第7讲 函数模型及其应用
- 格式:doc
- 大小:1.04 MB
- 文档页数:26
函数模型及应用教案函数模型是基于数学函数的一种建模方法,通过将现实问题抽象为数学函数的形式来描述、分析和解决问题。
函数模型的应用非常广泛,涉及到许多领域,包括物理、经济、生物等。
一、函数模型的基本概念1. 函数的定义:函数是一个映射关系,将输入映射到唯一的输出,通常用f(x)表示。
2. 自变量和因变量:函数的自变量是输入值,通常用x表示;函数的因变量是输出值,通常用y表示。
3. 函数图像:函数图像是函数在坐标系中的几何表示,可以通过计算和绘制得到。
4. 函数的性质:函数可以有多个性质,包括定义域、值域、单调性、奇偶性等。
二、函数模型的应用1. 物理学中的应用:物理学中许多自然现象都可以用函数模型来描述,如运动学中的位移函数、速度函数和加速度函数,力学中的万有引力函数等。
2. 经济学中的应用:经济学中常常用函数模型来描述供求关系、成本函数、效用函数等,以便分析经济现象和制定经济政策。
3. 生物学中的应用:生物学中常常用函数模型来描述生物体的生长、代谢和进化过程,以便研究和预测生物现象。
4. 工程学中的应用:工程学中常常用函数模型来描述电路、信号处理、控制系统等,以便分析和设计工程系统。
5. 数据分析中的应用:数据分析中常常用函数模型来描述数据的分布和趋势,以便预测和优化数据。
三、函数模型的教学内容1. 函数的基本概念和性质:教学内容包括函数的定义、自变量和因变量的概念、函数图像的绘制和函数的性质分析等。
2. 函数的分类和常见函数模型:教学内容包括线性函数、二次函数、指数函数、对数函数、三角函数等的定义、图像和性质分析等。
3. 函数的应用实例分析:教学内容包括物理、经济、生物、工程等领域的函数模型实例分析,以及数据分析中的函数模型应用实例。
4. 函数模型的建立和求解:教学内容包括根据实际问题建立函数模型、利用函数模型求解问题等。
四、函数模型的教学方法1. 理论讲解:通过讲解基本概念、定理和性质,帮助学生理解函数模型的基本原理和方法。
函数模型及其应用‖知识梳理‖1.几种常见的函数模型| 微点提醒|1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长速度缓慢.2.充分理解题意,并熟悉掌握几种常见函数的图象和性质是解题的关键.3.易忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性.‖易错辨析‖判断下列结论是否正确(请在括号中打”√”或“×”)(1)幂函数增长比一次函数增长更快.(×)(2)在(0,+∞)内,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=xα(α>0)的增长速度.(√)(3)指数型函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题.(√)(4)不存在x0,使ax0<x n0<log a x0.(×)‖自主测评‖1.下表是函数值y随自变量x变化的一组数据,它最可能的函数模型是()x 4 5 6 7 8 9 10 y15171921232527A.一次函数模型 C .指数函数模型D .对数函数模型解析:选A 根据已知数据可知,自变量每增加1,函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.2.(教材改编题)一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,燃烧时剩下的高度h (cm)与燃烧时间t (h)的函数关系用图象表示为图中的( )答案:B3.生产一定数量商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本为C (x )=12x 2+2x +20(万元).一万件售价是20万元,为获取更大利润,该企业一个月应生产该商品数量为( ) A .36万件 B .18万件 C .22万件D .9万件解析:选B 设利润为L (x ),则利润L (x )=20x -C (x )=-12(x -18)2+142,当x =18时,L (x )有最大值.4.