求向量组的秩与极大无关组(修改整理)
- 格式:doc
- 大小:586.00 KB
- 文档页数:6
求向量组的秩与最大无关组一、对于具体给出的向量组,求秩与最大无关组1、求向量组的秩(即矩阵的秩)的方法:为阶梯形矩阵【定理】矩阵的行秩等于其列秩,且等于矩阵的秩.(三秩相等)①把向量组的向量作为矩阵的列(或行)向量组成矩阵A;②对矩阵A进行初等行变换化为阶梯形矩阵B;③阶梯形B中非零行的个数即为所求向量组的秩.【例1】求下列向量组a1=(1, 2, 3, 4),a2 =( 2, 3, 4, 5),a3 =(3, 4, 5, 6)的秩. 解1:以a1,a2,a3为列向量作成矩阵A,用初等行变换将A化为阶梯形矩阵后可求.因为阶梯形矩阵的列秩为2,所以向量组的秩为2.解2:以a1,a2,a3为行向量作成矩阵A,用初等行变换将A化为阶梯形矩阵后可求.因为阶梯形矩阵的行秩为2,所以向量组的秩为2.2、求向量组的最大线性无关组的方法方法1 逐个选录法给定一个非零向量组A:α1, α2,…, αn①设α1≠ 0,则α1线性相关,保留α1②加入α2,若α2与α1线性相关,去掉α2;若α2与α1线性无关,保留α1,α2;③依次进行下去,最后求出的向量组就是所求的最大无关组【例2】求向量组:()()()1231,2,12,3,14,1,1,,,T T Tααα=-=-=-的最大无关组 解:因为a 1非零,故保留a 1取a 2,因为a 1与a 2线性无关,故保留a 1,a 2 取a 3,易得a 3=2a 1+a 2,故a 1,a 2 ,a 3线性相关。
所以最大无关组为a 1,a 2 方法2 初等变换法【定理】 矩阵A 经初等行变换化为B ,则B 的列向量组与A 对应的列向量组有相同的线性相关性. 证明从略,下面通过例子验证结论成立.向量组:α1=(1,2,3)T, α2=(-1,2,0)T, α3=(1,6,6)T由上可得,求向量组的最大线性无关组的方法: (1)列向量行变换①把向量组的向量作为矩阵的列向量组成矩阵A ; ②对矩阵A 进行初等行变换化为阶梯形矩阵B ;③A 中的与B 的每阶梯首列对应的向量组,即为最大无关组.【例3】求向量组 :α1=(2,1,3,-1)T, α2=(3,-1,2,0)T, α3=(1,3,4,-2)T, α4=(4,-3,1,1)T的秩和一个最大无关组, 并把不属于最大无关组的向量用最大无关组线性表示。
习题4.31.求下列向量组的秩与一个极大线性无关组: (1)[]12,1,3,1T α=-, []23,1,2,0Tα=-,[]31,3,4,2T α=-,[]44,3,1,1Tα=-.(2)[]11,1,1,1T α=, []21,1,1,1Tα=--, []31,1,1,1Tα=--,[]41,1,1,1Tα=---.(3)[]11,1,2,4T α=-, []20,3,1,2T α=,[]33,0,7,14Tα=,[]41,1,2,0T α=-,[]52,1,5,6Tα=.分析 向量组的秩等于该向量组构成的矩阵的秩, 所以求向量组的秩可以转化为求矩阵的秩. 先把向量构成矩阵通过矩阵的初等行变换成阶梯形, 通过阶梯形便可得到矩阵的秩, 它也就是该向量组的秩, 而阶梯形的阶梯头所在的列对应的向量便构成该向量组的一个极大线性无关组.解 (1) []123423141133113301123241000010210000αααα--⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=−−→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦, 所以该向量组的秩为2, 且1α, 2α为它的一个极大线性无关组.