向量组的秩和极大线性无关组
- 格式:ppt
- 大小:44.00 KB
- 文档页数:4
向量组的秩的定义向量组的秩为线性代数的基本概念,它表示的是一个向量组的极大线性无关组所含向量的个数。
由向量组的秩可以引出矩阵的秩的定义。
一个向量组的极大线性无关组所包含的向量的个数,称为向量组的秩;若向量组的向量都是0向量,则规定其秩为0。
定理根据向量组的秩可以推出一些线性代数中比较有用的定理1、向量组α1,α2,···,αs线性毫无关系等价于r{α1,α2,···,αs}=s。
2、若向量组α1,α2,···,αs可被向量组β1,β2,···,βt线性表出,则r{α1,α2,···,αs}小于等于r{β1,β2,···,βt}。
3、等价的向量组具备成正比的秩。
4、若向量组α1,α2,···,αs线性无关,且可被向量组β1,β2,···,βt线性表出,则s小于等于t。
5、向量组α1,α2,···,αs可以被向量组β1,β2,···,βt线性表出来,且s\uet,则α1,α2,···,αs线性相关。
6、任意n+1个n维向量线性相关。
矩阵的秩有向量组的秩的概念可以引出矩阵的秩的概念。
一个m行n列的矩阵可以看做是m个行向量构成的行向量组,也可看做n个列向量构成的列向量组。
行向量组的秩成为行秩,列向量组的秩成为列秩,容易证明行秩等于列秩,所以就可成为矩阵的秩。
矩阵的秩在线性代数中有着很大的应用,可以用于判断逆矩阵和线性方程组解的计算等方面。
习题4.31.求下列向量组的秩与一个极大线性无关组: (1)[]12,1,3,1T α=-, []23,1,2,0Tα=-,[]31,3,4,2T α=-,[]44,3,1,1Tα=-.(2)[]11,1,1,1T α=, []21,1,1,1Tα=--, []31,1,1,1Tα=--,[]41,1,1,1Tα=---.(3)[]11,1,2,4T α=-, []20,3,1,2T α=,[]33,0,7,14Tα=,[]41,1,2,0T α=-,[]52,1,5,6Tα=.分析 向量组的秩等于该向量组构成的矩阵的秩, 所以求向量组的秩可以转化为求矩阵的秩. 先把向量构成矩阵通过矩阵的初等行变换成阶梯形, 通过阶梯形便可得到矩阵的秩, 它也就是该向量组的秩, 而阶梯形的阶梯头所在的列对应的向量便构成该向量组的一个极大线性无关组.解 (1) []123423141133113301123241000010210000αααα--⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=−−→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦, 所以该向量组的秩为2, 且1α, 2α为它的一个极大线性无关组.(2) []123411111111111101011111001111110001αααα--⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=−−→⎢⎥⎢⎥---⎢⎥⎢⎥--⎣⎦⎣⎦, 所以该向量组的秩为4, 且1α,2α,3α,4α为它的一个极大线性无关组.(3) []1234510312103121301101101217250001042140600000ααααα⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 所以该向量组的秩为3, 且1α,2α,4α为它的一个极大线性无关组.2.计算下列向量组的秩,并判断该向量组是否线性相关. (1)[]11,1,2,3,4T α=-,[]23,7,8,9,13Tα=-,[]31,3,0,3,3T α=----,[]41,9,6,3,6Tα=-.(2)[]11,3,2,1T β=--, []22,1,5,3T β=-,[]34,3,7,1Tβ=-, []41,11,8,3Tβ=---,[]52,12,30,6Tβ=-.解 (1) []123413111311173901122806000039330000413360000αααα--⎡⎤⎡⎤⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥=−−→⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦所以该向量组的秩为2, 小于向量的个数4, 所以线性相关.