某城市客运公司确定客票价格的方法是:如果行程不超过100 km ,票价是0.5元/km ,如果超过100 km ,超过100 km 的部分按0.4元/km 定价,则客运票价y (元)与行驶千米数x (km)之间的函数关系式是________.解析:由题意可得y =⎩⎪⎨⎪⎧0.5x ,0<x ≤100,0.4x +10,x >100.答案:y =⎩⎪⎨⎪⎧0.5x ,0<x ≤100,0.4x +10,x >1005.(教材改编题)某公司为了业务发展制定了一个激励销售人员的奖励方案,在销售额x 为8万元时,奖励1万元.销售额x 为64万元时,奖励4万元.若公司拟定的奖励模型为y =a log 4x +b .某业务员要得到8万元奖励,则他的销售额应为________万元.解析:依题意得⎩⎪⎨⎪⎧a log 48+b =1,a log 464+b =4,即⎩⎪⎨⎪⎧32a +b =1,3a +b =4,解得a =2,b =-2. 所以y =2log 4x -2,当y =8时,即2log 4x -2=8. x =1 024(万元) 答案:1 024…………考点一 函数模型的选择…………………|自主练透型|……………|典题练全|1.下表是在某个投资方案中,整理到的投入资金x (万元)与收益y (万元)的统计表.投入资金x (万元) 1 2 3 4 5 6 收益y (万元)0.40.81.63.16.212.3A .y =ax +bB .y =a ·b xC .y =ax 2+bx +cD .y =b log a x +c解析:选B 画出大致散点图如图所示,根据散点图可知选B.2.某研究所对人体在成长过程中,年龄与身高的关系进行研究,根据统计,某地区未成年人,从1岁到16岁的年龄x (岁)与身高y (米)的散点图如图,则该关系较适宜的函数模型为( )A .y =ax +bB .y =a +log b xC .y =a ·b xD .y =ax 2+b解析:选B 根据散点图可知,较适宜的函数模型为y =a +log b x ,故选B.3.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )的影响。
函数模型及其应用教案一、教学目标1. 理解函数的概念,了解函数模型的产生和应用;2. 学习两种常见函数模型的基本形式和参数,并能解决实际问题应用;3. 认识函数模型在现实生活和工程实践中的重要作用;4. 提高学生分析和解决实际问题的能力。
二、教学重点1. 函数的概念与应用;2. 两种常见函数模型的基本形式与参数;3. 实际问题中函数模型的应用。
三、教学难点1. 函数模型在数学联系与实际应用展示之间的联系;2. 如何将实际问题转化为基本形式的函数模型。
四、教学方法1. 讲授教学法;2. 课堂互动式教学法;3. 问题式教学法。
五、教学准备1. 多媒体教学设备;2. 函数模型案例资料。
六、教学过程1. 引入函数是一种重要的数学概念,也是自然科学、经济学、工程技术等领域的基础。
而函数模型则是在实际问题中应用函数的过程中,通过对数据和经验的分析产生的数学模型,可用于预测、控制、优化等目的。
今天我们将学习两种常见函数模型及其应用。
2. 基础知识讲解(1)函数的概念函数是一个输入输出关系的特殊情况。
数学上定义一个函数是指一组数对,其中第一个数(称为自变量)从一个特定集合中取任意一个值,;第二个数(称为因变量或函数值)则从另一集合中取一个值,这个取值完全由第一个数决定。
(2)线性函数模型线性函数模型可以写为 y=a*x+b 的形式,其中 a 称为斜率,b称为截距。
它的应用非常广泛,比如经济学中的供给函数、消费函数,工程学中的动力学方程等等,都可以通过线性函数模型来描述。
(3)指数函数模型指数函数模型可以用 y=a^x+b 的形式表示,其中 a 称为底数,b 称为位移。
指数函数具有非常广泛的应用,在物理学、天文学、化学、生物学、经济学等领域中都有其用途,比如放射性衰变过程、细胞增殖过程、经济增长过程等等都可以使用指数函数模型来描述。
3. 练习将下列实际问题转化为线性函数模型或指数函数模型,并求出相应的参数或曲线。
