经典分数乘除法总复习上课需要1
- 格式:ppt
- 大小:4.76 MB
- 文档页数:80
数学复习分数的乘除法数学复习——分数的乘除法在数学学习中,分数的乘除法是我们需要掌握的基本知识之一。
本文将详细介绍分数的乘除法运算规则和相关的实例,帮助大家更好地理解和应用这一知识点。
一、分数的乘法分数的乘法运算规则:分数相乘时,先将分数的分子相乘得到新的分子,再将分数的分母相乘得到新的分母,最后化简得到最简分数。
例如,计算1/2 × 3/4:首先将分子相乘:1 × 3 = 3;再将分母相乘:2 × 4 = 8;最后化简得到最简分数:3/8。
再例如,计算2/5 × 4/7:首先将分子相乘:2 × 4 = 8;再将分母相乘:5 × 7 = 35;最后化简得到最简分数:8/35。
需要注意的是,当乘法运算中出现整数和分数时,可以将整数视为分母为1的分数进行计算。
例如,计算3 × 2/5:首先将整数3写成分数形式:3 = 3/1;然后进行分数的乘法运算:3/1 × 2/5 = 6/5。
二、分数的除法分数的除法运算规则:将除法运算转化为乘法运算,即将除法题目中的除法号改为乘法号,再将被除数与倒数的除数相乘。
例如,计算1/2 ÷ 3/4:将除法转化为乘法:1/2 × 4/3;然后进行分数的乘法运算:1/2 × 4/3 = 4/6;最后化简得到最简分数:4/6 = 2/3。
再例如,计算4/7 ÷ 2/5:将除法转化为乘法:4/7 × 5/2;然后进行分数的乘法运算:4/7 × 5/2 = 20/14;最后化简得到最简分数:20/14 = 10/7。
需要注意的是,除法运算中除数不能为0,否则运算结果无意义。
三、实例分析下面通过一些实例来加深对分数的乘除法的理解。
实例一:计算2/3 × 3/4 ÷ 1/2:先进行乘法运算:2/3 × 3/4 = 6/12;再将结果进行除法运算:6/12 ÷ 1/2 = 6/12 × 2/1 = 12/12 = 1。
分数乘除法整理与复习(一)
教学目标:
能力目标:培养学生系统整理知识的能力。
知识目标:提高分数乘除法的计算速度,并能正确的计算,简便计算。
情感目标:培养学生愿意交流合作,喜欢数学的情操,灵活解决问题。
教学重点:能正确计算分数乘除法;简便计算。
教学难点:简便计算。
教学策略:在小组间交流合作的基础上,提高计算能力和计算速度。
教学准备:课件。
教学过程:
一、导入新课。
1、同学们,我们这节课对分数乘除法系统的整理一下。
(揭示课题)
2、回顾一下,我们都学了哪些知识?(随机板书)
二、逐一复习:
1、分数乘除法的意义:结合算式说意义,与整数乘除法进行比较。
2、分数乘除法计算:指名学生回答,教师小结。
3、简便计算:抽生板演后订正;学生说注意事项;复习乘法运算定律;练习。
4、混合运算:运算顺序:练习,订正。
三、巩固练习:
1、总复习第一题。
学生独立计算,指名回答。
2、练习二十三第1、2题。
独立计算。
四、课堂总结。
五、作业:练习二十三第5题。
六、板书设计:
意义
分数乘除法计算方法(计算法则)
简便计算(数据特点)
混合运算(运算顺序)。
分数的乘除知识点总结一、分数的乘法基本概念1. 分数的乘法是指两个分数相乘的运算。
如:(1/2) × (2/3)2. 分数的乘法还可以与整数相乘。
如:(3/5) × 23. 分数的乘法可以看作是分子相乘得到新的分子,分母相乘得到新的分母。
如:a/b × c/d = (a×c)/(b×d)二、分数的乘法运算规则1. 分数的乘法满足交换律和结合律。
即,对于任意的分数a/b和c/d,有:a/b × c/d = c/d × a/b(a/b × c/d) × e/f = a/b × (c/d × e/f)2. 分数的乘法可以转化为通分的分数相乘。
当两个分数的分母不相同时,可以通过通分的方法将分母转化为相同的数,再进行乘法运算。
3. 分数的乘法还可以化简。
在运算过程中,我们可以化简分数,使分子和分母互质。
三、分数的乘法常见错误分析1. 错误:未进行通分运算就进行分数相乘。
如:(1/3) × (2/5) = 2/15正确的做法是先通分,然后再进行相乘:(1/3) × (2/5) = (1×2)/(3×5) = 2/152. 错误:运算过程中忽略了化简。
