2023年新高考数学大一轮复习专题28 空间几何体的结构特征、表面积与体积(原卷版)
- 格式:docx
- 大小:1.73 MB
- 文档页数:20
高考立体几何知识点总结一 、空间几何体 (一) 空间几何体旳类型1 多面体:由若干个平面多边形围成旳几何体。
围成多面体旳各个多边形叫做多面体旳面,相邻两个面旳公共边叫做多面体旳棱,棱与棱旳公共点叫做多面体旳顶点。
2 旋转体:把一种平面图形绕它所在旳平面内旳一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体旳轴。
(二) 几种空间几何体旳构造特性 1 、棱柱旳构造特性1.1 棱柱旳定义:有两个面互相平行,其他各面都是四边形,并且每相邻两个四边形旳公共边都互相平行,由这些面所围成旳几何体叫做棱柱。
1.2 棱柱旳分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面旳截面和底面全等;1.3 棱柱旳面积和体积公式棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形ch S =直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥旳构造特性2.1 棱锥旳定义(1) 棱锥:有一种面是多边形,其他各面是有一种公共顶点旳三角形,由这些面所围成旳几何体叫做棱锥。
(2)正棱锥:假如有一种棱锥旳底面是正多边形,并且顶点在底面旳投影是底面旳中心,这样旳棱锥叫做正棱锥。
2.2 正棱锥旳构造特性Ⅰ、 平行于底面旳截面是与底面相似旳正多边形,相似比等于顶点到截面旳距离与顶点究竟面旳距离之比;它们面积旳比等于截得旳棱锥旳高与原棱锥旳高旳平方比;截得旳棱锥旳体积与原棱锥旳体积旳比等于截得旳棱锥旳高与原棱锥旳高旳立方比;Ⅱ、 正棱锥旳各侧棱相等,各侧面是全等旳等腰三角形;正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:对于棱长为a 正四面体旳问题可将它补成一种边长为a 22旳正方体问题。
高考数学一轮复习——空间几何体的结构及其表面积、体积
知识梳理
1.空间几何体的结构特征
(1)多面体的结构特征
名称棱柱棱锥棱台
图形
底面互相平行且全等多边形互相平行且相似
侧棱平行且相等相交于一点,但不一定
相等
延长线交于一点
侧面形状平行四边形三角形梯形(2)旋转体的结构特征
名称圆柱圆锥圆台球
图形
母线互相平行且相
等,垂直于底面
相交于一点延长线交于一点
轴截面全等的矩形全等的等腰三角形全等的等腰梯形圆
侧面展
开图
矩形扇形扇环
2.直观图
空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.
(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.。
专题8.2 空间几何体的表面积和体积(知识点讲解)【知识框架】 【核心素养】1.通过考查几何体体积和表面积的计算,主要考查棱柱、棱锥或不规则几何体的特征及体积与表面积的计算,凸显数学运算、直观想象的核心素养.2.结合三视图、直观图、展开图、轴截面等,考查球的切、接问题,主要考查几何体与球的组合体的识辨,球的体积、表面积的计算,凸显数学运算、直观想象的核心素养.【知识点展示】(一)几何体的表面积圆柱的侧面积圆柱的表面积圆锥的侧面积圆锥的表面积圆台的侧面积圆台的表面积球体的表面积 柱体、锥体、台体的侧面积,就是各个侧面面积之和;表面积是各个面的面积之和,即侧面积与底面积之和.把柱体、锥体、台体的面展开成一个平面图形,称为它的展开图,圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形它的表面积就是展开图的面积.(二)几何体的体积圆柱的体积rl S π2=)(2l r r S +=πrl S π=)(l r r S +=πl r r S )(+'=π)(22rl l r r r S +'++'=π24R S π=h r V 2π=圆锥的体积 圆台的体积 球体的体积 正方体的体积正方体的体积(三)常用结论多面体的内切球与外接球常用的结论(1)设正方体的棱长为a ,则它的内切球半径r =2a ,外接球半径R=2a . (2)设长方体的长、宽、高分别为a ,b ,c ,则它的外接球半径R=2. (3)设正四面体的棱长为a ,则它的高为H=3a ,内切球半径r =14H=12a ,外接球半径R =34H=4a . 【常考题型剖析】题型一:空间几何体的表面积例1.(2021·全国·高考真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为( )A .26%B .34%C .42%D .50%例2.(2020·全国·高考真题(理))已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π例3.(2022·青海·海东市第一中学模拟预测(文))已知某圆台的母线长为2,母线与轴所在直线的夹角是60︒,且上、下底面的面积之比为1∶4,则该圆台外接球的表面积为( )A .56πB .64πC .112πD .128πh r V 231π=)(3122r r r r h V '++'=π334R V π=3a V =abc V =几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应搞清各构成部分,并注意重合部分的删、补.(4)若以三视图形式给出,解题的关键是根据三视图,想象出原几何体及几何体中各元素间的位置关系及数量关系.题型二:空间几何体的体积例4. (2023·河南·洛宁县第一高级中学一模(文))若圆锥的母线与底面所成的角为π6,则该圆锥的体积为( )A .π2B .πC .2πD .3π例5.(2022·全国·高考真题)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .时,2.65)( )A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯例6.(2022·全国·高考真题(理))甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=V V 甲乙( )AB .CD 例7.(2022·湖北·黄石市有色第一中学模拟预测)阿基米德多面体也称为半正多面体,是以边数不全相同的正多边形为面围成的多面体.如图,已知阿基米德多面体的所有顶点均是一个棱长为2的正方体各条棱的中点,则该阿基米德多面体的体积为______;若M ,N 是该阿基米德多面体表面上任意两点,则M ,N 两点间距离的最大值为______.1.处理体积问题的思路(1)“转”:指的是转换底面与高,将原来不易求面积的底面转换为易求面积的底面,或将原来不易看出的高转换为易看出并易求解长度的高,即等体积法;(2)“拆”:指的是将一个不规则的几何体拆成几个简单的几何体,便于计算,即分割法;(3)“拼”:指的是将小几何体嵌入一个大几何体中,如将一个三棱锥复原成一个三棱柱,将一个三棱柱复原成一个四棱柱,这些都是拼补的方法,即补形法.2.求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.题型三:三视图与几何体的面积、体积例8.(2020·全国·高考真题(文))下图为某几何体的三视图,则该几何体的表面积是()A.6+42B.4+42C.6+23D.4+23例9. (2020·浙江·高考真题)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是()A.73B.143C.3D.6例10.(2022·浙江省春晖中学模拟预测)某几何体的三视图如图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是___________,体积是___________.【总结提升】求空间几何体体积的常见类型及思路(1)规则几何体:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法(2)不规则几何体:若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.题型四:简单几何体的外接球与内切球问题例11.(2021·天津·高考真题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为( )A .3πB .4πC .9πD .12π例12.(2020·全国高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32 C .1 D例13.(2020·全国·高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 例14.(2019·全国·高考真题(理))已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A. B. C. D例15.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .34πC .2πD .4π 例16.(2016·全国卷Ⅲ)在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3例17.(2021·福建·厦门大学附属科技中学高三阶段练习)某同学在参加魔方实践课时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个棱长为(球心与正方体的中心重合),若其中一个截面圆的周长为6π,则该球的表面积是______.例18. (2019年高考天津卷理)的正方形,侧棱长均若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.例19.(2020·全国·高考真题(文))已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【总结提升】1.常见类型:(1)利用长方体的体对角线探索外接球半径;(2)利用长方体的面对角线探索外接球半径;(3)利用底面三角形与侧面三角形的外心探索球心;(4)利用直棱柱上下底面外接圆圆心的连线确定球心;(5)锥体的内切球问题;(6)柱体的内切球问题2.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.3.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方25体确定直径解决外接问题.专题8.2 空间几何体的表面积和体积(知识点讲解)【知识框架】 【核心素养】1.通过考查几何体体积和表面积的计算,主要考查棱柱、棱锥或不规则几何体的特征及体积与表面积的计算,凸显数学运算、直观想象的核心素养.2.结合三视图、直观图、展开图、轴截面等,考查球的切、接问题,主要考查几何体与球的组合体的识辨,球的体积、表面积的计算,凸显数学运算、直观想象的核心素养.【知识点展示】(一)几何体的表面积圆柱的侧面积圆柱的表面积圆锥的侧面积圆锥的表面积圆台的侧面积圆台的表面积球体的表面积 柱体、锥体、台体的侧面积,就是各个侧面面积之和;表面积是各个面的面积之和,即侧面积与底面积之和.把柱体、锥体、台体的面展开成一个平面图形,称为它的展开图,圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形它的表面积就是展开图的面积.(二)几何体的体积圆柱的体积rl S π2=)(2l r r S +=πrl S π=)(l r r S +=πl r r S )(+'=π)(22rl l r r r S +'++'=π24R S π=h r V 2π=圆锥的体积 圆台的体积 球体的体积 正方体的体积正方体的体积(三)常用结论多面体的内切球与外接球常用的结论(1)设正方体的棱长为a ,则它的内切球半径r =2a ,外接球半径R=2a . (2)设长方体的长、宽、高分别为a ,b ,c ,则它的外接球半径R. (3)设正四面体的棱长为a ,则它的高为H=3a ,内切球半径r =14H=12a ,外接球半径R =34H=4a . 【常考题型剖析】题型一:空间几何体的表面积例1.(2021·全国·高考真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为( )A .26%B .34%C .42%D .50%【答案】C【解析】【分析】由题意结合所给的表面积公式和球的表面积公式整理计算即可求得最终结果.【详解】由题意可得,S 占地球表面积的百分比约为: 226400164003600002(1.cos )1cos 44242%22r r πααπ---+==≈=.h r V 231π=)(3122r r r r h V '++'=π334R V π=3a V =abc V =故选:C.例2.(2020·全国·高考真题(理))已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π 【答案】A【解析】【分析】由已知可得等边ABC 的外接圆半径,进而求出其边长,得出1OO 的值,根据球的截面性质,求出球的半径,即可得出结论.【详解】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A例3.(2022·青海·海东市第一中学模拟预测(文))已知某圆台的母线长为2,母线与轴所在直线的夹角是60︒,且上、下底面的面积之比为1⊙4,则该圆台外接球的表面积为( ) A .56πB .64πC .112πD .128π 【答案】C【解析】【分析】作出圆台的轴截面等腰梯形,其外接圆是圆台外接球的大圆,在这个轴截面中进行计算可得.【详解】如图等腰梯形ABCD 是圆台的轴截面,EF 是圆台的对称轴,圆台上、下底面的面积之比为1:4,则半径比为1:2,设圆台上、下底面半径分别为r ,2r ,因母线与轴的夹角是60︒,母线长为2,可得圆台的高为1,r =R ,球心到下底面(大圆面)的距离为x ,若球心在圆台两底面之间,如图点M 位置,则222R x =+且222(1)R x =-+,无解;若圆台两底面在球心同侧,如图点O 位置,则222R x =+且222(1)R x =++,解得4x =,则228R =, 则该圆台外接球的表面积为2112R 4π=π.故选:C .【总结提升】几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应搞清各构成部分,并注意重合部分的删、补.(4)若以三视图形式给出,解题的关键是根据三视图,想象出原几何体及几何体中各元素间的位置关系及数量关系.题型二:空间几何体的体积例4. (2023·河南·洛宁县第一高级中学一模(文))若圆锥的母线与底面所成的角为π6,则该圆锥的体积为( )A .π2B .πC .2πD .3π【答案】B【解析】【分析】设圆锥的高为h ,利用母线与底面所成角求出高即可得解.【详解】设圆锥的高为h , 因为母线与底面所成的角为π6,所以πtan 61h =.圆锥的体积2π1π3=⨯⨯=V . 故选:B例5.(2022·全国·高考真题)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .时,2.65)( )A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯ 【答案】C【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为157.5148.59MN =-=(m),所以增加的水量即为棱台的体积V .棱台上底面积262140.014010S ==⨯km m ,下底面积262180.018010S '==⨯km m ,∴((66119140101801033V h S S =+=⨯⨯⨯+⨯' ()()679933320607109618 2.6510 1.43710 1.410(m )=⨯+⨯≈+⨯⨯=⨯≈⨯.故选:C .例6.(2022·全国·高考真题(理))甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=V V 甲乙( ) AB.CD【答案】C【解析】【分析】 设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,根据圆锥的侧面积公式可得122r r =,再结合圆心角之和可将12,r r 分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r , 则11222S rl r S r l r ππ===甲乙, 所以122r r =, 又12222r r l lπππ+=, 则121r r l +=, 所以1221,33r l r l ==,所以甲圆锥的高1h ==,乙圆锥的高2h ==,所以221122214313r h l V V r h ππ==甲乙 故选:C.例7.(2022·湖北·黄石市有色第一中学模拟预测)阿基米德多面体也称为半正多面体,是以边数不全相同的正多边形为面围成的多面体.如图,已知阿基米德多面体的所有顶点均是一个棱长为2的正方体各条棱的中点,则该阿基米德多面体的体积为______;若M ,N 是该阿基米德多面体表面上任意两点,则M ,N 两点间距离的最大值为______.【答案】 203##263 22##322 【解析】【分析】第一空,将该多面体置于正方体中,由此可知该阿基米德多面体是由正方体切掉8个全等的三棱锥形成,由此可求得其体积;第二空,结合阿基米德多面体的外接球刚好是补形后正方体的棱切球,再求M ,N 两点间距离的最大值即可.