函数模型及其应用一、构建函数模型的基本步骤:1、审题:弄清题意,分析条件和结论,理顺数量关系;2、建模:引进数学符号,一般地,设自变量为x ,函数为y ,必要时引入其他相关辅助变量,并用x 、y 和辅助变量表示各相关量,然后根据已知条件建立关系式,即所谓的数学模型;3、求模:利用数学方法将得到的常规函数问题予以解答,求得结果;4、还原:将所得的结果还原为实际问题的意义,再转译成具体问题的回答。
二、常见函数模型:1、一次函数模型;2、二次函数模型;3、分段函数模型;4、指数函数模型;5、对数函数模型;6、对勾函数模型;7、分式函数模型。
题型1:一次函数模型因一次函数y kx b =+(0k ≠)的图象是一条直线,因而该模型又称为直线模型,当0k >时,函数值的增长特点是直线上升;当0k <时,函数值则是直线下降。
例1:某工厂在甲、乙两地的两个分工厂各生产同一种机器12台和6台。
现销售给A 地10台,B 地8台。
已知从甲地到A 地、B 地的运费分别是400元和800元,从乙地到A 地、B 地的运费分别是300元和500元,(1)设从乙地运x 台至A 地,求总运费y 关于x 的函数解析式; (2)若总运费不超过9000元,共有几种调运方案; (3)求出总运费最低的方案和最低运费。
题型2:二次函数模型二次函数2y ax bx c =++(0a ≠)为生活中最常见的一种数学模型,因二次函数可求其最大值(或最小值),故常常最优、最省等最值问题是二次函数的模型。
例2:渔场中鱼群的最大养殖量为m 吨,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须留下适当的空闲量,已知鱼群的年增长量y 吨和实际养殖量x 吨与空闲率的乘积成正比,比例系数为(0)k k >。
(1)写出y 关于x 的函数关系式,并指出这个函数的定义域; (2)求鱼群年增长量的最大值;(3)当鱼群的年增长量达到最大值时,求k 的取值范围。
函数模型及其应用【知识要点】建立函数模型就是将实际问题转化为数学问题,是数学地解决问题的关键.运用数学模型方法的过程,一般可分为三步:(1)建立模型:将实际问题数学抽象化,运用掌握的基本函数建立数学模型;(2)数学求解:运用各种相应的数学方法及计算工具求解,得出数学结论;(3)问题求解:将数学结论代入实际问题进行验证. 【典型例题】例1 一种产品年产量原来是a 件,在今后的m 年内,计划使年产量平均比上一年增加P%,写出产量随经过年数变化的函数关系式.例2 某工厂拟建一座平面图为矩形且面积为200m 2的污水处理池,由于地形限制长宽不能超过16m ,如果池外围壁造单价每半400元,中间池壁造价每半280元,池底造价年平方米80元.(1)写出总造价y (元)与污水池长x (米)的函数关系式;(2)当污水池长、宽为多少米时,总造价最低,并求出最低价.实际问题 数学化 数学问题 数学解答数学问题讨论 符合实际 实际问题结论 问题解决例3 某地现有耕地104公顷,规划10年后,粮食年产比现有增加22%,人均粮食产量比现在提高10%,如果人口增长率为1%,那么耕地每年至多只能减少多少公顷(精确到1公顷).例4 某工厂生产某种零件,每个零件的成本40元,出厂单价定为60元,该厂为鼓励销售商订购决定当一次订购量超过100个时,每多订购一个,订购的全部零件单价0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少时,实际出厂价恰为51元;(2)设一次订购量为x个时,零件实际出厂单价为P元,写出函数)P=的表达式;f(x (3)当销售一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个利润又是多少元?例5某蓄水池原有400吨水,当日零时同时打开进水闸和出水闸,出水闸流出的水量w吨与时间t小时的函数关系是:)=tw≤t120≤6240(,(1)若使次日零时蓄水池的水量仍有400吨,问每小时进水闸进水多少吨?(2)在(1)的情况下,问当日几点时,蓄水池的水量最少,最少为多少吨?例6 某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图a 所示的一条折线所示,西红柿的种植成本与上市时间的关系用图b 的抛物线表示.(1)由图a 写出市场售价与时间的函数关系)(t f P =,用图b 写出种植成本与时间的函数关系)(t g C =.(2)认定市场定价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?【课后练习】1.因电力紧缺,某地通过电价差来控制用电量,规定如下:用户每个月电量不超过100kwh ,则年kwh 的电价为0.5元,若超过100kwh ,则超过部100kwh ,则超过部分的电价为a 元/kwh (5.0>a )。
