面形状与单头螺纹车刀相同,两侧刃后角必须按螺旋升角进行修磨。
3、多线螺纹的技术条件:(1)多线螺纹的螺距必须相等。
(2)多线螺纹每条螺纹的牙型角、中径处螺距要相等。
4、螺纹的分线方法:分线方法有轴向分线和圆周分线法两种。
(1)轴向分线法:可采用小拖板刻度盘、百分表或块规控制,分线时小拖板应沿轴线方向准确移动一螺距。
(2)圆周分线法:当主动轮齿数与螺纹头数之比为整数时,可用挂轮分头,也可采用专用分度盘进行分头。
5、车削多线螺纹的方法:(1)按零件标准导程L调整车床各手柄位置或搭配挂轮。
(2)采用直进法或左右切削法。
车削多线螺纹时,决不可将一条螺旋槽车好后,再车另一条螺旋槽。
加工时应按下列步骤进行:①车第一条螺旋槽,记住中、小滑板的刻度值。
②进行分母线,粗车第二条、第三条……螺旋槽。
如用轴向分线法,中滑板刻度值应与车第一条螺旋槽时相同。
如用圆周分线法,中、小滑板的刻度应与车第一条螺旋槽时相同。
③采用左、右切削法加工多线螺纹时,为了保证线螺纹的螺距精度,车削每一条螺旋槽时的车刀轴向移动量(借刀量)必须相等。
④按上述方法精车各条螺旋槽。
(二)示范指导1、根据导程L调整机床各手柄位置或搭挂轮。
2、校小滑板与主轴回转中心线保持平行。
3、分头示范:(1)粗车用小拖板刻度值控制轴向移动一个螺距。
(2)精车用百分表控制轴向移动一个螺距。
4、示范多线螺纹的车削顺序。
(三)巡回指导1、着重检查,指导学生刃磨螺纹刀的两侧刃后角是否正确。
车削多线螺纹中遇到的问题及解决方法作者:刘根深来源:《职业·下旬》2011年第07期在各种机械产品中,很多零件都带有螺纹。
螺纹用途十分广泛,有的起连接(或固定)作用,有的起传递动力作用,也有的起减速运动作用,笔者主要以多线螺纹来论述该问题。
多线螺纹的各螺旋线沿轴向等距分布,解决等距分布的问题叫分头(分线),等距误差的大小影响螺纹的啮合精度及使用寿命。
多线螺纹每旋转一周,能移动几倍的螺距,它多用于陕速机构中。
由一条螺旋线形成的螺纹叫单线(单头)螺纹;由两条或两条以上的轴向等距分布的螺旋线所形成的螺纹叫多线(多头)螺纹。
在普通车床上车削多线螺纹是目前常用的加工方法之一,在数控车床上加工多线螺纹也是常用的加工方法之一,但牙形两侧面光洁度较难达到图样要求,特别是大螺距、蜗杆模数较大的多线螺纹,在数控车床上更难保证精度要求。
因此,精度要求较高的多线螺纹,多数采用普通车床加工,且加工出来的表面粗糙度可以达到图样要求。
笔者以小溜板分线法为例,分析多线螺纹在车削过程中遇到的各种问题及解决的方法。
一、加工过程中容易出现的问题多线内、外螺纹在加工过程中,容易发生大小牙现象,产生废品。
造成多线螺纹有大小牙之分的状况有以下几个方面:1.分线不准(1)螺距小于3mm的多线螺纹,可采用直进法车削。
这样就不会有分线不准的情况出现。
螺距大于3mm 以上的多线螺纹,必须采用左右车削法车削。
这种车削方法容易产生分线不准的情况,应该在分线时提高分线精度,调整小滑板位置,使小滑板的移动轨迹与床身导轨平行,平行度为0.02/l00mm以内。
采用左右切削法时,必须把同一方向的牙侧全部车削好以后,再分线车削另一方向的牙侧。
(2)中途改变车刀径向或轴向位置。