如:(5/10) × (3/5) = (5×3)/(10×5) = 15/50正确的做法是先化简,然后再进行相乘:(5/10) × (3/5) = (1/2) × (3/5) = (1×3)/(2×5) = 3/10四、分数的除法基本概念1. 分数的除法是指两个分数相除的运算。
如:(1/2) ÷ (2/3)2. 分数的除法还可以与整数相除。
如:(3/5) ÷ 23. 分数的除法可以看作是分子相乘得到新的分子,分母相乘得到新的分母。
分数的乘法与除法知识点总结分数在数学中有着重要的作用,特别是在运算中的乘法与除法。
掌握好分数的乘法与除法知识点,可以帮助我们解决实际生活中的问题,也为学习更高级的数学知识打下坚实的基础。
本文将对分数的乘法与除法进行详细阐述,帮助读者理解与运用这些知识点。
一、分数的乘法1. 相乘数的乘积分数的乘法主要针对两个分数进行操作,乘法的结果称为积。
当两个分数相乘时,分子相乘得到积的分子,分母相乘得到积的分母。
例如:3/4 × 2/5 = (3 × 2)/(4 × 5) = 6/20 = 3/102. 分数与整数的乘积当分数与整数相乘时,可以将整数看作是分母为1的分数,然后按照相乘数的规则进行计算。
例如:3/4 × 6 = (3/4) × (6/1) = (3 × 6)/(4 × 1) = 18/4 = 9/23. 约分在进行分数乘法时,我们通常会将结果进行约分,使其成为最简形式。
约分是指将分子与分母中的公因数进行约除,直到分子与分母没有公因数为止。
二、分数的除法1. 相除数的商分数的除法主要涉及到两个分数进行操作,除法的结果称为商。
当两个分数相除时,我们可以将除法转化为乘法,将被除数乘以除数的倒数。
例如:3/4 ÷ 1/2 = (3/4) × (2/1) = 6/4 = 3/22. 分数与整数的除法当分数除以整数时,可以将整数看作是分母为1的分数,然后按照相除数的规则进行计算。
例如:3/4 ÷ 2 = (3/4) ÷ (2/1) = (3/4) × (1/2) = 3/83. 整除与带余除法在分数的除法中,可以使用整除与带余除法来判断两个分数之间的整数关系。
如果被除数与除数能够整除,那么商就是一个整数;如果有余数,则商是一个带有分数的答案。
例如:5/2 ÷ 1/4 = (5/2) ÷ (1/4) = (5/2) × (4/1) = 20/2 = 109/4 ÷ 2/3 = (9/4) ÷ (2/3) = (9/4) × (3/2) = 27/8 = 3 3/8三、运用分数进行问题求解1. 比例问题分数的乘法与除法常常用于解决比例问题。
分数乘除的知识点总结一、分数乘法的基本概念1. 分数的乘法的定义分数的乘法是指将两个分数相乘,其中一个分数作为被乘数,另一个分数作为乘数,最后将它们的分子相乘得到新的分子,分母相乘得到新的分母。
具体的运算规则可以表示为:$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$。
其中,a、b、c、d分别为分数的分子和分母。
2. 分数的乘法的性质分数的乘法具有交换律和结合律,即对于任意两个分数$\frac{a}{b}$和$\frac{c}{d}$,有$\frac{a}{b} \times \frac{c}{d} = \frac{c}{d} \times \frac{a}{b}$,以及$(\frac{a}{b} \times \frac{c}{d}) \times \frac{e}{f} = \frac{a}{b} \times (\frac{c}{d} \times \frac{e}{f})$。
这些性质对于简化分数乘法的过程和结果具有重要的指导作用。
二、分数除法的基本概念1. 分数的除法的定义分数的除法是指将一个分数作为被除数,另一个分数作为除数,最终计算它们的商。
具体的运算规则可以表示为:$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$。
其中,a、b、c、d分别为分数的分子和分母。