【详解】依题意,可将该多面体补成一个棱长为2的正方体,如图,所以该阿基米德多面体是由正方体切掉8个全等的三棱锥形成,其体积112088111323V =-⨯⨯⨯⨯⨯=; 该阿基米德多面体的外接球刚好是正方体的棱切球,即与正方体的各条棱相切于棱的中点的球,该球直径为M ,N 两点间距离的最大值为外接球的直径,则max MN =故答案为:203; 【总结提升】1.处理体积问题的思路(1)“转”:指的是转换底面与高,将原来不易求面积的底面转换为易求面积的底面,或将原来不易看出的高转换为易看出并易求解长度的高,即等体积法;(2)“拆”:指的是将一个不规则的几何体拆成几个简单的几何体,便于计算,即分割法;(3)“拼”:指的是将小几何体嵌入一个大几何体中,如将一个三棱锥复原成一个三棱柱,将一个三棱柱复原成一个四棱柱,这些都是拼补的方法,即补形法.2.求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.题型三:三视图与几何体的面积、体积例8.(2020·全国·高考真题(文))下图为某几何体的三视图,则该几何体的表面积是()A.6+42B.4+42C.6+23D.4+23【答案】C【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDBS S S===⨯⨯=△△△根据勾股定理可得:AB AD DB===∴ADB△是边长为根据三角形面积公式可得:211sin 6022ADB S AB AD =⋅⋅︒==△该几何体的表面积是:632⨯++ 故选:C.例9. (2020·浙江·高考真题)某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A .73B .143C .3D .6【答案】A【解析】【分析】根据三视图还原原图,然后根据柱体和锥体体积计算公式,计算出几何体的体积.【详解】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 故选:A例10.(2022·浙江省春晖中学模拟预测)某几何体的三视图如图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是___________,体积是___________.【答案】232π+33π##3π3【解析】【分析】先画出直观图,再求出圆锥的高,求出两个半圆锥的侧面积之和,从而求出此几何体的表面积和体积.【详解】该几何体为两个底面半径为1,母线长为2的半圆锥拼接而成,设圆锥的高为h,由勾股定理得:413h=-=,则两个半圆锥的侧面积之和为12π22π2⨯⨯=,如图,AB =2CD =,且AB CD ⊥,所以四边形ADBC 的面积为22÷=, 该几何体的表面积为232π+,该几何体的体积为21π13⨯=故答案为:2π 【总结提升】 求空间几何体体积的常见类型及思路(1)规则几何体:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法(2)不规则几何体:若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.题型四:简单几何体的外接球与内切球问题例11.(2021·天津·高考真题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为( )A .3πB .4πC .9πD .12π 【答案】B【解析】作出图形,计算球体的半径,可计算得出两圆锥的高,利用三角形相似计算出圆锥的底面圆半径,再利用锥体体积公式可求得结果.【详解】如下图所示,设两个圆锥的底面圆圆心为点D ,设圆锥AD 和圆锥BD 的高之比为3:1,即3AD BD =,设球的半径为R ,则343233R ππ=,可得2R =,所以,44AB AD BD BD =+==, 所以,1BD =,3AD =,CD AB ⊥,则90CAD ACD BCD ACD ∠+∠=∠+∠=,所以,CAD BCD ∠=∠,又因为ADC BDC ∠=∠,所以,ACD CBD △∽△,所以,AD CD CD BD=,CD ∴= 因此,这两个圆锥的体积之和为()21134433CD AD BD πππ⨯⋅+=⨯⨯=. 故选:B.例12.(2020·全国高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32 C .1 D .2【答案】C【解析】 设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC21224a ∴⨯=,解得:3a =,2233r ∴===,∴球心O 到平面ABC 的距离1d ===.故选:C.例13.(2020·全国·高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 【答案】C【解析】【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离d = 【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC212a ∴=3a =,2233r ∴==∴球心O 到平面ABC 的距离1d .故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.例14.(2019·全国·高考真题(理))已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .B .C . D【答案】D【解析】【分析】先证得PB ⊥平面PAC ,再求得PA PB PC ===P ABC -为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.【详解】解法一:,PA PB PC ABC ==∆为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA 、AB 中点,//EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥平面PAC ,PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体一部分,2R ==34433R V R =∴=π==π,故选D . 解法二:设2PA PB PC x ===,,E F 分别为,PA AB 中点,//EF PB ∴,且12EF PB x ==,ABC ∆为边长为2的等边三角形,CF ∴=90CEF ∠=︒1,2CE AE PA x ∴=== AEC ∆中余弦定理()2243cos 22x x EAC x +--∠=⨯⨯,作PD AC ⊥于D ,PA PC =, D 为AC 中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,2212122x x x ∴+=∴==PA PB PC ∴=====2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴R ∴=,34433V R ∴=π==,故选D. 例15.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B .34π C .2π D .4π 【答案】B 【解析】设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴2r ==. ∴圆柱的体积为V =πr 2h =34π×1=34π. 故选B .例16.(2016·全国卷Ⅲ)在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3【答案】B【解析】由题意得要使球的体积最大,则球与直三棱柱的若干面相切.设球的半径为R ,∵△ABC 的内切圆半径为68102+-=2,∴R ≤2. 又2R ≤3,∴R ≤32,∴V ma x =3439()322ππ=.故选B . 点睛:解答本题的关键是当V 取得最大值时,球与上下底面还是与侧面相切的问题.例17.(2021·福建·厦门大学附属科技中学高三阶段练习)某同学在参加魔方实践课时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个棱长为(球心与正方体的中心重合),若其中一个截面圆的周长为6π,则该球的表面积是______.【答案】144π【解析】【分析】设球心为O ,作出过球心的截面图如图所示,然后根据已知条件结合球的性质求解即可.【详解】 设球心为O,作出过球心的截面图如图所示,则OA =由截面圆的周长为6π,得26AB ππ⨯=,∴3AB =,6.所以该球的表面积为246=144ππ⨯.故答案为:144π.例18. (2019年高考天津卷理)的正方形,侧棱长若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【答案】,借助勾股定理,可知四棱锥的高.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为,圆柱的底面半径为, 故圆柱的体积为. 例19.(2020·全国·高考真题(文))已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.【详解】 25π42=11221ππ124⎛⎫⨯⨯= ⎪⎝⎭易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O , 由于223122AM =-=,故1222222S =⨯⨯=△ABC , 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=解得:22r,其体积:343V r π==.. 【总结提升】1.常见类型:(1)利用长方体的体对角线探索外接球半径;(2)利用长方体的面对角线探索外接球半径;(3)利用底面三角形与侧面三角形的外心探索球心;(4)利用直棱柱上下底面外接圆圆心的连线确定球心;(5)锥体的内切球问题;(6)柱体的内切球问题2.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.3.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.。
专题8.2 空间几何体的表面积和体积(真题测试)一、单选题1.(2020·天津·高考真题)若棱长为 ) A .12π B .24π C .36π D .144π【答案】C【解析】【分析】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解.【详解】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R =,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C.2.(2020·北京·高考真题)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为(). A .63+ B .623+ C .123+ D .1223+【答案】D【解析】【分析】首先确定几何体的结构特征,然后求解其表面积即可.【详解】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭故选:D.【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.3.(2022·浙江·高考真题)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .22πB .8πC .22π3D .16π3【答案】C【解析】【分析】根据三视图还原几何体可知,原几何体是一个半球,一个圆柱,一个圆台组合成的几何体,即可根据球,圆柱,圆台的体积公式求出.【详解】由三视图可知,该几何体是一个半球,一个圆柱,一个圆台组合成的几何体,球的半径,圆柱的底面半径,圆台的上底面半径都为1cm ,圆台的下底面半径为2cm ,所以该几何体的体积(322214122ππ1π122π2π12333V =⨯⨯+⨯⨯+⨯⨯⨯+⨯=3cm .故选:C .4.(2022·全国·高考真题)已知正三棱台的高为1,上、下底面边长分别为面上,则该球的表面积为( )A .100πB .128πC .144πD .192π【答案】A【解析】【分析】根据题意可求出正三棱台上下底面所在圆面的半径12,r r ,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【详解】设正三棱台上下底面所在圆面的半径12,r r ,所以123432,260sin 60r r ==,即123,4r r ==,设球心到上下底面的距离分别为12,d d ,球的半径为R ,所以1d =2d =121d d -=或121d d +=,即1=1,解得225R =符合题意,所以球的表面积为24π100πS R ==. 故选:A .5.(2021·浙江·高考真题)某几何体的三视图如图所示,则该几何体的体积是( )A .32B .3C .2D .【答案】A【解析】【分析】根据三视图可得如图所示的几何体,根据棱柱的体积公式可求其体积.【详解】几何体为如图所示的四棱柱1111ABCD A B C D -,其高为1,底面为等腰梯形ABCD ,1=故1111131222ABCD A B C D V -=⨯⨯=, 故选:A. 6.(2021·全国·高考真题(理))已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为( )A B C D A 【解析】【分析】由题可得ABC 为等腰直角三角形,得出ABC 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积.【详解】,1AC BC AC BC ⊥==,ABC ∴为等腰直角三角形,AB ∴=,则ABC 1, 设O 到平面ABC 的距离为d ,则2d =所以11111332O ABC ABC V S d -=⋅=⨯⨯⨯= 故选:A.7.(2022·全国·高考真题(文))已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为( )A .13B .12CD 【答案】C【解析】【分析】先证明当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r ,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.【详解】设该四棱锥底面为四边形ABCD ,四边形ABCD 所在小圆半径为r ,设四边形ABCD 对角线夹角为α, 则2111sin 222222ABCD S AC BD AC BD r r r α=⋅⋅⋅≤⋅⋅≤⋅⋅= (当且仅当四边形ABCD 为正方形时等号成立)即当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r又22r h 1+=则2123O ABCDV r h -=⋅⋅=当且仅当222r h =即h 时等号成立,故选:C8.(2022·全国·高考真题)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤ ) A .8118,4⎡⎤⎢⎥⎣⎦ B .2781,44⎡⎤⎢⎥⎣⎦ C .2764,43⎡⎤⎢⎥⎣⎦ D .[18,27]【答案】C【解析】【分析】设正四棱锥的高为h ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵ 球的体积为36π,所以球的半径3R =,设正四棱锥的底面边长为2a ,高为h ,则2222l a h =+,22232(3)a h =+-,所以26h l =,2222a l h =- 所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭, 所以5233112449696l l V l l ⎛⎫⎛⎫-'=-= ⎪ ⎪⎝⎭⎝⎭,当3l ≤≤0V '>,当l ≤0V '<,所以当l =V 取最大值,最大值为643,又3l =时,274V =,l =814V =, 所以正四棱锥的体积V 的最小值为274, 所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,. 故选:C.二、多选题9.(2022·广东茂名·二模)某一时段内,从天空降落到地面上的液态或固态的水,未经蒸发,而在水平面上积聚的深度称为这段时间的降雨量.24h 降雨量的等级划分如下:在一次暴雨降雨过程中,小明用一个大容量烧杯(如图,瓶身直径大于瓶口直径,瓶身高度为50cm ,瓶口高度为3cm )收集雨水,容器内雨水的高度可能是( )A .20cmB .22cmC .25cmD .29cm【答案】CD【解析】【分析】设降雨量为x ,容器内雨水高度为h,根据雨水的体积相等关系可得到h,x 之间的关系49h x =,结合题意可得4200400[,)999x ∈,由此判断出答案. 【详解】设降雨量为x ,容器内雨水高度为h,根据体积相等关系可得:22π100π150x h ⨯=⨯,解得49h x = , 由于[50,100)x ∈ ,故4200400[,)999x ∈, 故20040020040020,22[,),25,29[,)9999∉∈故选:CD .10.(2023·湖北·高三阶段练习)折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧,DE AC 所在圆的半径分别是3和9,且120ABC ∠=,则该圆台的( )A .高为42B .体积为5023π C .表面积为34πD .