每当车刀的径向(轴向)位置改变了,要注意重新对刀,重新记刻度,精车时要多次循环分线,分线只能在牙槽单侧逐一车削,待此侧全部车好后,再车另一侧。
(3)工件装夹不牢固。
切削力过大,造成工件微量移动,应注意工件装夹。
浅谈数控车床加工多线螺纹的方法文章主要以广数GSK980TD数控车床为案例进行讲解,解析数控车床加工多线螺纹技巧。
深入阐述了G76、G92、G32螺纹进行加工使用,重点说明技术在使用过程和步骤,尤其是对三个指令所使用的加工步骤和方法进行研究。
具体而言,就是通过移动螺距的方法进行初始改变和变动,使得初始原始三角形加工变得更加细致。
随着社会不断发展,科技在不断发展,该技术渐渐被推广开来,数控机床开始被运用到机械制造行业中,当前该行业已经普遍被使用该技术。
例如进行落线螺纹加工时,零件加工非常需要该技术。
如果进行车床加工时,如果不使用该加工方法,那么工作步骤和环节会变得非常复杂。
生产率也非常低,还不断的提升劳动强度,工作效率低下,这样的工作方式不能满足生产需求,更无法满足技术需求。
如果在施工中采用了数控车床技术进行加工,这个工作过程比较简单,编程过程也很简单。
使用该技术使得工作效率提升,极大降低劳动强度,使得生产率渐渐提升,在这个环节中工作精度会更加高超。
多线螺纹特点螺纹指的是在圆锥体或者圆柱体上进行加工,使得椎体表面加工出了螺旋线性,这个表面具备特定的沟槽以及凸面。
连续加工时,这个沟槽起伏痕迹会比较明显,凸起部位更加清晰。
在进行辨别时,只需要看螺纹线有多少条,只看表面的螺旋线就可以。
如果这个时候的螺纹是一条时,可以将其称为单线螺纹。
如果是两条时,就将其称为双线螺纹。
如果还有三条以上的螺纹就称为多线螺纹,在这多线螺纹旋线中,这些线段都是在轴线上分布,在圆角周围这些线段是等角分布,等角分布的线段主要是使用于紧固、连接、传递作用通过这样的方式改变机械结构运动方式,使得机械结构更加紧固、连接作用更加明显。
在机械进行定位和测量时,如果测量的千分尺这个测量使用的就是螺纹原理。
如果是紧固类型的,例如是螺丝压紧,这是作用于加紧类型的。
传递动力类型的,例如是车床丝杆传动螺母副。
在这个过程当中使用到连接类的螺旋,例如可以在机床卡盘中将其固定在螺纹连接主轴上,这样就可以保障连接稳定性。
浅论华中数控车多线螺纹编程刘志勇(湖南有色金属职业技术学院,湖南 株洲412006)摘 要:螺纹是机械的连接者,是机械设备必不可少的,螺纹加工有多种方式,对于大批量的标准螺纹,常采 用冷镦,搓丝等快速生产,对于尺寸较大,数量不多,尺寸精度较高的螺纹,常采用数控车加工,华中数控车性能优越,螺纹加工有3种指令,分别是G32,G82,G76,其中G32是单步螺纹,编程不方便,用的较多的是G82和G76。
本文主要研究G82和G76在单线螺纹,多线螺纹的编程。
关键词:螺纹;华中数控车;G82;G76.在机械加工中,螺纹是在一根圆柱形的轴上,沿着 螺旋线所形成的具有规定牙型的连续凸起,用刀具在 圆柱或圆锥表面上切成的,工件转一转,刀具沿着工件 轴向移动一定的距离,刀具在工件上切出的痕迹就是 螺纹。
在外圆表面形成的螺纹称外螺纹。
在内孔表面 形成的螺纹称内螺纹。