(2) []123411111111111101011111001111110001αααα--⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=−−→⎢⎥⎢⎥---⎢⎥⎢⎥--⎣⎦⎣⎦, 所以该向量组的秩为4, 且1α,2α,3α,4α为它的一个极大线性无关组.(3) []1234510312103121301101101217250001042140600000ααααα⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 所以该向量组的秩为3, 且1α,2α,4α为它的一个极大线性无关组.2.计算下列向量组的秩,并判断该向量组是否线性相关. (1)[]11,1,2,3,4T α=-,[]23,7,8,9,13Tα=-,[]31,3,0,3,3T α=----,[]41,9,6,3,6Tα=-.(2)[]11,3,2,1T β=--, []22,1,5,3T β=-,[]34,3,7,1Tβ=-, []41,11,8,3Tβ=---,[]52,12,30,6Tβ=-.解 (1) []123413111311173901122806000039330000413360000αααα--⎡⎤⎡⎤⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥=−−→⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦所以该向量组的秩为2, 小于向量的个数4, 所以线性相关.(2)[]123451241212412313111201548257830001111313600000βββββ----⎡⎤⎡⎤⎢⎥⎢⎥-----⎢⎥⎢⎥=−−→⎢⎥⎢⎥-⎢⎥⎢⎥--⎣⎦⎣⎦所以该向量组的秩为3, 小于向量的个数5, 所以线性相关.3.设[]11,2,1T α=-, []22,4,T αλ=, []31,,1Tαλ=.(1) λ取何值时1α,2α,3α线性相关? λ取何值时1α,2α,3α线性无关? 为什么? (2)λ取何值时3α能经1α,2α线性表示? 且写出表达式.解 (1)[]1231211212402211002αααλλλλ⎡⎤⎡⎤⎢⎥⎢⎥=−−→+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦当2λ≠且2λ≠-时, 矩阵的秩为3与向量个数相同, 所以此时该向量组线性无关.当2λ=或2λ=-时, 矩阵的秩为2小于向量个数, 所以此时向量组线性相关. (1) 当2λ=时, 秩([]12αα)=秩([]123ααα)=2, 此时3α能经1α,2α线性表示.表达式的系数为方程组[]123X ααα=的解, 而此时该方程组的解为120,1.2x x =⎧⎪⎨=⎪⎩所以表达式为3α=212α. 当2λ=-时, 秩([]12αα)=1, 秩([]123ααα)=2, 两者不相等, 所以不能线性表示.当2λ≠且2λ≠-时, 秩([]12αα)=2, 秩([]123ααα)=3, 两者不相等,所以不能线性表示.4.下述结论不正确的是( ),且说明理由.(A) 秩为4的4×5矩阵的行向量组必线性无关. (B) 可逆矩阵的行向量组和列向量组均线性无关. (C) 秩为r(r<n)的m ×n 矩阵的列向量组必线性相关. (D) 凡行向量组线性无关的矩阵必为可逆矩阵.