上底面积、下底面积和侧面积之比为1:9:22【答案】AC【解析】 【分析】设圆台的上底面半径为r ,下底面半径为R ,求出1,3r R ==,即可判断选项A 正确;利用公式计算即可判断选项BCD 的真假得解.【详解】解:设圆台的上底面半径为r ,下底面半径为R ,则11223,22933r R ππππ=⨯⨯=⨯⨯,解得1,3r R ==.圆台的母线长6l =,圆台的高为h ==,则选项A 正确;圆台的体积()22133113π=⨯+⨯+=,则选项B 错误; 圆台的上底面积为π,下底面积为9π,侧面积为()13624ππ+⨯=,则圆台的表面积为92434ππππ++=,则C 正确;由前面可知上底面积、下底面积和侧面积之比为1:9:24,则选项D 错误.故选:AC .11.(2022·湖南·长沙一中模拟预测)传说古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.“圆柱容球”是阿基米德最为得意的发现;如图是一个圆柱容球,12O O ,为圆柱上下底面的圆心,O 为球心,EF 为底面圆1O 的一条直径,若球的半径2r =,则( )A .球与圆柱的表面积之比为12:B .平面DEF 截得球的截面面积最小值为165π C .四面体CDEF 的体积的取值范围为3203⎛⎤ ⎥⎝⎦,D .若P 为球面和圆柱侧面的交线上一点,则PE PF +的取值范围为2⎡+⎣【答案】BCD【解析】【分析】利用球的表面积公式及圆柱的表面积公式可判断A ,由题可得O 到平面DEF 的距离为1d 平面DEF 截得球的截面面积最小值可判断B ,由题可得四面体CDEF 的体积等于12E DCO V -可判断C ,设P 在底面的射影为P ',设2t P E '=,PE PF +PE PF +的取值范围可判断D.【详解】由球的半径为r ,可知圆柱的底面半径为r ,圆柱的高为2r ,则球表面积为24r π,圆柱的表面积222226r r r r πππ+⋅=, 所以球与圆柱的表面积之比为23,故A 错误;过O 作1OG DO ⊥于G ,则由题可得12OG == 设O 到平面DEF 的距离为1d ,平面DEF 截得球的截面圆的半径为1r ,则1d OG ≤,22221114164455r r d d =-=-≥-=, 所以平面DEF 截得球的截面面积最小值为165π,故B 正确; 由题可知四面体CDEF 的体积等于12E DCO V -,点E 到平面1DCO 的距离(0,4]d ∈, 又114482DCO S =⨯⨯=,所以123228(0,]33E DCO V d -=⨯∈,故C 正确; 由题可知点P 在过球心与圆柱的底面平行的截面圆上,设P 在底面的射影为P ', 则2222222,2,2,16PP PE P E PF P F P E P F '''''==+=++=,设2t P E '=,则20,4t ⎡⎤∈⎣⎦,PE PF +所以()2224PE PF +==+2424⎡⎤=++⎣⎦,所以2PE PF ⎡+∈+⎣,故D 正确.故选:BCD.12.(2022·全国·高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =【答案】CD【解析】【分析】直接由体积公式计算12,V V ,连接BD 交AC 于点M ,连接,EM FM ,由3A EFM C EFM V V V --=+计算出3V ,依次判断选项即可.【详解】设22AB ED FB a ===,因为ED ⊥平面ABCD ,FB ED ,则()2311114223323ACD V ED S a a a =⋅⋅=⋅⋅⋅=, ()232111223323ABC V FB S a a a =⋅⋅=⋅⋅⋅=,连接BD 交AC 于点M ,连接,EM FM ,易得BD AC ⊥, 又ED ⊥平面ABCD ,AC ⊂平面ABCD ,则ED AC ⊥,又ED BD D =,,ED BD ⊂平面BDEF ,则AC ⊥平面BDEF ,又12BM DM BD ==,过F 作FG DE ⊥于G ,易得四边形BDGF 为矩形,则,FG BD EG a ===,则,EM FM ===,3EF a =,222EM FM EF +=,则EM FM ⊥,212EFM SEM FM =⋅=,AC =, 则33123A EFM C EFM EFM V V V AC S a --=+=⋅=,则3123V V =,323V V =,312V V V =+,故A 、B 错误;C 、D 正确.故选:CD.三、填空题 13.(2021·全国·高考真题(文))已知一个圆锥的底面半径为6,其体积为30π则该圆锥的侧面积为________.【答案】39π【解析】【分析】利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案.【详解】∵216303V h ππ=⋅=∴52h =∴132l =∴136392S rl πππ==⨯⨯=侧. 故答案为:39π.14.(2020·江苏·高考真题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半径为0.5 cm ,则此六角螺帽毛坯的体积是 ____ cm 3. 【答案】1232π-【解析】【分析】先求正六棱柱体积,再求圆柱体积,相减得结果.【详解】正六棱柱体积为262⨯ 圆柱体积为21()222ππ⋅=所求几何体体积为2π故答案为: 2π15.(2019·天津·高考真题(文)若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________. 【答案】4π. 【解析】【分析】根据棱锥的结构特点,确定所求的圆柱的高和底面半径.【详解】借助勾股定理,2=,.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,圆柱的底面半径为12,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,故圆柱的体积为21124ππ⎛⎫⨯⨯= ⎪⎝⎭. 16.(2022·吉林·长春市第二实验中学高三阶段练习)在三棱锥P ABC -中,点P 在底面的射影是ABC 的外心,2,3BAC BC PA π∠===___________. 【答案】12548π 【解析】【分析】先由正弦定理得,ABC 外接圆的半径,再由勾股定理,即可求出半径,从而可得外接球体积.【详解】解:设ABC 的外心为1O ,连接1PO ,则球心O 在1PO 上,连接1O A ,则1O A 为ABC 外接圆的半径r ,连接OA ,设外接球的半径为R ,则OA OP R ==,在ABC 中,由正弦定理得2,BC r sin BAC ==∠解得1r =,即11O A =, 在1Rt PAO 中,12,PO =在1Rt AOO ,中22211OO AO AO +=,即()22221R R -+=,解得:54R =, 所以外接球的体积为:3344125334854R V πππ⎛⎫⋅ ⎪⎝⎭===, 故答案为:12548π 四、解答题17.(2022·安徽芜湖·高一期末)如图①,有一个圆柱形状的玻璃水杯,底面圆的直径为20cm ,高为30cm ,杯内有20cm 深的溶液.如图①,现将水杯倾斜,且倾斜时点B 始终不离开桌面,设直径AB 所在直线与桌面所成的角为α.要使倾斜后容器内的溶液不会溢出,求α的最大值. 【答案】4π【解析】【分析】当水杯倾斜过程中,溶液恰好不溢出时,此时α最大;在这个临界条件下,结合溶液的体积不变,可以得到关于α的一个不等式,即可求出α的取值范围,得到最大值.【详解】如图所示,在Rt △CDE 中20tan DE α=,()2221020tan 103020tan 10202παπαπ⨯⨯⨯⨯-+≥⨯⨯解得tan 1α≤,即α的最大值4π. 18.(2022·全国·南宁二中高三期末(文))图1是由矩形ABGF ,Rt ADE △和菱形ABCD 组成的一个平面图形,其中2AB =,1==AE AF ,60BAD ∠=︒,将该图形沿AB ,AD 折起使得AE 与AF 重合,连接CG ,如图2.(1)证明:图2中的C ,D ,E ,G 四点共面;(2)求图2中三棱锥C BDG -的体积.【答案】(1)证明见解析【解析】【分析】(1)依题意可得//AB FG ,//AB CD ,即可得到//AB GE ,从而得到//CD EG ,即可得证;(2)依题意可得AE AD ⊥、AE AB ⊥,即可得到AE ⊥平面ABCD 从而得到BG ⊥平面ABCD ,再根据13C BDG G BCD BCD V V BG S --==⋅计算可得;(1)证明:在矩形ABGF 和菱形ABCD 中,//AB FG ,//AB CD ,所以//AB GE ,所以//CD EG ,所以C 、D 、E 、G 四点共面;(2)解:在Rt ADE △中AE AD ⊥,矩形ABGE 中AE AB ⊥,AD AB A ⋂=,,AD AB ⊂平面ABCD ,所以AE ⊥平面ABCD ,又//BG EA ,所以BG ⊥平面ABCD ,又11sin 2222BCD S BC CD BCD =⋅⋅∠=⨯⨯=所以11133C BDG G BCD BCD V V BG S --==⋅=⨯ 19.(2022·山西吕梁·高一期末)如图是某种水箱用的“浮球”,它是由两个半球和一个圆柱筒组成.已知球的半径是2cm ,圆柱筒的高是2cm .(1)求这种“浮球”的体积;(2)要在100个这种“浮球”的表面涂一层防水漆,每平方厘米需要防水漆0.5g ,共需多少防水漆?【答案】(1)356(cm)3π (2)1200g π【解析】【分析】(1)由球的体积公式和圆柱的体积公式求解即可;(2)由球的表面积公式和圆柱的侧面积公式求解即可.(1)因为该“浮球”的圆柱筒底面半径和半球的半径2cm r =,圆柱筒的高为2cm ,所以两个半球的体积之和为331432(cm)33V r ππ==, 圆柱的体积2328(cm)V r h ππ==,∴该“浮球”的体积是31256(cm)3V V V π=+=; (2)根据题意,上下两个半球的表面积是221416(cm)S r ππ==,而“浮球”的圆柱筒侧面积为2228(cm)S rh ππ==,∴“浮球”的表面积为21224(cm)S S S π=+=;所以给100个这种浮球的表面涂一层防水漆需要100240.51200g ππ⨯⨯=.20.(2022·全国·高三专题练习)如图1,在直角梯形ABCD 中,//AD BC ,∠BAD =90°,12AB BC AD a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图2中1A BE 的位置,使平面1A BE ⊥平面BCDE ,得到四棱锥1A BCDE -.当四棱锥1A BCDE -的体积为a 的值.【答案】6a =.【解析】【分析】在直角梯形ABCD 中,证明BE AC ⊥,在四棱锥1A BCDE -中,由面面垂直的性质证得1A O ⊥平面BCDE ,再利用锥体体积公式计算作答.【详解】如图,在直角梯形ABCD 中,连接CE ,因E 是AD 的中点,12BC AD a ,有//,AE BC AE BC =,则四边形ABCE 是平行四边形,又,90BAD AB BC ∠==,于是得ABCE 是正方形,BE AC ⊥,在四棱锥1A BCDE -中,1BE AO ⊥,因平面1A BE ⊥平面BCDE ,且平面1A BE 平面BCDE BE =,1A O ⊂平面1A BE ,因此1A O ⊥平面BCDE ,即1A O 是四棱锥1A BCDE -的高,显然112AO AO CO AC ====,平行四边形BCDE 的面积2S CO BE a =⋅==,因此,四棱锥1A BCDE -的体积为2311133V S AO a =⋅===6a =, 所以a 的值是6.21.(2022·北京·高一期末)《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑 (四个面均为直角三角形的四面体).在如图所示的堑堵111ABC A B C -中,已知3AB =,4BC =,5AC =.当阳马111C ABB A -体积等于24时, 求:(1)堑堵111ABC A B C -的侧棱长;(2)鳖臑1C ABC -的体积;(3)阳马111C ABB A -的表面积.【答案】(1)6(2)12 (3)51313【解析】【分析】(1)设堑堵111ABC A B C -的侧棱长为x ,根据阳马111C ABB A -体积等于24求解即可;(2)根据棱锥的体积计算即可;(3)分别计算111C ABB A -的侧面积与底面积即可(1)因为3AB =,4BC =,5AC =,所以222AB BC AC +=.所以△ABC 为直角三角形.设堑堵111ABC A B C -的侧棱长为x ,则113A ABB S x 矩形,则111143243AA BB V x C , 所以6x =,所以堑堵111ABC A B C -的侧棱长为6.(2)因为13462ABC S =⨯⨯=△, 所以1111661233ABC ABC V S CC C . 所以鳖臑1C ABC -的体积为12.(3) 因为11113462A B C S,11164122BB C S , 11165152AA C S ,1132133132ABC S , 113618A ABB S 矩形,所以阳马111C ABB A -的表面积的表面积为612151831351313. 22.(2022·重庆市巫山大昌中学校高一期末)如图,AB 是圆柱OO '的一条母线,BC 过底面圆心O ,D 是圆O 上一点.已知5,3AB BC CD ===,(1)求该圆柱的表面积;(2)将四面体ABCD 绕母线AB 所在的直线旋转一周,求ACD △的三边在旋转过程中所围成的几何体的体积.【答案】(1)75π2(2)15π【解析】【分析】(1)由题意求出柱的底面圆的半径即可求解;(2)ACD △绕AB 旋转一周而成的封闭几何体的体积为两个圆锥的体积之差,结合圆锥体积公式求解即可(1)由题意知AB 是圆柱OO '的一条母线,BC 过底面圆心O ,且5AB BC ==, 可得圆柱的底面圆的半径为52R =, 则圆柱的底面积为221525πππ24S R ⎛⎫==⨯= ⎪⎝⎭, 圆柱的侧面积为252π2π525π2S Rl ==⨯⨯= 所以圆柱的表面积为12257522π25ππ42S S S =+=⨯+=. (2) 由线段AC 绕AB 旋转一周所得几何体为以BC 为底面半径,以AB 为高的圆锥,线段AD 绕AB 旋转一周所得的几何体为BD 为底面半径,以AB 为高的圆锥,所以以ACD △绕AB 旋转一周而成的封闭几何体的体积为:22221111πππ55π4515π3333V BC AB BD AB =⋅⋅-⋅⋅=⋅⋅-⋅⋅=.。
§7.1基本立体图形、简单几何体的表面积与体积考试要求 1.认识柱、锥、台、球及简单组合体的结构特征,能运用这些特征描述现实生活中简单物体的结构.2.知道球、棱(圆)柱、棱(圆)锥、棱(圆)台的表面积和体积的计算公式,并能解决简单的实际问题.3.能用斜二测画法画出简单空间图形的直观图.知识梳理1.空间几何体的结构特征(1)多面体的结构特征名称棱柱棱锥棱台图形底面互相平行且全等多边形互相平行且相似侧棱平行且相等相交于一点但不一定相等延长线交于一点侧面形状平行四边形三角形梯形(2)旋转体的结构特征名称圆柱圆锥圆台球图形母线互相平行且相等,垂直于底面相交于一点延长线交于一点轴截面 矩形 等腰三角形 等腰梯形 圆 侧面展开图 矩形扇形扇环2.直观图(1)画法:常用斜二测画法. (2)规则:①原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°或135°,z ′轴与x ′轴和y ′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴,平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半. 3.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式 S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r 1+r 2)l4.柱、锥、台、球的表面积和体积名称 几何体表面积 体积 柱体 S 表=S 侧+2S 底 V =Sh 锥体 S 表=S 侧+S 底 V =13Sh台体 S 表=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S 表=4πR 2V =43πR 3常用结论1.与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差. (2)底面面积及高都相等的两个同类几何体的体积相等. 2.直观图与原平面图形面积间的关系:S 直观图=24S 原图形. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × ) (2)用一个平行于底面的平面截圆锥,得到一个圆锥和一个圆台.( √ ) (3)菱形的直观图仍是菱形.( × )(4)两个球的体积之比等于它们的半径比的平方.( × ) 教材改编题1.如图,长方体ABCD -A ′B ′C ′D ′被截去一部分,其中EH ∥A ′D ′,剩下的几何体是( )A .棱台B .四棱柱C .五棱柱D .六棱柱答案 C2.已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( ) A .1 cm B .2 cm C .3 cm D.32 cm答案 B解析 设圆锥的底面圆的半径为r ,母线长为l ,因为侧面展开图是一个半圆,所以πl =2πr ,即l =2r ,所以πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,解得r =2.3.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.