(2)[]123451241212412313111201548257830001111313600000βββββ----⎡⎤⎡⎤⎢⎥⎢⎥-----⎢⎥⎢⎥=−−→⎢⎥⎢⎥-⎢⎥⎢⎥--⎣⎦⎣⎦所以该向量组的秩为3, 小于向量的个数5, 所以线性相关.3.设[]11,2,1T α=-, []22,4,T αλ=, []31,,1Tαλ=.(1) λ取何值时1α,2α,3α线性相关? λ取何值时1α,2α,3α线性无关? 为什么? (2)λ取何值时3α能经1α,2α线性表示? 且写出表达式.解 (1)[]1231211212402211002αααλλλλ⎡⎤⎡⎤⎢⎥⎢⎥=−−→+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦当2λ≠且2λ≠-时, 矩阵的秩为3与向量个数相同, 所以此时该向量组线性无关.当2λ=或2λ=-时, 矩阵的秩为2小于向量个数, 所以此时向量组线性相关. (1) 当2λ=时, 秩([]12αα)=秩([]123ααα)=2, 此时3α能经1α,2α线性表示.表达式的系数为方程组[]123X ααα=的解, 而此时该方程组的解为120,1.2x x =⎧⎪⎨=⎪⎩所以表达式为3α=212α. 当2λ=-时, 秩([]12αα)=1, 秩([]123ααα)=2, 两者不相等, 所以不能线性表示.当2λ≠且2λ≠-时, 秩([]12αα)=2, 秩([]123ααα)=3, 两者不相等,所以不能线性表示.4.下述结论不正确的是( ),且说明理由.(A) 秩为4的4×5矩阵的行向量组必线性无关. (B) 可逆矩阵的行向量组和列向量组均线性无关. (C) 秩为r(r<n)的m ×n 矩阵的列向量组必线性相关. (D) 凡行向量组线性无关的矩阵必为可逆矩阵.解 (A) 正确. 如果行向量组线性相关则行向量组的秩必小于行向量的个数4, 即矩阵的行秩小于4, 而矩阵的行秩等于矩阵的秩, 因此矩阵的秩小于4, 这与矩阵的秩为4矛盾! 所以行向量组必线性无关.(B) 正确. 可逆矩阵必为满秩矩阵, 即n n ⨯的可逆矩阵的秩为n , 而矩阵的秩等于行秩和列秩, 所以矩阵的行秩=列秩=n , 因此行向量组的秩和所含向量个数相同, 据此可知该行向量组必线性无关; 同理列向量组也必线性无关.(C) 正确. 列向量组含有n 个向量, 又由于列向量组的秩(即列秩)等于矩阵的秩r , 而r<n , 即列向量组的秩小于向量组所含向量的个数, 据此列向量组必线性相关.(D) 设111001A ⎡⎤=⎢⎥⎣⎦, 易知该矩阵的行向量组线性无关, 但是它不是方阵, 所以不是可逆矩阵. 所以该选项不正确.综上所述应选D.。
极大线性无关组知识点总结1. 引言极大线性无关组是线性代数中的重要概念之一,它在矩阵理论、线性方程组求解、向量空间等领域有着广泛的应用。
本文将从基本概念、性质、求解方法等方面对极大线性无关组进行详细介绍和总结。
2. 基本概念2.1 极大线性无关组的定义极大线性无关组是指一个向量组中的向量集合,满足其中的向量是线性无关的,并且再添加任意一个向量就会导致线性相关。
2.2 线性相关与线性无关线性相关是指向量组中存在不全为零的线性组合等于零向量的情况。
线性无关是指向量组中不存在非零的线性组合等于零向量的情况。
3. 极大线性无关组的性质3.1 极大线性无关组的向量个数极大线性无关组的向量个数等于向量组的秩(矩阵中的列秩或行秩)。
3.2 极大线性无关组的存在性任意一个向量组都存在一个极大线性无关组。
3.3 极大线性无关组的扩充一个线性无关向量组的极大线性无关组可以通过添加新的向量来扩充。
4. 求解极大线性无关组的方法4.1 初等变换法利用矩阵的初等行变换或初等列变换,将向量组转化为行阶梯形矩阵或列阶梯形矩阵,然后选取非零行或非零列对应的向量即可得到极大线性无关组。
4.2 矩阵的秩通过计算矩阵的秩,可以得到向量组的秩,从而确定极大线性无关组的向量个数,再通过初等变换等方法选择对应的向量。
5. 应用领域5.1 线性方程组的求解通过求解线性方程组的极大线性无关组,可以简化线性方程组的求解过程。
5.2 向量空间的基极大线性无关组可以作为向量空间的一组基,用于表示向量空间中的任意向量。
5.3 矩阵的秩矩阵的秩可以通过求解矩阵的极大线性无关组来确定,进而用于计算矩阵的特征值、特征向量等。
6. 总结极大线性无关组是线性代数中的重要概念,它具有一系列的性质和求解方法。
通过对极大线性无关组的研究和应用,可以简化线性方程组的求解过程,确定向量空间的基,计算矩阵的秩等。
在实际应用中,了解和掌握极大线性无关组的相关知识,对于理解和解决与线性代数相关的问题具有重要的意义。