高中数学:函数模型及其应用在数学的世界里,函数是一个重要的概念,它描述了一个变量与另一个变量之间的关系。
而在高中数学中,函数模型及其应用成为了学生们必须掌握的重要内容。
一、函数模型的理解函数,对于很多人来说,可能是一个复杂的概念。
但实际上,函数却是极其普遍的存在。
在我们的日常生活中,函数无处不在。
比如,身高随着年龄的增长而增长,这就是一个函数关系。
在这个例子中,年龄是自变量,身高是因变量。
再比如,购买商品时,价格随着数量的增加而增加,这里数量是自变量,价格是因变量。
函数模型,就是用来描述这种变量之间关系的数学工具。
它将生活中的各种关系,转化为数学公式,使我们能更好地理解和分析这些关系。
二、函数模型的应用函数模型的应用广泛存在于我们的生活中。
比如,在商业领域,公司需要根据市场需求和价格来决定生产量。
这就需要使用函数模型来预测市场的趋势,从而做出最佳的决策。
在物理学中,牛顿的第二定律就是一个函数模型,它描述了力、质量和加速度之间的关系。
而在生物学中,细胞分裂的模型也是一个函数,它描述了细胞数量随时间的变化情况。
三、高中数学中的函数模型在高中数学中,我们主要学习了一些基本的函数模型,如线性函数、二次函数、指数函数和对数函数等。
这些函数模型可以帮助我们解决生活中的很多问题。
比如,线性函数可以帮助我们解决速度和时间的问题,二次函数可以帮助我们解决几何图形的问题,而指数函数和对数函数则可以帮助我们解决增长和衰减的问题。
四、总结函数模型是高中数学中的一个重要内容。
它不仅可以帮助我们解决生活中的问题,还可以帮助我们更好地理解这个世界。
因此,学生们应该积极学习函数模型及其应用,努力提高自己的数学素养。
高中数学函数的概念课件课件标题:高中数学函数的概念课件一、引言函数是高中数学的核心概念,是数学学习中不可或缺的一部分。
函数的概念是理解函数的基础,也是进一步学习函数性质和应用的前提。
本课件旨在帮助学生理解函数的基本概念,掌握函数的定义和性质,为后续的学习奠定坚实的基础。
函数模型及应用一.知识梳理1.解决实际问题的解题过程(1)对实际问题进行抽象概括:研究实际问题中量与量之间的关系,确定变量之间的主、被动关系,并用x、y分别表示问题中的变量;(2)建立函数模型:将变量y表示为x的函数,在中学数学内,我们建立的函数模型一般都是函数的解析式;(3)求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点正确选择函数知识求得函数模型的解,并还原为实际问题的解.二、典例解析【例1】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?【变式训练2】某集团公司在2000年斥巨资分三期兴建垃圾资源化处理工厂,如下表:如果每期的投次从第二年开始见效,且不考虑存贷款利息,设2000年以后的x年的总收益为f(x)(单位:千万元),试求f(x)的表达式,并预测到哪一年能收回全部投资款。
巩固练习 A 组1.在一定范围内,某种产品的购买量y 吨与单价x 元之间满足一次函数关系.如果购买1 000吨,每吨为800元;购买2 000吨,每吨为700元.一客户购买400吨,单价应该是( )A .820元B .840元C .860元D .880元2.2()f x x =,()2x g x =,2()log h x x =,当(4,)x ∈+∞时,三个函数增长速度比较,下列选项中正确的是( )A. ()f x >()g x >()h xB. ()g x >()f x >()h xC. ()g x >()h x >()f xD. ()f x >()h x >()g x 2.某人2003年1月1日到银行存入一年期存款a 元,若按年利率为x ,并按复利计算,到2008年1月1日可取回款( ).A. a (1+x )5元B. a (1+x )6元C. a (1+x 5)元D. a (1+x 6)元 某工厂生产总值月平均增长率为p ,则年平均增长率为().A. pB. 12pC. (1+p )12D. (1+p )12-13.