答案 1∶47解析 设长方体的相邻三条棱长分别为a ,b ,c ,它截出的棱锥的体积为V 1=13×12×12a ×12b ×12c =148abc ,剩下的几何体的体积V 2=abc -148abc =4748abc ,所以V 1∶V 2=1∶47.题型一 基本立体图形命题点1结构特征例1 下列命题正确的是()A.在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线B.直角三角形绕其任意一边所在直线旋转一周所形成的几何体都是圆锥C.棱台的上、下底面可以不相似,但侧棱长一定相等D.直角梯形以一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台答案 D解析A不一定,只有当这两点的连线垂直于底面时才是母线;B不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥.如图所示,它是由两个同底圆锥组成的几何体;C错误,棱台的上、下底面相似且对应边互相平行.棱台的各侧棱延长线交于一点,但是这些侧棱的长不一定相等.教师备选(多选)下列说法错误的是()A.有一个面是多边形,其余各面都是三角形,由这些面围成的多面体是棱锥B.有两个面平行且相似,其余各面都是梯形的多面体是棱台C.如果一个棱锥的各个侧面都是等边三角形,那么这个棱锥可能为六棱锥D.如果一个棱柱的所有面都是长方形,那么这个棱柱是长方体答案ABC解析选项A,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥,即其余各面的三角形必须有公共的顶点,故A错误;选项B,棱台是由棱锥被平行于棱锥底面的平面所截而得的,而有两个面平行且相似,其余各面都是梯形的多面体有可能不是棱台,因为它的侧棱延长后不一定交于一点,故B错误;选项C,当棱锥的各个侧面的共顶点的角之和是360°时,各侧面构成平面图形,故这个棱锥不可能为六棱锥,故C错误;选项D,若每个侧面都是长方形,则说明侧棱与底面垂直,又底面也是长方形,符合长方体的定义,故D 正确.思维升华 空间几何体结构特征的判断技巧(1)紧扣结构特征是判断的关键,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定. (2)说明一个命题是错误的,只要举出一个反例即可.命题点2 直观图例2 有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC =45°,AB =AD =1,DC ⊥BC ,则这块菜地的面积为________.答案 2+22解析 DC =AB sin 45°=22, BC =AB cos 45°+AD =22+1, S 梯形ABCD =12(AD +BC )·DC=12⎝⎛⎭⎫2+22×22=22+14, S =42S 梯形ABCD =2+22.教师备选(2022·益阳调研)如图,一个水平放置的平面图形的直观图是一个底角为45°的等腰梯形,已知直观图OA ′B ′C ′的面积为4,则该平面图形的面积为( )A. 2 B .4 2 C .8 2 D .2 2 答案 C解析 由S 原图形=22S 直观图,得S 原图形=22×4=8 2.思维升华(1)在斜二测画法中,要确定关键点及关键线段.平行于x轴的线段平行性不变,长度不变;平行于y轴的线段平行性不变,长度减半.(2)按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系:S直观图=24S原图形.命题点3展开图例3如图所示的扇形是某个圆锥的侧面展开图,已知扇形所在圆的半径R=5,扇形弧长l=4π,则该圆锥的表面积为()A.2πB.(4+25)πC.(3+5)πD.8π+ 5答案 B解析设圆锥底面圆的半径为r,则2πr=4π,解得r=2,∴圆锥的表面积S表=S底面圆+S侧=πr2+12lR=π×22+12×4π×5=(4+25)π.教师备选(2020·浙江)已知圆锥的侧面积(单位:cm2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________.答案 1解析如图,设圆锥的母线长为l,底面半径为r,则圆锥的侧面积S侧=πrl=2π,∴r·l=2.又圆锥侧面展开图为半圆,∴12πl2=2π,∴l=2,∴r=1.思维升华多面体表面展开图可以有不同的形状,应多实践,观察并大胆想象立体图形与表面展开图的关系,一定先观察立体图形的每一个面的形状.跟踪训练1(1)(多选)给出下列命题,其中真命题是()A.棱柱的侧棱都相等,侧面都是全等的平行四边形B.若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直C.在四棱柱中,若过相对侧棱的两个截面都垂直于底面,则该四棱柱为直四棱柱D.存在每个面都是直角三角形的四面体答案BCD解析A不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;B正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个二面角都是直二面角;C正确,因为过相对侧棱的两个截面的交线平行于侧棱,又两个截面都垂直于底面,故该四棱柱为直四棱柱;D正确,如图,正方体ABCD-A1B1C1D1中的三棱锥C1-ABC,四个面都是直角三角形.(2)(2022·泰安模拟)已知水平放置的△ABC按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′=32,那么△ABC是一个()A.等边三角形B.直角三角形C.等腰三角形D.钝角三角形答案 A解析根据斜二测画法还原△ABC在直角坐标系中的图形,如图,则BC =B ′C ′=2,AO =2A ′O ′=3, AC =AB =(3)2+12=2,所以△ABC 是一个等边三角形.(3)(2022·蚌埠模拟)如图,在水平地面上的圆锥形物体的母线长为12,底面圆的半径等于4,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥侧面爬行一周后回到点P 处,则小虫爬行的最短路程为( )A .12 3B .16C .24D .24 3 答案 A解析 如图,设圆锥侧面展开扇形的圆心角为θ,则由题意可得2π×4=12θ, 则θ=2π3,在△POP ′中,OP =OP ′=12, 则小虫爬行的最短路程为 PP ′=122+122-2×12×12×⎝⎛⎭⎫-12=12 3.题型二 表面积与体积 命题点1 表面积例4 (1)(2022·济南调研)如图,四面体的各个面都是边长为1的正三角形,其三个顶点在一个圆柱的下底面圆周上,另一个顶点是上底面的圆心,则圆柱的表面积是( )A.(2+2)π3B.(92+8)π12C.2(2+1)π3D.(2+2)π2答案 C解析 如图所示,过点P 作PE ⊥平面ABC ,E 为垂足,点E 为等边三角形ABC 的中心,连接AE 并延长,交BC 于点D .AE =23AD ,AD =32,∴AE =23×32=33,∴PE =P A 2-AE 2=63. 设圆柱底面半径为r ,则r =AE =33, ∴圆柱的侧面积S 1=2πr ·PE =2π×33×63=22π3, 底面积S 2=πr 2×2=π×⎝⎛⎭⎫332×2=2π3,∴圆柱的表面积S =S 1+S 2=22π3+2π3=2(2+1)π3.(2)(2022·南京质检)如图所示,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =22,AD =2,则四边形ABCD 绕AD 旋转一周所成几何体的表面积为________.答案 (60+42)π解析 由题意可得,四边形ABCD 绕AD 旋转一周所成几何体为圆台上面挖去一个圆锥的组合体.如图,过C 作CE ⊥AD 交AD 的延长线于E ,过C 作AB 的垂线,垂足为F .则∠EDC =180°-∠ADC =45°,EC =CD ·sin 45°=2,ED =CD ·cos 45°=2, CF =AE =4,BF =AB -AF =3,BC =32+42=5.故圆台的上底面半径r =2,下底面半径R =5,高h =4,母线长l 2=5. 圆锥底面半径r =2,高h =2,母线长l 1=2 2. 所以圆台侧面积S 1=π(R +r )l 2=π(5+2)×5=35π, 圆锥侧面积S 2=12×2πr ×l 1=12×2π×2×22=42π,圆台下底面面积S 3=πR 2=25π. 故该几何体的表面积S =S 1+S 2+S 3=35π+42π+25π =(60+42)π. 教师备选已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π 答案 B解析 设圆柱的轴截面的边长为x ,则由x 2=8,得x =22,∴S 圆柱表=2S 底+S 侧=2×π×(2)2+2π×2×22=12π. 思维升华 (1)多面体的表面积是各个面的面积之和.(2)旋转体的表面积是将其展开后,展开图的面积与底面面积之和. (3)组合体的表面积求解时注意对衔接部分的处理.命题点2 体积例5 (1)(2021·新高考全国Ⅱ)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( ) A .20+12 3 B .28 2 C.563 D.2823答案 D解析 作出图形,连接该正四棱台上、下底面的中心,如图,因为该四棱台上、下底面的边长分别为2,4,侧棱长为2, 所以该棱台的高h =22-(22-2)2=2,下底面面积S 1=16,上底面面积S 2=4,所以该棱台的体积V =13h (S 1+S 2+S 1S 2)=13×2×(16+4+64)=2823.(2)(2020·新高考全国Ⅱ)棱长为2的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱BB 1,AB 的中点,则三棱锥A 1-D 1MN 的体积为________. 答案 1解析 如图,由正方体棱长为2,得1A MN S △=2×2-2×12×2×1-12×1×1=32,又易知D 1A 1为三棱锥D 1-A 1MN 的高,且D 1A 1=2,1111A D MN D A MN V V --∴==13·1A MN S △·D 1A 1=13×32×2=1. (3)(2022·大同模拟)《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”意思为:今有底面为矩形的屋脊形状的多面体(如图),下底面宽AD =3丈,长AB =4丈,上棱EF =2丈,EF 与平面ABCD 平行,EF 与平面ABCD 的距离为1丈,则它的体积是( )A .4立方丈B .5立方丈C .6立方丈D .8立方丈答案 B解析 如图,过E 作EG ⊥平面ABCD ,垂足为G ,过F 作FH ⊥平面ABCD ,垂足为H ,过G 作PQ ∥AD ,交AB 于Q ,交CD 于P ,过H 作MN ∥BC ,交AB 于N ,交CD 于M ,由图形的对称性可知,AQ =BN =1,QN =2,且四边形AQPD 与四边形NBCM 都是矩形.则它的体积V =V E -AQPD +V EPQ -FMN +V F -NBCM=13·EG ·S 矩形AQPD +S △EPQ ·NQ +13·FH ·S 矩形NBCM =13×1×1×3+12×3×1×2+13×1×1×3 =5(立方丈). 教师备选(2022·佛山模拟)如图所示,在直径AB =4的半圆O 内作一个内接直角三角形ABC ,使∠BAC =30°,将图中阴影部分,以AB 为旋转轴旋转180°形成一个几何体,则该几何体的体积为______.答案103π 解析 如图,过点C 作CD ⊥AB 于点D . 在Rt △ABC 中,AC =AB cos 30°=23, CD =12AC =3,AD =AC cos 30°=3,BD =AB -AD =1,将图中阴影部分,以AB 为旋转轴旋转180°形成一个几何体,该几何体是以AB 为直径的半个球中间挖去两个同底的半圆锥,故所求几何体的体积为V =12×⎣⎡⎦⎤43π×23-13×π×(3)2×(3+1) =103π. 思维升华 求空间几何体的体积的常用方法公式法规则几何体的体积,直接利用公式割补法把不规则的几何体分割成规则的几何体,或者把不规则的几何体补成规则的几何体等体积法 通过选择合适的底面来求几何体体积的一种方法,特别是三棱锥的体积跟踪训练2 (1)(多选)(2022·武汉质检)等腰直角三角形的直角边长为1,现将该三角形绕其某一边旋转一周,则所形成的几何体的表面积可以为( ) A.2πB .(1+2)πC .22πD .(2+2)π答案 AB解析 如果是绕直角边旋转,则形成圆锥,圆锥底面半径为1,高为1,母线就是直角三角形的斜边,长为2,所以所形成的几何体的表面积S =π×1×2+π×12=(2+1)π;如果绕斜边旋转,则形成的是上、下两个圆锥.圆锥的半径是直角三角形斜边上的高,所以圆锥的半径为22,两个圆锥的母线都是直角三角形的直角边,母线长是1,所以形成的几何体的表面积S ′=2×π×22×1=2π.综上可知,形成几何体的表面积是(2+1)π或2π. (2)(2022·天津和平区模拟)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,则三棱锥A -B 1CD 1的体积为( )A.43B.83 C .4 D .6 答案 B解析 如图,三棱锥A -B 1CD 1是由正方体ABCD -A 1B 1C 1D 1截去四个小三棱锥A -A 1B 1D 1,C -B 1C 1D 1,B 1-ABC ,D 1-ACD ,又1111ABCD A B C D V -=23=8,11111111A A B D C B C D B ABC D ACD V V V V ----====13×12×23=43, 所以11A B CD V -=8-4×43=83.课时精练1.(2021·新高考全国Ⅰ)已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为( )A .2B .2 2C .4D .4 2 答案 B解析 设圆锥的母线长为l ,因为该圆锥的底面半径为2,所以2π×2=πl ,解得l =2 2. 2.(2022·惠州调研)在我国古代数学名著《数学九章》中有这样一个问题:“今有木长二丈四尺,围之五尺.葛生其下,缠本两周,上与木齐,问葛长几何?”意思是“圆木长2丈4尺,圆周长为5尺,葛藤从圆木的底部开始向上生长,绕圆木两周,刚好顶部与圆木平齐,问葛藤最少长多少尺?”(注:1丈等于10尺),则这个问题中,葛藤长的最小值为( ) A .2丈4尺 B .2丈5尺 C .2丈6尺 D .2丈8尺答案 C解析 如图,由题意,圆柱的侧面展开图是矩形,一条直角边(即圆木的高)长24尺,另一条直角边长5×2=10(尺),因此葛藤长的最小值为242+102=26(尺),即为2丈6尺.3.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2,则将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的表面积为( ) A .(5+2)π B .(4+2)π C .(5+22)π D .(3+2)π 答案 A解析 如图所示,梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为AB =1,高为BC =2的圆柱挖去一个底面半径为AB =1,高为BC -AD =2-1=1的圆锥,∴该几何体的表面积S =π×12+2π×1×2+π×1×12+12=(5+2)π.4.(2022·武汉模拟)玉琮是一种内圆外方的筒型玉器,它与玉璧、玉圭、玉璋、玉璜、玉琥被称为“六器”,是古人用于祭祀神祇的一种礼器.《周礼》中载有“以玉作六器,以礼天地四方,以苍璧礼天,以黄琮礼地”等文.如图为齐家文化玉琮,该玉琮中方内空,形状对称,圆筒内径2.0 cm ,外径2.4 cm ,筒高6.0 cm ,方高4.0 cm ,则其体积约为(单位:cm 3)( )A .23.04-3.92πB .34.56-3.92πC .34.56-3.12πD .23.04-3.12π答案 D解析 由题图可知,组合体由圆柱、长方体构成,组合体的体积为V =2×π×⎝⎛⎭⎫2.422+4×2.4×2.4-π×12×6=23.04-3.12π.5.(2022·常德模拟)正多面体被古希腊圣哲认为是构成宇宙的基本元素,加上它们的多种变体,一直是科学、艺术、哲学灵感的源泉之一.如图,该几何体是一个棱长为2的正八面体,则此正八面体的体积与表面积之比为( )A.618 B.69 C.612 D.63答案 B解析 取BC 的中点G ,连接EG ,BD ,取BD 的中点O ,连接EO ,如图,由棱长为2,可得正八面体上半部分的斜高为EG =22-12=3,高为EO =3-1=2,则正八面体的体积为V =2×AB ·BC ·EO3=2×2×2×23=823,其表面积为S =8×EG ·BC2=8×3×22=83,∴此正八面体的体积与表面积之比为69. 6.(多选)(2022·烟台调研)在一个密闭透明的圆柱筒内装一定体积的水,将该圆柱筒分别竖直、水平、倾斜放置时,指出圆柱桶内的水平面可以呈现出的几何形状可能是( ) A .圆面 B .矩形面 C .梯形面D .椭圆面或部分椭圆面 答案 ABD解析 将圆柱桶竖放,水平面为圆面;将圆柱桶斜放,水平面为椭圆面或部分椭圆面;将圆柱桶水平放置,水平面为矩形面,但圆柱桶内的水平面不可以呈现出梯形面. 7.(多选)下列说法正确的是( ) A .圆柱的每个轴截面都是全等的矩形 B .棱柱的两个互相平行的面一定是棱柱的底面 C .棱台的侧面是等腰梯形D .用一个平面截一个球,得到的截面是一个圆面 答案 AD解析 A 正确;B 不正确,例如六棱柱的相对侧面也互相平行;C 不正确,棱台的侧棱长可能不相等;D 正确,用一个平面截一个球,得到的截面是一个圆面.8.