2. 分数的除法的性质分数的除法并不具有交换律,即对于任意两个分数$\frac{a}{b}$和$\frac{c}{d}$,通常有$\frac{a}{b} \div \frac{c}{d} \neq \frac{c}{d} \div \frac{a}{b}$。
但是它具有结合律,即$(\frac{a}{b} \div \frac{c}{d}) \div \frac{e}{f} = \frac{a}{b} \div (\frac{c}{d} \times\frac{e}{f})$。
分数的乘法与除法知识点总结在数学中,分数是一个很重要的概念。
而对于分数的乘法与除法操作,我们也需要掌握一些基本的知识点。
本文将为大家总结分数的乘法与除法的相关规则和技巧。
1. 分数的乘法分数的乘法可以通过以下步骤进行:(1)将两个分数的分子相乘得到新的分子;(2)将两个分数的分母相乘得到新的分母;(3)化简新的分子和分母,得到最简形式的分数。
举例说明:2/3 × 3/4 = (2 × 3) / (3 × 4) = 6/126/12可以化简为1/2,所以2/3 × 3/4 = 1/2。
需要注意的是,在进行分数的乘法运算时,我们可以先化简分数,然后再进行计算,可以避免繁琐的计算过程。
2. 分数的除法分数的除法可以通过以下步骤进行:(1)将除号变为乘号;(2)将除数与被除数互换位置;(3)根据分数的乘法规则进行计算;(4)化简新的分子和分母,得到最简形式的分数。
举例说明:2/3 ÷ 3/4 = 2/3 × 4/3 = (2 × 4) / (3 × 3) = 8/98/9是化简后的最简形式,所以2/3 ÷ 3/4 = 8/9。
同样地,在进行分数的除法运算时,我们也可以先化简分数,然后再进行计算,从而简化计算过程。
3. 分数的乘法与除法的复合运算在分数的乘法与除法中,我们也需要掌握复合运算的方法。
具体步骤如下:(1)先按照乘法规则进行乘法运算;(2)得到运算结果后,再按照除法规则进行除法运算。
举例说明:2/3 × 3/4 ÷ 1/2 = (2/3 × 3/4) ÷ 1/2 = (2/3 × 3/4) × 2/1= (2 × 3 × 2) / (3 × 4 × 1) = 12/1212/12可以化简为1,所以2/3 × 3/4 ÷ 1/2 = 1。
六年级数学期末总复习分数乘除法(1)年级:六年级 学科:数学 执笔: 审核:内容:分数乘除法(1) 课型:新授 课时:1 时间:10年12月 教学目标:1、分数乘除法的有关基础知识,熟练进行分数乘除法及比的有关运算;2、进一步培养学生运算能力,自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
教学重点:分数混合运算。
教学难点:分数混合运算。
教学过程:一、基础知识复习: 1、分数乘除法的意义:①3×73的意义是: ;73×3的意义是: ; 32×73的意义是: ; 73×32的意义是: ; 32÷3的意义是: ; 3÷32的意义是: ;32÷54的意义是 ; ②把3米平均分成4份,每份是 米,每份是原长的( )( ),每份是原长的( )%;每份是2米的( )( ),每份是2米的( )%。
把74平均分成8份,每份是 每份占原数的 。
③比80米多41的长度是 ,比80米多41米的长度是 。
④把80米长的竹竿平均分成7段,每段竹竿的长度是全长的 ,每段竹竿的长度是 。
⑤80米长的竹竿,用去它的41,用去 米,还剩 米。
⑥80米长的竹竿,用去41米,用去 米,还剩 米。
⑦80米长的竹竿,先用去它的41,再用去41米,用去 米,还剩 米。
⑧80米长的竹竿,先用去41米,再用去剩余的41,用去 米,还剩 米。
⑨两根同样长的绳子,第一根用去它的41,第二根用去41米,剩余的绳子( )A 第一根绳子长B 第二根绳子长C 两根一样长D 无法确定 ⑩两根同样长的绳子,第一根先用去它的41后,再用去41米;第二根先用去41米后,再用去剩余部分的41。
剩余的绳子相比较( ) A 第一根绳子长 B 第二根绳子长 C 两根一样长 D 无法确定 2、分数乘除法的混合运算:(1)分数乘法法则:①分数乘整数: ; ②分数乘分数: 。