解 (A) 正确. 如果行向量组线性相关则行向量组的秩必小于行向量的个数4, 即矩阵的行秩小于4, 而矩阵的行秩等于矩阵的秩, 因此矩阵的秩小于4, 这与矩阵的秩为4矛盾! 所以行向量组必线性无关.(B) 正确. 可逆矩阵必为满秩矩阵, 即n n ⨯的可逆矩阵的秩为n , 而矩阵的秩等于行秩和列秩, 所以矩阵的行秩=列秩=n , 因此行向量组的秩和所含向量个数相同, 据此可知该行向量组必线性无关; 同理列向量组也必线性无关.(C) 正确. 列向量组含有n 个向量, 又由于列向量组的秩(即列秩)等于矩阵的秩r , 而r<n , 即列向量组的秩小于向量组所含向量的个数, 据此列向量组必线性相关.(D) 设111001A ⎡⎤=⎢⎥⎣⎦, 易知该矩阵的行向量组线性无关, 但是它不是方阵, 所以不是可逆矩阵. 所以该选项不正确.综上所述应选D.。
求向量组的秩与极大无关组(修改
整理)
求向量组的秩:
向量组的秩是指该组向量从线性无关到线性相关所需要的最小基数。
这个基数也可以称作向量组的维数或秩。
如果一个向量组包含n个向量,那么它的秩可以用n减去线性相关的向量对的数量来衡量,若n个向量中有k个向量对线性相关,则秩为n-k。
极大无关组:
极大无关组是指在某一向量组中,选取部分向量组成的子集,使得所有向量在此子集中不存在线性相关的情况,而这部分向量的总数却不能减少的一种集合。
因此,极大无关组就是指该向量组中不存在线性相关的子集,但它的数量最多、最大的一组向量组。
求向量组的秩与最大无关组
一、对于具体给出的向量组,求秩与最大无关组
1、求向量组的秩(即矩阵的秩)的方法:为阶梯形矩阵
【定理】矩阵的行秩等于其列秩,且等于矩阵的秩.(三秩相等)
①把向量组的向量作为矩阵的列(或行)向量组成矩阵A;
②对矩阵A进行初等行变换化为阶梯形矩阵B;
③阶梯形B中非零行的个数即为所求向量组的秩.
【例1】求下列向量组a1=(1, 2, 3, 4),a2 =( 2, 3, 4, 5),a3 =(3, 4, 5, 6)的秩. 解1:以a1,a2,a3为列向量作成矩阵A,用初等行变换将A化为阶梯形矩阵后可求.
因为阶梯形矩阵的列秩为2,所以向量组的秩为2.
解2:以a1,a2,a3为行向量作成矩阵A,用初等行变换将A化为
阶梯形矩阵后可求.
因为阶梯形矩阵的行秩为2,所以向量组的秩为2.
2、求向量组的最大线性无关组的方法
方法1 逐个选录法
给定一个非零向量组A:α1, α2,…, αn
①设α1≠ 0,则α1线性相关,保留α1
②加入α2,若α2与α1线性相关,去掉α2;若α2与α1线性无关,保留α1,α2;
③依次进行下去,最后求出的向量组就是所求的最大无关组
【例2】求向量组:()()()1231,2,12,3,14,1,1,,,T T T
ααα=-=-=-的最大无关组 解:因为a 1非零,故保留a 1
取a 2,因为a 1与a 2线性无关,故保留a 1,a 2 取a 3,易得a 3=2a 1+a 2,故a 1,a 2 ,a 3线性相关。
所以最大无关组为a 1,a 2 方法2 初等变换法
【定理】 矩阵A 经初等行变换化为B ,则B 的列向量组与A 对应的列向量组有相同的线性相关性. 证明从略,下面通过例子验证结论成立.
向量组:α1=(1,2,3)T
, α2=(-1,2,0)T
, α3=(1,6,6)T
由上可得,求向量组的最大线性无关组的方法: (1)列向量行变换
①把向量组的向量作为矩阵的列向量组成矩阵A ; ②对矩阵A 进行初等行变换化为阶梯形矩阵B ;
③A 中的与B 的每阶梯首列对应的向量组,即为最大无关组.