(多选)(2022·邯郸模拟)攒尖是我国古代建筑中屋顶的一种结构形式,宋代称为最尖,清代称攒尖,通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,也有单檐和重檐之分,多见于亭阁式建筑、园林建筑.下面以四角攒尖为例,如图,它的屋顶部分的轮廓可近似看作一个正四棱锥.已知此正四棱锥的侧面与底面所成的锐二面角为θ,这个角接近30°,若取θ=30°,侧棱长为21米,则( )A .正四棱锥的底面边长为6米B .正四棱锥的底面边长为3米C .正四棱锥的侧面积为243平方米D .正四棱锥的侧面积为123平方米 答案 AC解析 如图,在正四棱锥S -ABCD 中,O 为正方形ABCD 的中心,H 为AB 的中点,则SH ⊥AB ,设底面边长为2a . 因为∠SHO =30°, 所以OH =AH =a ,OS =33a ,SH =233a . 在Rt △SAH 中,a 2+⎝⎛⎭⎫233a 2=21,解得a =3,所以正四棱锥的底面边长为6米,侧面积为S =12×6×23×4=243(平方米).9.如图是水平放置的正方形ABCO ,在平面直角坐标系Oxy 中,点B 的坐标为(2,2),则由斜二测画法画出的正方形的直观图中,顶点B ′到x ′轴的距离为________.答案22解析 利用斜二测画法作正方形ABCO 的直观图如图,在坐标系O ′x ′y ′中,B ′C ′=1,∠x ′C ′B ′=45°.过点B ′作x ′轴的垂线,垂足为点D ′. 在Rt △B ′D ′C ′中, B ′D ′=B ′C ′sin 45°=1×22=22. 10.在如图所示的斜截圆柱中,已知圆柱的底面直径为40 cm ,母线长最短50 cm ,最长80 cm ,则斜截圆柱的侧面面积S =________cm 2.答案 2 600π解析 将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =12×(π×40)×(50+80)=2 600π(cm 2).11.(2020·江苏)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为 2 cm ,高为 2 cm ,内孔半径为0.5 cm ,则此六角螺帽毛坯的体积是________cm 3.答案 123-π2解析 螺帽的底面正六边形的面积 S =6×12×22×sin 60°=63(cm 2),正六棱柱的体积V 1=63×2=123(cm 3), 圆柱的体积V 2=π×0.52×2=π2(cm 3),所以此六角螺帽毛坯的体积 V =V 1-V 2=⎝⎛⎭⎫123-π2cm 3. 12.(2022·佛山质检)已知圆锥的顶点为S ,底面圆周上的两点A ,B 满足△SBA 为等边三角形,且面积为43,又知圆锥轴截面的面积为8,则圆锥的侧面积为________.答案 82π解析 设圆锥的母线长为l ,由△SAB 为等边三角形,且面积为43,所以12l 2sin π3=43,解得l =4;又设圆锥底面半径为r ,高为h , 则由轴截面的面积为8,得rh =8; 又r 2+h 2=16,解得r =h =22,所以圆锥的侧面积 S =πrl =π×22×4=82π.13.鲁班锁(也称孔明锁、难人木、六子联方)起源于古代中国建筑的榫卯结构.如图1,这是一种常见的鲁班锁玩具,图2是该鲁班锁玩具的直观图,每条棱的长均为2,则该鲁班锁的表面积为( )图1 图2A .8(6+62+3)B .6(8+82+3)C .8(6+63+2)D .6(8+83+2)答案 A解析 由题图可知,该鲁班锁玩具可以看成是一个棱长为2+22的正方体截去了8个正三棱锥所余下来的几何体,且被截去的正三棱锥的底面边长为2,侧棱长为2,则该几何体的表面积为S =6×⎣⎡⎦⎤(2+22)2-4×12×2×2+8×12×2×3=8(6+62+3). 14.(2022·南京模拟)小张周末准备去探望奶奶,到商店买了一盒点心,为了美观起见,售货员用彩绳对点心盒做了一个捆扎(如图①所示),并在角上配了一个花结.彩绳与长方体点心盒均相交于棱的四等分点处.设这种捆扎方法所用绳长为l 1,一般的十字捆扎(如图②所示)所用绳长为l 2.若点心盒的长、宽、高之比为2∶2∶1,则l 1l 2的值为________.图① 图②答案 22解析 ∵点心盒的长、宽、高之比是2∶2∶1,∴设点心盒的长、宽、高分别为4a ,4a ,2a ,由题意可得l 1=4×2a +4×22a =122a ,l 2=4×4a +4×2a =24a ,∴l 1l 2=122a 24a =22.15.(多选)如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=2,AB =BC =1,∠ABC =90°,侧面AA 1C 1C 的中心为O ,点E 是侧棱BB 1上的一个动点,下列判断正确的是( )A .直三棱柱的侧面积是4+2 2B .直三棱柱的体积是13C .三棱锥E -AA 1O 的体积为定值D .AE +EC 1的最小值为2 2答案 ACD解析 在直三棱柱ABC -A 1B 1C 1中,AA 1=2,AB =BC =1,∠ABC =90°,△ABC 和△A 1B 1C 1是等腰直角三角形,侧面全是矩形,所以其侧面积为1×2×2+12+12×2=4+22,故A 正确;直三棱柱的体积为V =S △ABC ·AA 1=12×1×1×2=1,故B 不正确; 如图所示,由BB 1∥平面AA 1C 1C ,且点E 是侧棱BB 1上的一个动点,所以三棱锥E -AA 1O 的高为定值22, 1AA O S △=14×2×2=22,所以1E AA O V -=13×22×22=16,故C 正确; 设BE =x ∈[0,2],则B 1E =2-x ,在Rt △ABE 和Rt △EB 1C 1中,AE +EC 1=1+x 2+1+(2-x )2.由其几何意义, 即平面内动点(x ,1)与两定点(0,0),(2,0)距离和的最小值,由对称可知,当E 为BB 1的中点时,AE +EC 1取得最小值,其最小值为2+2=22,故D 正确.16.(多选)(2022·寿光模拟)沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上、下两个圆锥组成,圆锥的底面直径和高均为8 cm ,细沙全部在上部时,其高度为圆锥高度的23(细管长度忽略不计),假设该沙漏每秒钟漏0.02 cm 3的沙,且细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,以下结论正确的是(π≈3.14)( )A .沙漏中的细沙体积为1 024π81cm 3 B .沙漏的体积是128π cm 3C .细沙全部漏入下部后此锥形沙堆的高度约为2.4 cmD .该沙漏的一个沙时大约是1 985秒答案 ACD解析 A 项,根据圆锥的截面图可知,细沙在上部时,细沙的底面半径与圆锥的底面半径之比等于细沙的高与圆锥的高之比,所以细沙的底面半径r =23×4=83(cm), 所以体积V =13·πr 2·2h 3=13·64π9·163=1 024π81(cm 3); B 项,沙漏的体积V =2×13×π×⎝⎛⎭⎫h 22×h =2×13×π×42×8=256π3(cm 3); C 项,设细沙流入下部后的高度为h 1,根据细沙体积不变可知,1 024π81=13×π×⎝⎛⎭⎫h 22×h 1, 所以1 024π81=16π3h 1,所以h 1≈2.4(cm); D 项,因为细沙的体积为1 024π81cm 3, 沙漏每秒钟漏下0.02 cm 3的沙,所以一个沙时为1 024π810.02≈1 024×3.1481×50 ≈1 985(秒).。
8.1 空间几何体的三视图、表面积和体积一、选择题1.(2022届山东烟台一中开学考,2)已知圆锥的表面积等于12πcm 2,其侧面展开图是一个半圆,则圆锥的底面半径为( ) A.1cm B.2cm C.3cm D.32cm答案 B 设圆锥的底面圆的半径为rcm,母线长为lcm,∵侧面展开图是一个半圆,∴πl=2πr ⇒l=2r,∵圆锥的表面积为12πcm 2,∴πr 2+πrl=3πr 2=12π,∴r=2,故圆锥的底面半径为2cm.故选B.2.(2022届黑龙江六校11月联考,4)已知圆锥的轴截面为等边三角形,且圆锥的表面积为3π,则圆锥的底面半径为( )A.12 B.1 C.√2 D.√3答案 B 设圆锥的母线长为l,底面半径为r,根据题意,得l=2r,所以圆锥的表面积S=πr 2+πrl=3πr 2=3π,解得r=1,故选B.3. (2022届河北邢台入学考,4)六氟化硫,化学式为SF 6,在常压下是一种无色、无臭、无毒、不燃的稳定气体,有良好的绝缘性,在电器工业方面具有广泛用途.六氟化硫分子结构为正八面体(每个面都是正三角形的八面体),如图所示,硫原子位于正八面体的中心,6个氟原子分别位于正八面体的6个顶点.若相邻两个氟原子间的距离为2a,则六氟化硫分子中6个氟原子构成的正八面体的体积是(不计氟原子的大小)( )A.4√23a 3B.8√23a 3C.4√2a 3D.8√2a 3答案 B 如图,连接AC,BD,设AC∩BD=O,则O 为正方形ABCD 的中心,连接OE.因为AE=CE,BE=DE,所以OE⊥AC,OE⊥BD,又AC∩BD=O,所以OE⊥平面ABCD.因为AB=BC=AE=2a,所以AC=√AA 2+B A 2=2√2a.因为四边形ABCD 是正方形,所以AO=12AC=√2a,则OE=√AA 2-A A 2=√2a,故该正八面体的体积为13×(2a)2×√2a×2=8√23a 3.4.(2022届河南焦作一模,6)底面是边长为1的正方形,侧面均是等边三角形的四棱锥的体积为( )A.√26 B.√24 C.√23 D.√22答案 A 由题意可知该四棱锥为正四棱锥,底面正方形对角线长为√2,则正四棱锥的高h=√12-(√22)2=√22,所以正四棱锥的体积V=13×12×√22=√26,故选A.5.(2022届河南洛阳期中,7)某四面体的三视图如图所示,已知其正视图、侧视图、俯视图是全等的等腰直角三角形,则该四面体的四个面中直角三角形的个数为( )A.1B.2C.3D.4答案 D 由三视图及已知可知该四面体可补形成正方体,如图所示.易知△DAB,△ABC 均为直角三角形.由正方体的性质可知CB⊥平面DAB,所以CB⊥BD,即△DBC 是直角三角形;又知DA⊥平面ABC,所以DA⊥AC,即△DAC 是直角三角形,所以该四面体的四个面中直角三角形的个数为4,故选D.6.(2022届江西吉安9月月考,8)如图,网格图中小正方形的边长为1,粗线是一个几何体的三视图,则该几何体的体积为( )A.2π+4B.2π+2C.π+4D.6π+12答案 A 由三视图可知,该几何体由半圆锥和三棱锥拼接而成,半圆锥的底面半径为2,高为3,三棱锥的底面是斜边长为4的等腰直角三角形,三棱锥的高为3,故该几何体的体积V=13×(12π×22+4×2×12)×3=2π+4,故选A.7.(2022届江苏海安高级中学期中,8)如图所示,在直三棱柱ABC-A 1B 1C 1中,AA 1=1,AB=BC=√3,cos∠ABC=13,P 是A 1B 上的一动点,则AP+PC 1的最小值为( )A.√5B.√7C.1+√3D.3答案 B 连接BC 1,得△A 1BC 1,以A 1B 所在直线为轴,将△A 1BC 1所在平面旋转到平面ABB 1A 1,设点C 1的新位置为C',连接AC', 则AC'的长即为AP+PC 1的最小值.∵AB=BC=√3,cos∠ABC=13,∴由余弦定理可得,AC=2,∴A 1C 1=2,即A 1C'=2,∵AA 1=1,AB=√3,∴A 1B=2,且∠AA 1B=60°.易求得C 1B=2,∵A 1B=BC 1=A 1C 1=2,∴△A 1BC 1为等边三角形,∴∠BA 1C 1=60°.∴在三角形AA 1C'中,∠AA 1C'=120°,又AA 1=1,A 1C'=2,∴AC'=√1+4−2×1×2×(-12)=√7.故选B.8.(2022届吉林顶级名校11月月考,10)已知球O,过球面上A,B,C 三点作截面,若点O 到该截面的距离是球半径的一半,且AB=BC=2,∠B=120°,则球O 的表面积为( ) A.643π B.83π C.323π D.169π答案 A 如图,设球的半径为r,O 1是△ABC 的外心,外接圆半径为R,连接OO 1,OB,O 1B,则OO 1⊥平面ABC,在△ABC 中,AB=BC=2,∠ABC=120°,则∠A=30°,由正弦定理得2sin A =2R,∴R=2,即O 1B=2.在Rt△OBO 1中,由已知得r 2-14r 2=4,得r 2=163,所以球O 的表面积S=4πr 2=4π×163=643π.故选A.9.(2022届合肥联考(一),9)一个四面体的三视图如图所示,则该四面体的表面积为( )A.2√3+√2+1B.√3+2√2+1C.√3+√2+2D.√3+√2+1答案 B 如图,在棱长等于√2的正方体ABCD-A 1B 1C 1D 1上取四面体ABB 1D 1,即为所求四面体,易得该四面体的表面积为12×√2×√2+12×√2×2×2+√34×22=√3+2√2+1.故选B.10.(2022届贵阳摸底,9)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的外接球的体积为( )A.13√136π B.13π C.9π D.92π答案 A 由三视图可知,此空间几何体是一放倒的圆柱,圆柱的底面半径为1,高为3,如图所示,该圆柱的上、下底面圆周在其外接球的表面上,外接球的半径为OA,因为OO 1=32,O 1A=1,所以OA=√(32)2+12=√132,所以圆柱外接球的体积为43π(√132)3=13√136π,故选A.11.张衡(78年—139年)是中国东汉时期伟大的天文学家、文学家、数学家,他的数学著作有《算罔论》,他曾经得出结论:圆周率的平方除以十六等于八分之五.已知正方体的外接球与内切球上各有一个动点A,B,若线段AB 的最小值为√3-1,利用张衡的结论可得该正方体的外接球的表面积为( )A.30B.10√10C.12√10D.36答案 C 设正方体的棱长为a,则正方体的内切球半径为r=A2,正方体的外接球半径R 满足:R 2=(A 2)2+(√22a )2,解得R=√32a,由题意知:R-r=√32a-A2=√3-1,则a=2,R=√3,则该正方体的外接球的表面积为12π,又因为圆周率的平方除以十六等于八分之五,即π216=58,所以π=√10,所以外接球的表面积为12√10.故选C.二、填空题12.(2022届甘肃九校联考,16)某零件的结构是在一个圆锥中挖去了一个正方体,且正方体的一个面在圆锥底面上,该面所对的面的四个顶点在圆锥侧面内.在图①②③④⑤⑥⑦⑧中选两个分别作为该零件的主视图和俯视图,则所选主视图和俯视图的编号依次可能为(写出符合要求的一组即可).答案⑤⑦(或①⑧)解析根据题意可知,圆锥和正方体的位置关系如图所示,当主视图为①时,俯视图为⑧;当主视图为⑤时,俯视图为⑦,故符合题意的编号为⑤⑦(或①⑧).13.(2022届浙江浙南名校联盟联考一,15)一圆锥母线长为定值a(a>0),母线与底面所成角),当圆锥体积V最大时,sinθ=.大小为θ(0<A<π2答案√33解析如图,设圆锥的高为h,底面半径为r,则h=asinθ,r=acosθ,∴V=13πr 2h=13πa 2cos 2θ·asinθ=π3a 3(1-sin 2θ)·sinθ=π3a 3(sinθ-s in 3θ),则V'=π3a 3(cosθ-3sin 2θ·cosθ)=π3a 3·cosθ(1-3sin 2θ),令V'=0, ∵0<θ<π2,∴1-3sin 2θ=0,即sin 2θ=13,∴sinθ=√33.∴当sinθ∈(0,√33)时,V'>0,V=π3a 3(sinθ-sin 3θ)单调递增;当sinθ∈(√33,1)时,V'<0,V=π3a 3(sinθ-sin 3θ)单调递减.∴sinθ=√33时,V 最大.14.(2022届河南洛阳期中,15)在三棱锥P-ABC 中,AB=2√6,BC=1,AC=5,侧面PAB 是以P 为直角顶点的直角三角形,若平面PAB⊥平面ABC,则该三棱锥体积的最大值为 . 答案 2解析 因为AB=2√6,BC=1,AC=5,所以AB 2+BC 2=AC 2,所以AB⊥BC,在Rt△PAB 中,过P 作PE⊥AB 交AB 于点E,又平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,PE ⊂平面PAB,所以PE⊥平面ABC,所以PE 是三棱锥P-ABC 的高,设AE=x,则BE=2√6-x,在Rt△PAB 中,PE 2=AE·BE,所以PE=√A (2√6-x).所以V 三棱锥P-ABC =13S △ABC ·PE=13×12×2√6×1×√A (2√6-x)=√63√A (2√6-x),当x=√6时,三棱锥的体积取得最大值2.15.(2020甘肃金昌永昌一高期末,16)已知△ABC 中,P 在边BC 上且AP⊥BC,现以AP 为折痕将△ABC 折起,使得∠BPC=π2.若PA=2PB=2PC=4,则该三棱锥P-ABC 的外接球的体积是 ;内切球的表面积是 . 答案 8√6π;π解析 因为AP⊥BP 且AP⊥PC,且∠BPC=90°,所以PA,PB,PC 两两垂直,所以将三棱锥P-ABC 补成如图所示的长方体,设三棱锥P-ABC 的外接球的半径为R,则(2R)2=PA 2+PB 2+PC 2=16+4+4=24,解得R=√6,所以三棱锥P-ABC 的外接球的体积为43πR 3=43π(√6)3=8√6π.设三棱锥P-ABC 内切球的半径为r,三棱锥P-ABC 的表面积为S,由已知得BC=√22+22=2√2,AB=AC=√42+22=2√5,则S=12×4×2×2+12×2×2+12×2√2×√(2√5)2-(√2)2=16,所以V P-ABC =V B-APC =13×12×4×2×2=13×16r,解得r=12,所以三棱锥P-ABC 内切球的表面积为4πr 2=4π×(12)2=π.16.(2022届北京顺义一中期中,15)如图所示,在棱长为a的正方体ABCD-A1B1C1D1中,点E是棱CC1上的一个动点,若平面BED1交棱AA1于点F,给出下列命题:①截面四边形BED1F可以是正方形;②三棱锥B1-BED1的体积恒为定值;③截面四边形BED1F周长的最小值为2√5a.其中是真命题的是(填写所有正确答案的序号).答案②③解析对于①,易得BD1=√3a,设C1E=b(0≤b≤a),则D1E=√A2+A2,BE=√A2+(A-A)2,假设截面四边形BED1F是正方形,则△BED1是以BD1为斜边的等腰直角三角形,从而有{√2·√A2+A2=√3a,√2·√A2+(A-A)2=√3a,由b=a-b得a=2b,则√2·√4A2+A2=2√3b,显然√2·√4A2+A2=2√3b不成立,所以截面四边形BED1F不可能是正方形,①错误;对于②,因为点E到平面BB1D1的距离为定值,又A A1-BE A1=A A-AA1A1,所以三棱锥B1-BED1的体积恒为定值,②正确;对于③,当点E与点C或C1重合时,截面四边形BED1F周长取得最大值2(a+√2a)=2(1+√2)a,当点E是CC1中点时,截面四边形BED1F周长取得最小值2×2·√A2+(A2)2=2√5a,③正确.综上②③正确.。