螺纹的基础是圆轴表面的螺旋 线。
通常若螺纹的断面为三角形,则叫三角螺纹;断面 为梯形叫做梯形螺纹;断面为锯齿形叫做锯齿形螺纹; 断面为方形叫做方牙螺纹;断面为圆弧形叫做圆弧形 螺纹等。
按螺纹的螺旋线不同,又可以分为单线螺纹,多线 纹,由一条螺旋线形成的螺纹叫单线(单头)螺纹, 由两条或两条以上的轴向等距分布的螺旋线所形成的 螺纹叫多线(多头)螺纹。
多线螺纹的各螺旋线沿轴 向等距分布,解决等距分布的问题叫分头(分线),等 距误差的大小小响螺纹的啮合精度及使用寿命。
多线 螺纹每旋转一周时,能移动几倍的螺距,它多用于快速 机构中。
在数控车床上加工多线螺纹是常用的加工 方法。
螺纹的表示方法,以公称直径M20,螺距为2为 例,单线螺纹表示方法为“M20 $ 2%双线螺纹“M20 $ 4 双线”,三线螺纹“M20 $ 6三线%其中M20是公称直 径,2是螺距,4和6是导程。
螺纹的大径和小小计算方法,外螺纹的大径用公称直径—螺距$ 0. 1,小径用公称直径—1. 0825 $螺距,如公称直径为20.螺距为2的螺纹,大径取20 — 2$ 0. 1 = 19.8,小小取 20 — 1. 0825 $ 2 = 17. 835。
特殊多线螺纹的快速轴向分线法多线螺纹(蜗杆)的各螺旋槽在轴向是等距分布的,在端面上螺旋的起点是等角分布的,在车削过程中,解决等距分布的方法叫分线。
如果分线出现误差,就会使所车出的多线螺纹螺距不等,从而严重影响内外螺纹的配合精度、降低使用寿命,甚至造成无法安装使用。
由此可以看出,车削多线螺纹(蜗杆)时,采取正确的分线方法、合理的车削步骤、准确的测量修正,对多线螺纹(蜗杆)的精度起着至关重要的作用。
根据多线螺纹各螺旋槽在轴向等距分布的特点,介绍轴向分线方法中的一种特殊车削方法—快速轴向分线法。
在实践中,有些特殊的多线螺纹车削分线时,可采用快速的轴向距离移动方法来分线,只要车好一条线后,松开开合螺母,摇动大拖板手柄,向前或向后移动n个丝杆的螺距,合上开合螺母,进行另一条线的车削,此种分线方法的原理与轴向距离移动分线一致,区别是刀具的轴向移动不是小滑板移动完成的,而是用大拖板的移动来完成刀具的轴向移动。
快速轴间距离移动方法分线方法在加工轴向移动距离较长的螺纹工件时有较好的实践意义。
当车好一条螺旋槽后,把车刀沿轴线方向移动一个螺距,再车第二条螺旋槽。
这种方法主要是如何解决精确移动一个螺距的问题。
快速轴向分线法之所以谓特殊的,是因为要符合下列公式,如符合,则能用此方法分线车削。
如不符就不能使用。
公式P导±P=np丝式中:P导,零件的多线螺纹的导程;P,零件的螺距;n,整数;p丝,机床丝杆螺距。
工件导程“+”或“-”工件螺距,等于丝杆螺距的整倍数时,就能采用这种特殊方法进行分线。
假设零件导程为15mm,螺距为3mm,线数为5的多线螺纹,机床丝杆的螺距为12mm。
首先验证是否符合分线公式P导±P=np丝15-3=1×12计算结果符合此特殊分线方法。
下面列出轴间移动距离、零件线数、车削顺序,验证:从上面的描述中可以看出当车削好第一条螺纹槽(Δ1)时,停车,松开开合螺母,向后移动一个丝杆螺距后,合上开合螺母,这时车削第五条螺纹的槽(Δ2)以此来推分别车削第4、3、2槽。