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为( )A .3B .4C .6D .12 4.电视台播出的一档节目中有这样一道抢答题:小蜥蜴体长15 cm,体重15 g,已知小蜥蜴的体积与体长的立方成正比,问:当小蜥蜴长到体长为20 cm 时,它的体重大约是( )A.20 gB.25 gC.35 gD.40 g5.进货单价为80元的商品400个,按90元一个可以全部卖出,已知这种商品每涨价1元,其销售量就减少20个,问售价多少元时获得的利润最大?( )A .85B .90C .95D .1005.某产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2,x ∈(0,240).若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量为_ _____台.6.在国内投寄平信,每封信不超过20克重付邮资80分,超过节20克重而不超过40克重付邮资160分,将每封信的应付邮资(分)表示为信重(040)x x <≤克的函数,其表达式为()f x = .7.(2010年浙江)某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等.若一月至十月份销售总额至少达7 000万元,则x 的最小值是______.8.某商场宣传在节假日对顾客购物实行一定的优惠,商场规定:①如一次购物不超过200元,不予以折扣;②如一次购物超过200元,但不超过500元,按标价予以九折优惠; ③如一次购物超过500元的,其中500元给予九折优惠,超过500元的给予八五折优惠;某人两次去购物,分别付款176元和432元,如果他只去一次购买同样的商品,则应付款__ ______ 元.9.如图K3-8-1(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y 与乘客量x 之间关系的图象.由于目前该条公交线路亏损,公司有关人员提出了两种调整的建议,如图K3-8-1(2)(3)所示.图K3-8-1给出以下说法:(1) 图(2)的建议是:提高成本,并提高票价;(2) 图(2)的建议是:降低成本,并保持票价不变; (3) 图(3)的建议是:提高票价,并保持成本不变; (4) 图(3)的建议是:提高票价,并降低成本. 其中所有说法正确的序号是_______.10.某商店计划投入资金20万元经销甲或乙两种商品.已知经销甲商品与乙商品所获得的利润分别为P 和Q(万元),且它们与投入资金x(万元)的关系是P=42,Q x ax (a>0).若不管资金如何投放,经销这两种商品或其中的一种商品所获得的纯利润总不小于5万元,求 a 的最小值B 组1.为了得到函数y =3×3x 的图象,可以把函数y =3x的图象( ) A .向左平移3个单位长度 B .向右平移3个单位长度 C .向左平移1个单位长度 D .向右平移1个单位长度 2.函数y =ln(1-x )的大致图象为( )3.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则函数y =f (x )的图象是( )A BC D4.函数f (x )=1x-x 的图象关于( )A .y 轴对称B .直线y =-xC .坐标原点对称D .直线y =x5.一般地,家庭用电量(千瓦时)与气温(℃)有一定的关系,如图2—1所示,图(1)表示某年12个月中每月的平均气温.图(2)表示某家庭在这年12个月中每个月的用电量.根据这些信息,以下关于该家庭用电量与其气温间关系的叙述中,正确的是( )A .气温最高时,用电量最多B .气温最低时,用电量最少C .当气温大于某一值时,用电量随气温增高而增加D .当气温小于某一值时,用电量随气温渐低而增加6.函数()y f x =与()y g x =的图像如下图:则函数()()y f x g x =⋅的图像可能是( )y=f(x)oyxy=g(x)o yxoyxo yxoyxo yxA B C D7.关于x 的方程|x 2-4x +3|-a =0有三个不相等的实数根,则实数a 的值是_ _. 8.已知下列曲线:以下编号为①②③④的四个方程:①x -y =0;②|x |-|y |=0;③x -|y |=0;④|x |-y =0.请按曲线A 、B 、C 、D 的顺序,依次写出与之对应的方程的编号_ _______. 9 作函数()11f x x =-的简图 10.使2log ()1x x -<+成立的x 德取值范围是 。