【例3】求向量组 :α1=(2,1,3,-1)T
, α2=(3,-1,2,0)T
, α3=(1,3,4,-2)T
, α4=(4,-3,1,1)T
的秩和一个最大无关组, 并把不属于最大无关组的向量用最大无关组线性表示。
解 以α1,α2,α3,α4为列构造矩阵A , 并实施初等行变换化为行阶梯形矩阵求其秩:
()⎛⎫⎛⎫ ⎪ ⎪--
⎪ ⎪==→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭123423141-13-3113305-510,,,324105-51010210-11-2A αααα---⎛⎫ ⎪
⎪→ ⎪ ⎪
⎝⎭
1133011200000000 知r (A )=2, 故向量组的最大无关组含2个向量
而两个非零行的非零首元分别在第1, 2列, 故α1,α2为向量组的一个最大无关组
事实上,()⎛⎫ ⎪
⎪→ ⎪ ⎪⎝⎭1211010000αα-, 知r (α1,α2)=2, 故α1,α2 线性无关 为把α3,α4用α1,α2线性表示, 把A 变成行最简形矩阵 10
2
-101-1200000
000⎛⎫ ⎪
⎪
→= ⎪
⎪
⎝⎭A B
记矩阵B=(β1, β2, β3, β4),因为初等行变换保持了列向量间的线性表出性,因此向量α1,α2,α3,α4与向量β1, β2, β3, β4之间有相同的线性关系。
()312412210101
212,2000000⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪==+-=-=-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
ββββββ而
因此α3=2α1-α2, α4=-α1+2α2
【例4】求下列向量组的一个最大无关组,其中:
()11,2,0,3α=-()22,5,3,6α=--()30,1,3,0,α=()42,1,4,7α=--()55,8,1,2.α=-
解:以给定向量为列向量作成矩阵A ,用初等行变换将A 化为阶梯形矩阵B
再利用初等行变换,将B 再化成行最简形矩阵C .
用最大线性无关组表示其它向量的方法为: ①把向量组的向量作为矩阵的列向量组成矩阵A ; ②对矩阵A 进行初等行变换化为阶梯形矩阵B ; ③把阶梯形B 进行初等行变换化为行最简形矩阵C ;
④根据行最简形矩阵列向量的分量,用最大无关组表示其它向量.
【例5】 求向量组,,,的秩和一个最大无关组.
解:
(1) 当且时,,故向量组的秩为3,且是一个最大无关组;
(2) 当时,,故向量组的秩为3,且是一个最大无关组;
初等矩阵A, B, C 初等变换行作为 求秩无关 B 中见 线性无关 C 做陪
(3) 当时,若,则,此时向量组的秩为2,且是一个最大无关组.若,则,此时向量组的秩为3,且是一个最大无关组.
(2)行向量列变换
同理, 也可以用向量组中各向量为行向量组成矩阵(即列向量的转置矩阵), 通过做初等列变换来求向量组的最大无关组。
【例6】求向量组,,,,的一个最大无关组.
解:以给定向量为行向量作成矩阵A,用初等列变换将A化为行最简形:
(行向量列变换)
由于的第1,2,4个行向量构成的向量组线性无关,故是向量组的一个最大无关组.
方法3 线性相关法(了解)
若非零向量组A:α1, α2,…, αn线性无关,则A的最大无关组就是α1, α2,…, αn
若非零向量组A线性相关,则A中必有最大无关组
二、对于抽象的向量组,求秩与最大无关组常利用一些有关的结论,如:
1、若向量组(Ⅰ)可由向量组(Ⅱ)线性表示,则(Ⅰ)的秩不超过(Ⅱ)的秩
2、等价向量组有相同的秩
3、秩为的向量组中任意个线性无关的向量都是该向量组的最大无关组
【例7】设向量组的秩为.又设
,,
求向量组的秩.
解法1:由于,
且,
所以,
故向量组与等价,从而的秩为.
解法2:将看做列向量,则有
,其中
可求得 0,即可逆,从而可由线性表示,
由已知可由线性表示,故这两个向量组等价,即它们有相同的秩.
【例7】设向量组(Ⅰ):和向量组(Ⅱ):的秩分别为和,而向量组(Ⅲ):
的秩为.证明:.
证:若和中至少有一个为零,显然有,结论成立.
若和都不为零,不妨设向量组(Ⅰ)的最大无关组为,向量组(Ⅱ)的最大无关组为,由于向量组可以由它的最大无关组线性表示,所以向量组(Ⅲ)可以由,
线性表示,
故:的秩。