专题28空间几何体的结构特征、表面积与体积【考点预测】知识点一:构成空间几何体的基本元素—点、线、面(1)空间中,点动成线,线动成面,面动成体.(2)空间中,不重合的两点确定一条直线,不共线的三点确定一个平面,不共面的四点确定一个空间图形或几何体(空间四边形、四面体或三棱锥).知识点二:简单凸多面体—棱柱、棱锥、棱台1.棱柱:两个面互相平面,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱.(1)斜棱柱:侧棱不垂直于底面的棱柱;(2)直棱柱:侧棱垂直于底面的棱柱;(3)正棱柱:底面是正多边形的直棱柱;(4)平行六面体:底面是平行四边形的棱柱;(5)直平行六面体:侧棱垂直于底面的平行六面体;(6)长方体:底面是矩形的直平行六面体;(7)正方体:棱长都相等的长方体.2.棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.(1)正棱锥:底面是正多边形,且顶点在底面的射影是底面的中心;(2)正四面体:所有棱长都相等的三棱锥.3.棱台:用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台,由正棱锥截得的棱台叫做正棱台.简单凸多面体的分类及其之间的关系如图所示.知识点三:简单旋转体—圆柱、圆锥、圆台、球1.圆柱:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的几何体叫做圆柱.2.圆柱:以直角三角形的一条直角边所在的直线为旋转轴,将其旋转一周形成的面所围成的几何体叫做圆锥.3.圆台:用平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台.4.球:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称为球(球面距离:经过两点的大圆在这两点间的劣弧长度).知识点四:组合体由柱体、锥体、台体、球等几何体组成的复杂的几何体叫做组合体.知识点五:表面积与体积计算公式表面积公式体积公式1.斜二测画法斜二测画法的主要步骤如下:(1)建立直角坐标系.在已知水平放置的平面图形中取互相垂直的Ox ,Oy ,建立直角坐标系. (2)画出斜坐标系.在画直观图的纸上(平面上)画出对应图形.在已知图形平行于x 轴的线段,在直观图中画成平行于''O x ,''O y ,使45'''∠=x O y (或135),它们确定的平面表示水平平面.(3)画出对应图形.在已知图形平行于x 轴的线段,在直观图中画成平行于'x 轴的线段,且长度保持不变;在已知图形平行于y 轴的线段,在直观图中画成平行于'y 轴,且长度变为原来的一般.可简化为“横不变,纵减半”.(4)擦去辅助线.图画好后,要擦去'x 轴、'y 轴及为画图添加的辅助线(虚线).被挡住的棱画虚线. 注:4. 2.平行投影与中心投影平行投影的投影线是互相平行的,中心投影的投影线相交于一点.【题型归纳目录】题型一:空间几何体的结构特征 题型二:空间几何体的表面积与体积 题型三:直观图 题型四:最短路径问题 【典例例题】题型一:空间几何体的结构特征例1.(2022·全国·模拟预测)以下结论中错误的是( ) A .经过不共面的四点的球有且仅有一个 B .平行六面体的每个面都是平行四边形 C .正棱柱的每条侧棱均与上下底面垂直 D .棱台的每条侧棱均与上下底面不垂直【答案】D【解析】对于A ,经过不共面的四点的球,即为该四面体的外接球,有且仅有一个,故A 正确, 对于B ,平行六面体的每个面都是平行四边形,故B 正确, 对于C ,正棱柱的每条侧棱均与上下底面垂直,故C 正确,对于D ,棱台的每条侧棱延长线交于一点,侧棱中有可能与底面垂直,故D 错误, 故选:D例2.(2022·全国·高三专题练习(文))下列说法正确的是( ) A .经过三点确定一个平面B .各个面都是三角形的多面体一定是三棱锥C .各侧面都是正方形的棱柱一定是正棱柱D .一个三棱锥的四个面可以都为直角三角形 【答案】D【解析】A.错误,经过不共线的三点确定一个平面; B.错误,正八面体的八个面也都是正三角形;C.错误,侧面都是正方形,但底面如果不是正多边形,也不是正棱柱,比如侧面是正方形,但底面是菱形的柱体不是正四棱柱;D.正确,底面是直角三角形,一条侧棱和底面垂直,并且垂直落在非直角顶点处的三棱锥,即可满足条件. 故选:D例3.(2022·海南·模拟预测)“三棱锥P ABC -是正三棱锥”的一个必要不充分条件是( ) A .三棱锥P ABC -是正四面体 B .三棱锥P ABC -不是正四面体 C .有一个面是正三角形 D .ABC 是正三角形且PA PB PC == 【答案】C【解析】由正三棱锥的定义,得三棱锥P ABC -是正三棱锥等价于“有一个面是正三角形,其他面是等腰三角形”,对于A :因为三棱锥P ABC -是正四面体等价于四个面是全等的正三角形,所以“三棱锥P ABC -是正四面体”是“三棱锥P ABC -是正三棱锥”的充分不必要条件, 即选项A 错误;对于B :因为一个正三棱锥可能是正四面体,也可能不是正四面体,所以“三棱锥P ABC -不是正四面体”是“三棱锥P ABC -是正三棱锥”的既不充分也不必要条件,即选项B 错误;对于C :因为三棱锥P ABC -是正三棱锥等价于有一个面是正三角形,其他面是等腰三角形,所以“有一个面是正三角形”是“三棱锥P ABC -是正三棱锥”的必要不充分条件,即选项C 正确;对于D :因为三棱锥P ABC -是正三棱锥等价于有一个面是正三角形,其他面是等腰三角形,当但正三角形不一定是ABC ,所以“ABC 是正三角形且PA PB PC ==”是“三棱锥P ABC -是正三棱锥”的充分不必要条件,即选项D 错误. 故选:C.例4.(2022·全国·高三专题练习)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥; ④棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确命题的个数是( ) A .0 B .1C .2D .3【答案】A【解析】①不一定,只有这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图(1)所示; ③不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图(2)所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.故选:A例5.(2022·山东省东明县第一中学高三阶段练习)下列说法正确的是( ) A .有两个面平行,其余各面都是平行四边形的几何体叫棱柱 B .过空间内不同的三点,有且只有一个平面 C .棱锥的所有侧面都是三角形D .用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台 【答案】C【解析】对A :根据棱柱的定义知,有两个面平行,其余各面都是四边形, 且每相邻两个四边形的公共边都互相平行的几何体是棱柱,所以A 错误,反例如图:对B :若这三点共线,则可以确定无数个平面,故B 错误;对C :棱锥的底面为多边形,其余各面都是有一个公共顶点的三角形,故C 正确;对D :只有用平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台,故D 错误, 故选:C .例6.(2022·全国·高三专题练习)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确命题的个数是( ) A .0 B .1C .2D .3【答案】A【解析】①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等. 故选:A.例7.(2022·全国·高三专题练习)莱昂哈德·欧拉,瑞士数学家和物理学家,近代数学先驱之一,他的研究论著几乎涉及到所有数学分支,有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的.欧拉发现,不论什么形状的凸多面体,其顶点数V 、棱数E 、面数F 之间总满足数量关系2,V F E +-=,此式称为欧拉公式,已知某凸32面体,12个面是五边形,20个面是六边形,则该32面体的棱数为___________;顶点的个数为___________.【答案】 90 60【解析】因为某凸32面体,12个面是五边形,20个面是六边形, 则该32面体的棱数:125206902⨯+⨯=;因为顶点数V 、棱数E 、面数F 之间总满足数量关系2V F E +-=, 设顶点的个数为x ,则32902x +-=, 解得60x =, 故答案为:90;60.例8.(2022·安徽·合肥一六八中学模拟预测(理))如图,正方体1AC 上、下底面中心分别为1O ,2O ,将正方体绕直线12O O 旋转360︒,下列四个选项中为线段1AB 旋转所得图形是( )A .B .C .D .【答案】D【解析】解:设正方体的棱长等于a ,1AB 的中点到旋转轴的距离等于12a ,而A 、1B , 1AB ∴的中点旋转一周,得到的圆较小,可得所得旋转体的中间小,上、下底面圆较大.由此可得A、C项不符合题意,舍去.又在所得旋转体的侧面上有无数条直线,且直线的方向与转轴不共面,∴B项不符合题意,只有D项符合题意.故选:D.例9.(多选题)(2022·全国·高三专题练习)如图所示,观察四个几何体,其中判断正确的是()(多选)A.①是棱台B.②是圆台C.③是棱锥D.④是棱柱【答案】CD【解析】题图①中的几何体不是由棱锥被一个平面所截得到的,且上、下底面不是相似的图形,所以不是棱台;题图②中的几何体上、下两个面不平行,所以②不是圆台;图③中的几何体是三棱锥;题图④中的几何体前、后两个面平行,其他面都是平行四边形,且每相邻两个平行四边形的公共边都互相平行,所以④是棱柱.故选:CD.C)是一种非金属单质,它是由例10.(2022·陕西·西北工业大学附属中学高三阶段练习(理))碳60(6060个碳原子构成的分子,形似足球,又称为足球烯,其结构是由五元环(正五边形面)和六元环(正六边形面)组成的封闭的凸多面体,共32个面,且满足:顶点数-棱数+面数=2.则其六元环的个数为__________.【答案】20【解析】根据题意,碳60(Co)由60个顶点,有32个面,+-=,由顶点数-棱数+面数=2可得:棱数为6032290设正五边形有x个,正六边形有y个,则3256902x y x y +=⎧⎨+=⨯⎩,解得:1220x y =⎧⎨=⎩,所以六元环的个数为20个,故答案为:20【方法技巧与总结】 熟悉几何体的基本概念.题型二:空间几何体的表面积与体积例11.(多选题)(2022·湖北·高三阶段练习)折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧,DE AC 所在圆的半径分别是3和9,且120ABC ∠=,则该圆台的( )A .高为BC .表面积为34πD .上底面积、下底面积和侧面积之比为1:9:22【答案】AC【解析】解:设圆台的上底面半径为r ,下底面半径为R ,则11223,22933r R ππππ=⨯⨯=⨯⨯,解得1,3r R ==.圆台的母线长6l =,圆台的高为h =,则选项A 正确;圆台的体积()22133113π=⨯+⨯+=,则选项B 错误;圆台的上底面积为π,下底面积为9π,侧面积为()13624ππ+⨯=,则圆台的表面积为92434ππππ++=,则C 正确;由前面可知上底面积、下底面积和侧面积之比为1:9:24,则选项D 错误. 故选:AC .例12.(2022·青海·海东市第一中学模拟预测(理))设一圆锥的侧面积是其底面积的3倍,则该圆锥的高与母线长的比值为( )A .89B C D .23【答案】B【解析】设圆锥的底面半径为r ,母线长为l ,高为h ,由题意得23rl r ππ=,解得3l r =,又222l r h =+,则h =,h l =故选:B.例13.(2022·云南·二模(文))已知长方体1111ABCD A B C D -的表面积为62,所有棱长之和为40,则线段1AC 的长为( )A B C D 【答案】A【解析】由题意知:()11262AB AD AB AA AD AA ⋅+⋅+⋅=,140104AB AD AA ++==,故()22221111222100AB AD AA AB AD AA AB AD AB AA AD AA ++=+++⋅+⋅+⋅=,则222138AB AD AA ++=,所以1AC ==故选:A.例14.(2022·福建省福州第一中学三模)已知AB ,CD 分别是圆柱上、下底面圆的直径,且AB CD ⊥,.1O ,O 分别为上、下底面的圆心,若圆柱的底面圆半径与母线长相等,且三棱锥A BCD -的体积为18,则该圆柱的侧面积为( ) A .9π B .12πC .16πD .18π【答案】D【解析】分别过,A B 作圆柱的母线,AE BF ,连接,,,CE DE CF DF ,设圆柱的底面半径为r 则三棱锥A BCD -的体积为两个全等四棱锥C ABFE -减去两个全等三棱锥A CDE -即311122222183323r r r r r r r ⨯⨯⨯⨯-⨯⨯⨯⨯⨯==,则3r =圆柱的侧面积为2π18πr r ⨯= 故选:D .例15.(2022·河南·模拟预测(文))在正四棱锥P ABCD -中,AB =P ABCD -的体积是8,则该四棱锥的侧面积是( )A B .C .D .【答案】C【解析】如图,连接AC ,BD ,记AC BD O =,连接OP ,所以OP ⊥平面ABC D.取BC 的中点E ,连接OE PE ,.因为正四棱锥P ABCD -的体积是8,所以218833AB OP OP ⋅==,解得3OP =.因为12BE BC ==POE 中,PE ==则PBC 的面积为1122BC PE ⋅=⨯=故该四棱锥的侧面积是故选:C例16.(2022·全国·高三专题练习)《九章算术》中将正四棱台体(棱台的上下底面均为正方形)称为方亭.如图,现有一方亭ABCD EFHG -,其中上底面与下底面的面积之比为1:4,方亭的高h EF =,BF =,方亭的四个侧面均为全等的等腰梯形,已知方亭四个侧面的面积之和 )A .24B .643C .563D .16 【答案】C【解析】由题意得12EF AB =,设2EF x =,则4AB x =,BF =. 过点E 、F 在平面ABFE 内分别作EM AB ⊥,FN AB ⊥,垂足分别为点M 、N ,在等腰梯形ABFE 中,因为//EF AB ,EM AB ⊥,FN AB ⊥,则四边形MNFE 为矩形,所以,2MN EF x ==,EM FN =,因为AE BF =,EM FN =,90AME BNF ∠=∠=,所以,Rt AME Rt BNF △≌△,所以,2AB EF AM BN x -===,所以,FN ,所以等腰梯形ABFE 的面积为2242x x S +===1x =.所以,22EF x ==,44AB x ==,故方亭的体积为(156241633⨯⨯++=. 故选:C.例17.(2022·湖南·高三阶段练习)如图,一种棱台形状的无盖容器(无上底面1111D C B A )模型其上、下底面均为正方形,面积分别为24cm ,29cm ,且1111A A B B C C D D ===,若该容器模型的体积为319cm 3,则该容器模型的表面积为( )A .()29cm B .219cmC .()29cmD .()29cm 【答案】C【解析】由题意得该容器模型为正四棱台,上、下底面的边长分别为2cm ,3cm.设该棱台的高为h ,则由棱台体积公式(13V h S S =+下上, 得:191(496)33h =⨯⨯++ 得1cm h =,所以侧面等腰梯形的高)cm h '=,所以()()2232499cm 2表+=⨯+=S , 故选:C例18.(2022·海南海口·二模)如图是一个圆台的侧面展开图,其面积为3π,两个圆弧所在的圆半径分别为2和4,则该圆台的体积为( )A B C D 【答案】D【解析】圆台的侧面展开图是一扇环,设该扇环的圆心角为α, 则其面积为221142322ααπ⨯⨯-⨯⨯=,得2πα=, 所以扇环的两个圆弧长分别为π和2π,设圆台的上底半径,下底半径分别为12,r r ,圆台的高为h ,则122,22r r ππππ== 所以112r =,21r =,又圆台的母线长422l =-=所以圆台的高为h所以圆台的体积为2211111322V π⎡⎤⎛⎫=++⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.