QuickBird全色与多光谱影像融合方法比较研究
- 格式:pdf
- 大小:757.07 KB
- 文档页数:6
北京揽宇方圆信息技术有限公司
QuickBird
所属国家:美国
发射时间:2009年
轨道高度:770公里
重访周期:1.1天
拍摄幅宽16.5*16.5km/景成图比例:约1:2000
运行现状:停止服役
QuickBird(快鸟)卫星是美国数字全球公司所拥有的商用高分辨率光学卫星,由Ball 航天技术公司、柯达公司和空间公司联合研制,2001年10月18日由波音公司的德尔他-2火箭在加利福尼亚范登堡空军机地发射升空,于同年12月份开始接收卫星影像。
2000年12月,数字全球公司得到了美国国家大气和海洋管理局的许可,发射和运营0.5m分辨率的遥感卫星系统。
该公司立刻修改了QuickBird卫星的原设计,降低了轨道高度,从而把卫星的全色图像分辨率从1m提高到0.61m,多光谱图像分辨率从4m提高到
2.5m。
QuickBird卫星系统每年能采集7000万平方公里的卫星影像数据,存档数据以史无前例的速度在递增。
在中国境内每天至少有2至3个过境轨道。
QuickBird卫星提供全色、多光谱数据,三波段融合彩色数据、全色及多光谱捆绑数据、四波段融合彩色数据。
全色样图多光谱样图
埃及金字塔
北京揽宇方圆信息技术有限公司。
多光谱和全色影像融合步骤1.引言多光谱影像和全色影像是遥感领域中常用的两种影像数据,它们分别具有不同的光谱特征和空间分辨率。
为了充分利用两种影像数据的优势,我们可以采用多光谱和全色影像融合技术,将它们融合成一幅具有高空间分辨率和丰富光谱信息的影像。
本文将介绍多光谱和全色影像融合的步骤和方法。
2.多光谱和全色影像融合步骤多光谱和全色影像融合的步骤主要包括预处理、融合方法选择和后处理三个环节。
2.1预处理在进行多光谱和全色影像融合之前,我们需要对原始影像进行预处理,以确保融合结果的准确性和可靠性。
预处理包括影像的配准、辐射校正和大气校正等。
2.1.1影像配准影像配准是将多光谱和全色影像进行精确对齐的过程。
常用的配准方法包括特征点匹配、相位相关和控制点配准等。
2.1.2辐射校正辐射校正用于消除影像中的光照差异,使得不同影像之间具有一致的辐射特性。
常用的辐射校正方法包括直方图匹配法、直线拉伸法和大气校正法等。
2.1.3大气校正大气校正用于消除影像中由于大气介质的存在而引起的大气光照效应。
常用的大气校正方法包括大气点扩散函数法和大气透射率法等。
2.2融合方法选择选择适合的融合方法对于多光谱和全色影像融合的成功至关重要。
常用的融合方法包括基于变换的方法和基于分解的方法。
2.2.1基于变换的方法基于变换的方法通过对多光谱和全色影像进行变换,将它们融合到一个新的空间域或频域中。
常用的变换方法包括傅里叶变换、小波变换和主成分分析法等。
2.2.2基于分解的方法基于分解的方法通过对多光谱和全色影像进行分解,提取它们的特征信息,并进行融合。
常用的分解方法包括主成分分析、小波分解和非负矩阵分解等。
2.3后处理融合完成后,我们还需要进行一些后处理操作,进一步改善融合结果的质量和可视效果。
2.3.1锐化增强锐化增强是指对融合结果进行图像增强处理,以提高影像的细节和边缘信息。
常用的锐化增强方法包括拉普拉斯锐化和直方图均衡化等。
卫星全色和多光谱模式介绍QuickBird卫星全色和多光谱模式时间:2009-08-24众所周知,遥感是使用各种传感器远距离探测目标所辐射、反射或散射的电磁波,经加工处理变成能够识别和分析的图像和信号,以获取目标性质和状态信息的综合技术。
遥感根据获取目标的手段不同可分为狭义遥感和广义遥感。
狭义遥感以电磁辐射为感测对象,而广义遥感还包括磁力、重力等地球物理的测量和属于地球物理测量范畴的地震波、声波等弹性波。
我们通常所说的遥感概念则专指以电磁辐射为特征的狭义遥感。
不同的目标物受到太阳或其他辐射源的电磁辐射时,它们所特有的反射、发射、透射、吸收电磁辐射的性质是不同的。
通过获取目标物对电磁辐射的显示特征,可识别目标的属性和状态。
所以传感器谱段的设置与目标物的光谱特性有着密切的关系。
目前世界上用于卫星遥感的传感器有两大类:光学遥感和微波遥感。
光学遥感:光学遥感指利用光学设备探测和记录被测物体辐射、反射和散射的相应谱段电磁波,并分析、研究其特性及变化的技术。
光学遥感覆盖了红外、可见光和紫外三个谱段,常用的有以下三种:可见光遥感:其工作波长为0.4~0.76微米,一般采用感光胶片或光电探测器作为感测元件,属于摄影成像遥感。
它主要使用可见光远摄镜头照相和可变焦距电视摄像等,感测的是目标及背景反射或自身发出的可见光,记录的信息或拍摄的图像是物体反射光或发光强度的空间分布。
可见光遥感是光学遥感中历史最长的一种,是对地观测和军事侦察的主要手段之一。
摄影成像的分辨率(G)很高,可以近似地表示为:G=f×R/H其中f为镜头焦距,R为镜头与底片的综合分辨率,H为高度(或距离)。
红外遥感器:主要包括红外扫描仪、红外辐射仪等。
红外遥感通过探测红外辐射获取目标和背景的辐射温度或热成像。
其探测能力取决于目标、背景与周围环境的温度差。
红外遥感的最大优点是可获取无光照或薄云下目标和背景的图像。
多谱段遥感:使用几个不同的谱段同时对一目标或地区进行感测,从而获得与各谱段相对应的各种信息。