故选:D.例19.(2022·全国·高三专题练习)圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面的半径分别为4和5,则该圆台的侧面积为( )A .B .C .D .【答案】C【解析】因为圆台下底面半径为5,球的直径为210R =,所以圆台下底面圆心与球心重合,底面圆的半径为5R =,画出轴截面如图,设圆台上底面圆的半径r ,则4r =所以球心O 到上底面的距离3h ,即圆台的高为3,所以母线长l =所以()12πS r r l =+=侧,故选:C.例20.(2022·河南安阳·模拟预测(文))已知圆柱12O O 的底面半径为1,高为2,AB ,CD 分别为上、下底面圆的直径,AB CD ⊥,则四面体ABCD 的体积为( )A .13B .23 C .1 D .43【答案】D【解析】解:如图所示:连接11CO DO ,因为AB CD ⊥,12AB O O ⊥,且122O O CD O ⋂=,所以AB ⊥平面1CDO ,所以11--=+ABCD A CDO B CDO V V V ,111142223323=⋅=⨯⨯⨯⨯=CDO S AB , 故选:D例21.(2022·山东·烟台市教育科学研究院二模)鲁班锁是我国传统的智力玩具,起源于中国古代建筑中的榫卯结构,其内部的凹凸部分啮合十分精巧.图1是一种鲁班锁玩具,图2是其直观图.它的表面由八个正三角形和六个正八边形构成,其中每条棱长均为2.若该玩具可以在一个正方体内任意转动(忽略摩擦),则此正方体表面积的最小值为________.【答案】168+【解析】将鲁班锁补成正方体1111ABCD A B C D -,然后以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,在鲁班锁所在几何体上任取一个顶点(2P +,观察图形可知,P 到鲁班锁所在几何体上其他顶点的距离的最大值在PE 、PF 、 PG 、PH 、PM 、PN 、PR 、PS 中取得,结合图形可知)E 、()2F 、()2G +、()2H +、 ()2M +、)2N +、()0,2R 、()S ,则(224216PE =++=+((22222220PF =+++=+ (222224PG =+=+(2222428PH =++=+ ((22222224PM =++⨯=+ ((22222220PN =+++=+(224216PR =++=+(22212PS =+=+所以,P所以,若该玩具可以在一个正方体内任意转动(忽略摩擦),设该正方体的棱长的最小值为a ,则a ,该正方体的表面积为26168S a ==+故答案为:168+.例22.(2022·湖北省天门中学模拟预测)已知一个圆柱的体积为2π,底面直径与母线长相等,圆柱内有一个三棱柱,与圆柱等高,底面是顶点在圆周上的正三角形,则三棱柱的侧面积为__________.【答案】【解析】设圆柱的底面半径为r ,则222r r ππ⋅=,∴1r =,设三棱柱底面边长为a , 则22sin 60a r ==︒,∴a =∴三棱柱的侧面积为3232a r ⨯⨯==故答案为:例23.(2022·上海闵行·二模)已知一个圆柱的高不变,它的体积扩大为原来的4倍,则它的侧面积扩大为原来的___________倍.【答案】2【解析】设圆柱的高为h ,底面半径为r ,则体积为2πr h ,体积扩大为原来的4倍,则扩大后的体积为24πr h ,因为高不变,故体积()224ππ2r h r h =,即底面半径扩大为原来的2倍,原来侧面积为2πrh ,扩大后的圆柱侧面积为2π24πrh rh ⋅=,故侧面积扩大为原来的2倍.故答案为:2例24.(2022·浙江绍兴·模拟预测)有书记载等角半正多面体是以边数不全相同的正多边形为面的多面体,如图,将正四面体沿相交于同一个顶点的三条梭上的3个点截去一个正三棱锥,如此共截去4个正三棱锥,若得到的几何体是一个由正三角形与正六边形围成的等角半正多面体,且正六边形的面积为2,则原正四面体的表面积为_________.【答案】12【解析】设正六边形的边长为a ,根据题意有262=,可得2a ==,由题意可知,原正四面体的棱长为3a ,故原正四面体的表面积为()23412S a =⨯=, 故答案为:12.例25.(2022·上海徐汇·三模)设圆锥底面圆周上两点A 、B 间的距离为2,圆锥顶点到直线AB AB 和圆锥的轴的距离为1,则该圆锥的侧面积为___________.【答案】【解析】设圆锥的顶点为P ,底面圆圆心为点O ,取线段AB 的中点E ,连接OE 、PE 、OA 、OB ,因为PA PB =,OA OB =,则OE AB ⊥,PE AB ⊥,故PE =因为PO ⊥平面OAB ,OE ⊂平面OAB ,PO OE ∴⊥,所以,OE 为直线PO 、AB 的公垂线,故1OE =,因为112AE AB ==,OA ∴2PA ,所以,圆锥PO ,母线长为2,因此,该圆锥的侧面积为2π=.故答案为:.例26.(2022·全国·高三专题练习)中国古代的“牟合方盖”可以看作是两个圆柱垂直相交的公共部分,计算其体积所用的“幂势即同,则积不容异”是中国古代数学的研究成果,根据此原理,取牟合方盖的一半,其体积等于与其同底等高的正四棱柱中,去掉一个同底等高的正四棱锥之后剩余部分的体积(如图1所示).现将三个直径为4的圆柱放于同一水平面上,三个圆柱的轴所在的直线两两成角都相等,三个圆柱的公共部分为如图2 ,则该几何体的体积为___________.【解析】根据题意,图2立体图形的一半,其体积等于与其同底等高的正三棱柱中,去掉一个与其同底等高正三棱锥之后的体积,,所以该底面积1166023S ==, 因为圆柱的直径为4,所以该几何体一半的高为2,所以对应正三棱柱及三棱锥的高均为2,所以对应正三棱柱的体积2V ==正三棱锥的体积1123V ==,所以该几何体的体积为()12V V -=【方法技巧与总结】熟悉几何体的表面积、体积的基本公式,注意直角等特殊角. 题型三:直观图例27.(2022·全国·高三专题练习)如图,已知用斜二测画法画出的ABC 的直观图是边长为a 的正三角形,原ABC 的面积为 __.2【解析】过点C '作//C M y '''轴,且交x '轴于点M ', 过点C '作C D x '''⊥轴,且交x '轴于点D ,则C D ''=, 所以45C M D '''∠=︒,则C M ''=,所以原三角形的高CM =,底边长为a ,其面积为212S a =⨯=.2. 例28.(2022·浙江·镇海中学模拟预测)如图,梯形ABCD 是水平放置的一个平面图形的直观图,其中45ABC ∠=︒,1AB AD ==,DC BC ⊥,则原图形的面积为( )A .1B .2C .2D .1【答案】B【解析】解:由题得12BC =+,所以()11(22222S A D B C A B =+⋅=+⨯'''='''故选:B .例29.(2022·全国·高三专题练习)如图,△ABC 是水平放置的△ABC 的斜二测直观图,其中2O C O A O B ''''''==,则以下说法正确的是( )A .△ABC 是钝角三角形B .△ABC 是等边三角形 C .△ABC 是等腰直角三角形D .△ABC 是等腰三角形,但不是直角三角形【答案】C【解析】解:将其还原成原图,如图, 设2A C ''=,则可得21OB O B ''==,2AC A C ''==,从而AB BC =所以222AB BC AC +=,即AB BC ⊥,故ABC 是等腰直角三角形.故选:C.例30.(2022·全国·高三专题练习)如图,水平放置的四边形ABCD 的斜二测直观图为矩形A B C D '''',已知2,2A O O B B C =='''''=',则四边形ABCD 的周长为( )A .20B .12C .8+D .8+【答案】A【解析】由题设O C ''=OC =4D C DC A B AB ''''====,故6BC =,且AD BC =,所以四边形ABCD 的周长为20AB BC DC AD +++=. 故选:A例31.(2022·全国·高三专题练习(文))如图,已知等腰直角三角形O A B '''△,O A A B ''''=是一个平面图形的直观图,斜边2O B ''=,则这个平面图形的面积是( )A .2B .1CD .【答案】D【解析】2O B ''=,O A A B ''''=,45A O B '''∠=,O A ∴'' 由此可知平面图形是如下图所示的Rt OAB ,其中OA OB ⊥,2OB O B ''==,2OA O A ''==11222OABSOA OB ∴=⋅=⨯⨯=故选:D.例32.(2022·全国·高三专题练习)一个三角形的水平直观图在x O y '''是等腰三角形,底角为30,腰长为2,如图,那么它在原平面图形中,顶点B 到x 轴距离是( )A .1B .2 CD.【答案】D【解析】过点B '作//'''B C y 轴,交x '轴于点C ',如图,在O B C '''中,30,135,2B O C B C O O B ''''''''∠=∠==,由正弦定理得,sin 30sin135B C O B ''''=︒︒,于是得12B C ⨯''==B 到x轴距离是故选:D【方法技巧与总结】斜二测法下的直观图与原图面积之间存在固定的比值关系:S 直原. 题型四:最短路径问题例33.(多选题)(2022·广东广州·三模)某班级到一工厂参加社会实践劳动,加工出如图所示的圆台12O O ,在轴截面ABCD 中,2cm AB AD BC ===,且2CD AB =,则( )A .该圆台的高为1cmB.该圆台轴截面面积为2 C3D .一只小虫从点C 沿着该圆台的侧面爬行到AD 的中点,所经过的最短路程为5cm 【答案】BCD 【解析】如图,作BE CD ⊥交CD 于E ,易得12CD ABCE -==,则22213BE ,则圆台的高为,A 错误;圆台的轴截面面积为()214m 22⨯+,B 正确;圆台的体积为(3143ππ++=,C 正确;将圆台一半侧面展开,如下图中ABCD ,设P 为AD 中点,圆台对应的圆锥一半侧面展开为扇形COD ,由1CE EO =可得2BC OB ==,则4OC =,4242COD ππ∠==,又32ADOP OA =+=,则5CP =, 即点C 到AD 的中点所经过的最短路程为5cm ,D 正确. 故选:BCD.例34.(2022·河南洛阳·三模(理))在棱长为1的正方体1111ABCD A B C D -中,点E 为1CC 上的动点,则1D E EB +的最小值为___________.【解析】如图,将正方形11DCC D 、11BCC B 铺平在同一平面上,当1,,D E B 三点共线时,1D E EB +例35.(2022·黑龙江齐齐哈尔·二模(文))如图,在直三棱柱111ABC A B C -中,12,1,90AA AB BC ABC ===∠=︒,点E 是侧棱1BB 上的一个动点,则下列判断正确的有___________.(填序号)②存在点E ,使得1A EA ∠为钝角③截面1AEC 周长的最小值为【答案】①③【解析】取AC 中点D ,11A C 中点F ,连接DF ,矩形11ACC A 中可得1//DF AA ,1DF AA =, 1AA ⊥平面ABC ,所以DF ⊥平面ABC ,90ABC ∠=︒,所以D 是ABC 外心,同理F 是111A B C △的外心,所以DF 的中点O 是直三棱柱外接球的球心,由已知AC CD =1211A O A D ==,所以OC =所以外接球的体积为343V π=⨯=,①正确;矩形11AA B B 中,11,2AB AA ==,1AA 为直径的圆与1BB 相切,切点为1BB 的中点,当E 为切点时,190AEA ∠=︒.当E 是1BB 上其他点时,190AEA ∠<︒,②错误;1AEC 中,1AC =11BB C C 与矩形11ABB A 摊平,得正方形11''AAC C ,当1,,A E C '共线时,1AE EC +最短,最短为所以截面1AEC 周长的最小值为故答案为:①③.例36.(2022·河南·二模(理))在正方体1111ABCD A B C D -中,2AB =,P 是线段1BC 上的一动点,则1A P PC +的最小值为________.【解析】如图,连接1A B 、11A C ,将△1BCC 沿1BC 翻折到与△11A BC 在同一个平面,如下图:已知△11A BC 为等边三角形,△1BCC 为等腰三角形,两个三角形有公共边1BC ,则当P 是1BC 中点时,1A 、P 、1C 三点共线,此时1A P PC +例37.(2022·陕西宝鸡·二模(文))如图,在正三棱锥P ABC -中,30APB BPC CPA ∠=∠=∠=,4PA PB PC ===,一只虫子从A 点出发,绕三棱锥的三个侧面爬行一周后,又回到A 点,则虫子爬行的最短距离是___________.【答案】【解析】如图所示,将三棱锥的侧面展开,因为30APB BPC CPA ∠=∠=∠=,所以190∠=APA , 当虫子沿1AA 爬行时,距离最短,又1=AA所以虫子爬行的最短距离是故答案为:例38.(2022·安徽宣城·二模(理))已知正四面体ABCD 的棱长为2,P 为AC 的中点,E 为AB 中点,M 是DP 的动点,N 是平面ECD 内的动点,则||||AM MN +的最小值是_____________.【解析】取CE 中点O ,连接,DO OP ,由正四面体可知,DE AB CE AB ⊥⊥,又DE CE E ⋂=,AB ∴⊥面CDE , 又OP AB ∥,OP ∴⊥面CDE ,当||||AM MN +最小时,MN ⊥面CDE ,故N 在线段DO 上.由OP ⊥面CDE 可得OP OD ⊥,又111242OP AE AB ===,DP =2OD == 将PDO △沿PD 翻折到平面APD 上,如图所示:易知30ADP ∠=,sinOP OD ODP ODP DP DP ∠==∠== 则()333sin sin 30sin cos30cos sin 3012ODA ODP ODP ODP +∠=∠+=∠+∠=,故||||AM MN +的最小值即A 到OD 的距离,即sin 2AD ADO ⋅∠==. 例39.(2022·新疆阿勒泰·三模(理))如图,圆柱的轴截面ABCD 是一个边长为4的正方形.一只蚂蚁从点A 出发绕圆柱表面爬到BC 的中点E ,则蚂蚁爬行的最短距离为( )A .B .C .D 【答案】C。
专题28空间几何体的结构特征、表面积与体积【考点预测】知识点一:构成空间几何体的基本元素—点、线、面(1)空间中,点动成线,线动成面,面动成体.(2)空间中,不重合的两点确定一条直线,不共线的三点确定一个平面,不共面的四点确定一个空间图形或几何体(空间四边形、四面体或三棱锥).知识点二:简单凸多面体—棱柱、棱锥、棱台1.棱柱:两个面互相平面,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱.(1)斜棱柱:侧棱不垂直于底面的棱柱;(2)直棱柱:侧棱垂直于底面的棱柱;(3)正棱柱:底面是正多边形的直棱柱;(4)平行六面体:底面是平行四边形的棱柱;(5)直平行六面体:侧棱垂直于底面的平行六面体;(6)长方体:底面是矩形的直平行六面体;(7)正方体:棱长都相等的长方体.2.棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.(1)正棱锥:底面是正多边形,且顶点在底面的射影是底面的中心;(2)正四面体:所有棱长都相等的三棱锥.3.棱台:用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台,由正棱锥截得的棱台叫做正棱台.简单凸多面体的分类及其之间的关系如图所示.知识点三:简单旋转体—圆柱、圆锥、圆台、球1.圆柱:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的几何体叫做圆柱.2.圆柱:以直角三角形的一条直角边所在的直线为旋转轴,将其旋转一周形成的面所围成的几何体叫做圆锥.3.圆台:用平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台.4.球:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称为球(球面距离:经过两点的大圆在这两点间的劣弧长度).知识点四:组合体由柱体、锥体、台体、球等几何体组成的复杂的几何体叫做组合体.知识点五:表面积与体积计算公式表面积公式体积公式1.斜二测画法斜二测画法的主要步骤如下:(1)建立直角坐标系.在已知水平放置的平面图形中取互相垂直的Ox ,Oy ,建立直角坐标系. (2)画出斜坐标系.在画直观图的纸上(平面上)画出对应图形.在已知图形平行于x 轴的线段,在直观图中画成平行于''O x ,''O y ,使45'''∠=x O y (或135),它们确定的平面表示水平平面.(3)画出对应图形.在已知图形平行于x 轴的线段,在直观图中画成平行于'x 轴的线段,且长度保持不变;在已知图形平行于y 轴的线段,在直观图中画成平行于'y 轴,且长度变为原来的一般.可简化为“横不变,纵减半”.(4)擦去辅助线.图画好后,要擦去'x 轴、'y 轴及为画图添加的辅助线(虚线).被挡住的棱画虚线. 注:4. 2.平行投影与中心投影平行投影的投影线是互相平行的,中心投影的投影线相交于一点.【题型归纳目录】题型一:空间几何体的结构特征 题型二:空间几何体的表面积与体积 题型三:直观图 题型四:最短路径问题 【典例例题】题型一:空间几何体的结构特征例1.(2022·全国·模拟预测)以下结论中错误的是( ) A .经过不共面的四点的球有且仅有一个 B .平行六面体的每个面都是平行四边形 C .正棱柱的每条侧棱均与上下底面垂直 D .棱台的每条侧棱均与上下底面不垂直例2.(2022·全国·高三专题练习(文))下列说法正确的是( ) A .经过三点确定一个平面B .各个面都是三角形的多面体一定是三棱锥C .各侧面都是正方形的棱柱一定是正棱柱D .一个三棱锥的四个面可以都为直角三角形例3.(2022·海南·模拟预测)“三棱锥P ABC -是正三棱锥”的一个必要不充分条件是( ) A .三棱锥P ABC -是正四面体 B .三棱锥P ABC -不是正四面体 C .有一个面是正三角形 D .ABC 是正三角形且PA PB PC ==例4.(2022·全国·高三专题练习)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥; ④棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确命题的个数是( ) A .0 B .1C .2D .3例5.(2022·山东省东明县第一中学高三阶段练习)下列说法正确的是( ) A .有两个面平行,其余各面都是平行四边形的几何体叫棱柱 B .过空间内不同的三点,有且只有一个平面 C .棱锥的所有侧面都是三角形D .用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台例6.(2022·全国·高三专题练习)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确命题的个数是( ) A .0 B .1C .2D .3例7.(2022·全国·高三专题练习)莱昂哈德·欧拉,瑞士数学家和物理学家,近代数学先驱之一,他的研究论著几乎涉及到所有数学分支,有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的.欧拉发现,不论什么形状的凸多面体,其顶点数V 、棱数E 、面数F 之间总满足数量关系2,V F E +-=,此式称为欧拉公式,已知某凸32面体,12个面是五边形,20个面是六边形,则该32面体的棱数为___________;顶点的个数为___________.例8.(2022·安徽·合肥一六八中学模拟预测(理))如图,正方体1AC 上、下底面中心分别为1O ,2O ,将正方体绕直线12O O 旋转360︒,下列四个选项中为线段1AB 旋转所得图形是( )A .B .C .D .例9.(多选题)(2022·全国·高三专题练习)如图所示,观察四个几何体,其中判断正确的是( )(多选)A .①是棱台B .②是圆台C .③是棱锥D .④是棱柱例10.(2022·陕西·西北工业大学附属中学高三阶段练习(理))碳60(60C )是一种非金属单质,它是由60个碳原子构成的分子,形似足球,又称为足球烯,其结构是由五元环(正五边形面)和六元环(正六边形面)组成的封闭的凸多面体,共32个面,且满足:顶点数-棱数+面数=2.则其六元环的个数为__________.【方法技巧与总结】 熟悉几何体的基本概念.题型二:空间几何体的表面积与体积例11.(多选题)(2022·湖北·高三阶段练习)折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧,DE AC 所在圆的半径分别是3和9,且120ABC ∠=,则该圆台的( )A .高为BC .表面积为34πD .上底面积、下底面积和侧面积之比为1:9:22例12.(2022·青海·海东市第一中学模拟预测(理))设一圆锥的侧面积是其底面积的3倍,则该圆锥的高与母线长的比值为( )A .89B C D .23例13.(2022·云南·二模(文))已知长方体1111ABCD A B C D -的表面积为62,所有棱长之和为40,则线段1AC 的长为( )A B C D例14.(2022·福建省福州第一中学三模)已知AB ,CD 分别是圆柱上、下底面圆的直径,且AB CD ⊥,.1O ,O 分别为上、下底面的圆心,若圆柱的底面圆半径与母线长相等,且三棱锥A BCD -的体积为18,则该圆柱的侧面积为( ) A .9π B .12π C .16π D .18π例15.(2022·河南·模拟预测(文))在正四棱锥P ABCD -中,AB =P ABCD -的体积是8,则该四棱锥的侧面积是( )AB .C .D .例16.(2022·全国·高三专题练习)《九章算术》中将正四棱台体(棱台的上下底面均为正方形)称为方亭.如图,现有一方亭ABCD EFHG -,其中上底面与下底面的面积之比为1:4,方亭的高h EF =,BF =,方亭的四个侧面均为全等的等腰梯形,已知方亭四个侧面的面积之和 )A .24B .643C .563D .16例17.(2022·湖南·高三阶段练习)如图,一种棱台形状的无盖容器(无上底面1111D C B A )模型其上、下底面均为正方形,面积分别为24cm ,29cm ,且1111A A B B C C D D ===,若该容器模型的体积为319cm 3,则该容器模型的表面积为( )A .()29cmB .219cmC .()29cmD .()29cm例18.(2022·海南海口·二模)如图是一个圆台的侧面展开图,其面积为3π,两个圆弧所在的圆半径分别为2和4,则该圆台的体积为( )A B C D例19.(2022·全国·高三专题练习)圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面的半径分别为4和5,则该圆台的侧面积为( )A .B .C .D .例20.(2022·河南安阳·模拟预测(文))已知圆柱12O O 的底面半径为1,高为2,AB ,CD 分别为上、下底面圆的直径,AB CD ⊥,则四面体ABCD 的体积为( ) A .13B .23C .1D .43例21.(2022·山东·烟台市教育科学研究院二模)鲁班锁是我国传统的智力玩具,起源于中国古代建筑中的榫卯结构,其内部的凹凸部分啮合十分精巧.图1是一种鲁班锁玩具,图2是其直观图.它的表面由八个正三角形和六个正八边形构成,其中每条棱长均为2.若该玩具可以在一个正方体内任意转动(忽略摩擦),则此正方体表面积的最小值为________.例22.(2022·湖北省天门中学模拟预测)已知一个圆柱的体积为2 ,底面直径与母线长相等,圆柱内有一个三棱柱,与圆柱等高,底面是顶点在圆周上的正三角形,则三棱柱的侧面积为__________.例23.(2022·上海闵行·二模)已知一个圆柱的高不变,它的体积扩大为原来的4倍,则它的侧面积扩大为原来的___________倍.例24.(2022·浙江绍兴·模拟预测)有书记载等角半正多面体是以边数不全相同的正多边形为面的多面体,如图,将正四面体沿相交于同一个顶点的三条梭上的3个点截去一个正三棱锥,如此共截去4个正三棱锥,若得到的几何体是一个由正三角形与正六边形围成的等角半正多面体,且正六边形的面积为2,则原正四面体的表面积为_________.例25.(2022·上海徐汇·三模)设圆锥底面圆周上两点A、B间的距离为2,圆锥顶点到直线ABAB和圆锥的轴的距离为1,则该圆锥的侧面积为___________.例26.(2022·全国·高三专题练习)中国古代的“牟合方盖”可以看作是两个圆柱垂直相交的公共部分,计算其体积所用的“幂势即同,则积不容异”是中国古代数学的研究成果,根据此原理,取牟合方盖的一半,其体积等于与其同底等高的正四棱柱中,去掉一个同底等高的正四棱锥之后剩余部分的体积(如图1所示).现将三个直径为4的圆柱放于同一水平面上,三个圆柱的轴所在的直线两两成角都相等,三个圆柱的公共部分为如图2,则该几何体的体积为___________.【方法技巧与总结】熟悉几何体的表面积、体积的基本公式,注意直角等特殊角. 题型三:直观图例27.(2022·全国·高三专题练习)如图,已知用斜二测画法画出的ABC 的直观图是边长为a 的正三角形,原ABC 的面积为 __.例28.(2022·浙江·镇海中学模拟预测)如图,梯形ABCD 是水平放置的一个平面图形的直观图,其中45ABC ∠=︒,1AB AD ==,DC BC ⊥,则原图形的面积为( )A .1B .2C .2D .1例29.(2022·全国·高三专题练习)如图,△ABC 是水平放置的△ABC 的斜二测直观图,其中2O C O A O B ''''''==,则以下说法正确的是( )A .△ABC 是钝角三角形B .△ABC 是等边三角形C .△ABC 是等腰直角三角形D .△ABC 是等腰三角形,但不是直角三角形例30.(2022·全国·高三专题练习)如图,水平放置的四边形ABCD 的斜二测直观图为矩形A B C D '''',已知2,2A O O B B C =='''''=',则四边形ABCD 的周长为( )A .20B .12C .8+D .8+例31.(2022·全国·高三专题练习(文))如图,已知等腰直角三角形O A B '''△,O A A B ''''=是一个平面图形的直观图,斜边2O B ''=,则这个平面图形的面积是( )A B .1 C D .例32.(2022·全国·高三专题练习)一个三角形的水平直观图在x O y '''是等腰三角形,底角为30,腰长为2,如图,那么它在原平面图形中,顶点B 到x 轴距离是( )A .1B .2CD .【方法技巧与总结】斜二测法下的直观图与原图面积之间存在固定的比值关系:S 直原. 题型四:最短路径问题例33.(多选题)(2022·广东广州·三模)某班级到一工厂参加社会实践劳动,加工出如图所示的圆台12O O ,在轴截面ABCD 中,2cm AB AD BC ===,且2CD AB =,则( )A .该圆台的高为1cmB .该圆台轴截面面积为2C 3D .一只小虫从点C 沿着该圆台的侧面爬行到AD 的中点,所经过的最短路程为5cm例34.(2022·河南洛阳·三模(理))在棱长为1的正方体1111ABCD A B C D -中,点E 为1CC 上的动点,则1D E EB +的最小值为___________.例35.(2022·黑龙江齐齐哈尔·二模(文))如图,在直三棱柱111ABC A B C -中,12,1,90AA AB BC ABC ===∠=︒,点E 是侧棱1BB 上的一个动点,则下列判断正确的有___________.(填序号)②存在点E ,使得1A EA ∠为钝角③截面1AEC 周长的最小值为例36.(2022·河南·二模(理))在正方体1111ABCD A B C D -中,2AB =,P 是线段1BC 上的一动点,则1A P PC +的最小值为________.例37.(2022·陕西宝鸡·二模(文))如图,在正三棱锥P ABC -中,30APB BPC CPA ∠=∠=∠=,4PA PB PC ===,一只虫子从A 点出发,绕三棱锥的三个侧面爬行一周后,又回到A 点,则虫子爬行的最短距离是___________.例38.(2022·安徽宣城·二模(理))已知正四面体ABCD 的棱长为2,P 为AC 的中点,E 为AB 中点,M 是DP 的动点,N 是平面ECD 内的动点,则||||AM MN +的最小值是_____________.例39.(2022·新疆阿勒泰·三模(理))如图,圆柱的轴截面ABCD 是一个边长为4的正方形.一只蚂蚁从点A 出发绕圆柱表面爬到BC 的中点E ,则蚂蚁爬行的最短距离为( )A .B .C .D例40.(2022·云南·昆明一中高三阶段练习(文))一竖立在水平地面上的圆锥形物体,一只蚂蚁从圆锥底面圆周上一点P 出发,绕圆锥表面爬行一周后回到P 点,已知圆锥底面半径为1,母线长为3,则蚂蚁爬行的最短路径长为( )A .3B .C .πD .2π【方法技巧与总结】此类最大路径问题:大胆展开,把问题变为平面两点间线段最短问题. 【过关测试】一、单选题1.(2022·河北·高三阶段练习)已知圆锥的高为1,则过此圆锥顶点的截面面积的最大值为( )A .2B .52C D .32.(2022·全国·模拟预测(文))若过圆锥的轴SO 的截面为边长为4的等边三角形,正方体1111ABCD A B C D -的顶点A ,B ,C ,D 在圆锥底面上,1A ,1B ,1C ,1D 在圆锥侧面上,则该正方体的棱长为( )A .B .C .(2D .(23.(2022·全国·高三专题练习)已知圆锥的轴截面是等腰直角三角形,且面积为4,则圆锥的体积为( ) A .43 B .43πC .83D .83π4.(2022·广东深圳·高三阶段练习)通用技术老师指导学生制作统一规格的圆台形容器,用如图所示的圆环沿虚线剪开得到的一个半圆环(其中小圆和大圆的半径分别是1cm 和4cm )制作该容器的侧面,则该圆台形容器的高为( )AB .1cmCD 5.(2022·全国·高三专题练习)已知一个直三棱柱的高为2,如图,其底面ABC 水平放置的直观图(斜二测画法)为A B C ''',其中1O A O B O C ''''''===,则此三棱柱的表面积为( )A.4+B .8+C .8+D .8+6.(2022·湖北·天门市教育科学研究院模拟预测)已知某圆锥的侧面积为的半径为( ) A .2B .3C .4D .67.(2022·山西大同·高三阶段练习)正四棱台的上、下底面的边长分别为2、4,侧棱长为2,则其体积为( )A .56B C .D .5638.(2022·江西九江·三模(理))如图,一个四分之一球形状的玩具储物盒,若放入一个玩具小球,合上盒盖,可放小球的最大半径为r .若是放入一个正方体,合上盒盖,可放正方体的最大棱长为a ,则ra=( )A B .34C .2D .)3129.(2022·浙江湖州·模拟预测)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒D .四面体PBCD 10.(2022·全国·高三专题练习)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .2.65≈)( ) A .931.010m ⨯ B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯二、多选题11.(2022·河北·高三阶段练习)如图,正方体1111ABCD A B C D -棱长为1,P 是1A D 上的一个动点,下列结论中正确的是( )A .BPB .PA PC +C .当P 在直线1AD 上运动时,三棱锥1B ACP -的体积不变D .以点B 1AB C 12.(2022·全国·高三专题练习)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =13.(2022·江苏·常州高级中学模拟预测)棱长为1的正方体1111ABCD A B C D -中,点P 为线段1A C 上的动点,点M ,N 分别为线段11A C ,1CC 的中点,则下列说法正确的是( ) A .11A P AB ⊥ B .三棱锥1M B NP -的体积为定值 C .[]160,120APD ∠∈︒︒D .1AP D P +的最小值为2314.(2022·湖北·高三阶段练习)折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧,DE AC 所在圆的半径分别是3和9,且120ABC ∠=,则该圆台的( )A .高为B .体积为3C .表面积为34πD .上底面积、下底面积和侧面积之比为1:9:22三、填空题15.(2022·全国·高三专题练习)已知一三角形ABCA B C '''(如图),则三角形ABC 中边长与正三角形A B C '''的边长相等的边上的高为______.16.(2022·上海·模拟预测)已知圆柱的高为4,底面积为9π,则圆柱的侧面积为___________;17.(2022·新疆·三模(理))已知一个棱长为a 的正方体木块可以在一个圆锥形容器内任意转动,若圆锥的底面半径为1,母线长为2,则a 的最大值为______.18.(2022·吉林长春·高三阶段练习(理))中国古代数学家刘徽在《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的立体为“牟合方盖”,如图(1)(2).刘徽未能求得牟合方盖的体积,直言“欲陋形措意,惧失正理”,不得不说“敢不阙疑,以俟能言者”.约200年后,祖冲之的儿子祖暅提出“幂势既同,则积不容异”,后世称为祖暅原理,即:两等高立体,若在每一等高处的截面积都相等,则两立体体积相等,如图(3)(4).已知八分之一的正方体去掉八分之一的牟合方盖后的剩余几何体与长宽高皆为八分之一正方体棱长的倒四棱锥“等幂等积”,祖暅由此推算出牟合方盖的体积.据此可知,若正方体的棱长为1,则其牟合方盖的体积为______. 四、解答题19.(2022·吉林·长春市第二实验中学高三阶段练习)如图,已知四棱锥P ABCD -中,PD ⊥平面ABCD ,且1,4,5AB DC AB DC PM PC ==∥.(1)求证:PA 平面MDB ;(2)当直线,PC PA 与底面ABCD 所成的角都为4π,且4,DC DA AB =⊥时,求出多面体MPABD 的体积.20.(2022·全国·南宁二中高三期末(文))图1是由矩形ABGF ,Rt ADE △和菱形ABCD 组成的一个平面图形,其中2AB =,1==AE AF ,60BAD ∠=︒,将该图形沿AB ,AD 折起使得AE 与AF 重合,连接CG ,如图2.(1)证明:图2中的C ,D ,E ,G 四点共面; (2)求图2中三棱锥C BDG -的体积.21.(2022·全国·高三专题练习)如图,三棱柱ABC -A 1B 1C 1中,已知AB ⊥侧面BB 1C 1C ,AB =BC =1,BB 1=2,∠BCC 1=60°.(1)求证:BC 1⊥平面ABC ;(2)E 是棱CC 1上的一点,若三棱锥E -ABC CE 的长.22.(2022·青海·海东市第一中学模拟预测(文))如图,在三棱柱111ABC A B C -中,112224AC AA AB AC BC =====,160BAA ∠=︒.(1)证明:平面ABC ⊥平面11AA B B .(2)设P 是棱1CC 上一点,且12CP PC =,求三棱锥111A PB C -体积.。