函数模型及其应用一、构建函数模型的基本步骤:1、审题:弄清题意,分析条件和结论,理顺数量关系;2、建模:引进数学符号,一般地,设自变量为x,函数为y,必要时引入其他相关辅助变量,并用x、y和辅助变量表示各相关量,然后根据已知条件建立关系式,即所谓的数学模型;3、求模:利用数学方法将得到的常规函数问题予以解答,求得结果;4、还原:将所得的结果还原为实际问题的意义,再转译成具体问题的回答。
二、常见函数模型:1、一次函数模型;2、二次函数模型;3、分段函数模型;4、指数函数模型;5、对数函数模型;6、对勾函数模型;7、分式函数模型。
题型1:一次函数模型因一次函数y二kx b(k = 0)的图象是一条直线,因而该模型又称为直线模型,当k 0时,函数值的增长特点是直线上升;当k : 0时,函数值则是直线下降。
例1:某工厂在甲、乙两地的两个分工厂各生产同一种机器12台和6台。
现销售给A 地10台,B地8台。
已知从甲地到A地、B地的运费分别是400元和800元,从乙地到A地、B地的运费分别是300元和500元,(1)设从乙地运x台至A地,求总运费y关于x的函数解析式;(2)若总运费不超过9000元,共有几种调运方案;(3)求出总运费最低的方案和最低运费题型2:二次函数模型二次函数y =ax2• bx • c (a=0)为生活中最常见的一种数学模型,因二次函数可求其最大值(或最小值),故常常最优、最省等最值问题是二次函数的模型。
例2:渔场中鱼群的最大养殖量为m吨,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须留下适当的空闲量,已知鱼群的年增长量y吨和实际养殖量x吨与空闲率的乘积成正比,比例系数为k(k.0)。
(1)写出y关于x的函数关系式,并指出这个函数的定义域;(2)求鱼群年增长量的最大值;(3)当鱼群的年增长量达到最大值时,求k的取值范围。
例3:某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出。
函数模型及其应用讲义一、知识梳理1.几类函数模型函数模型 函数解析式一次函数模型 f (x )=ax +b (a ,b 为常数,a ≠0) 反比例函数模型 f (x )=kx+b (k ,b 为常数且k ≠0)二次函数模型 f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0)指数函数模型 f (x )=ba x +c (a ,b ,c 为常数,b ≠0,a >0且a ≠1) 对数函数模型 f (x )=b log a x +c (a ,b ,c 为常数,b ≠0,a >0且a ≠1) 幂函数模型f (x )=ax n +b (a ,b 为常数,a ≠0)2.三种函数模型的性质函数性质y =a x (a >1) y =log a x (a >1) y =x n (n >0) 在(0,+∞)上的增减性单调递增 单调递增 单调递增 增长速度 越来越快 越来越慢 相对平稳 图象的变化 随x 的增大逐渐表现为与y 轴平行随x 的增大逐渐表现为与x 轴平行随n 值变化而各有不同值的比较存在一个x 0,当x >x 0时,有log a x <x n <a x注意:1.解函数应用题的步骤2.“对勾”函数形如f (x )=x +ax(a >0)的函数模型称为“对勾”函数模型:(1)该函数在(-∞,-a ]和[a ,+∞)上单调递增,在[-a ,0)和(0,a ]上单调递减. (2)当x >0时,x =a 时取最小值2a , 当x <0时,x =-a 时取最大值-2a .二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.()(2)函数y=2x的函数值比y=x2的函数值大.()(3)不存在x0,使0x a<0n x<log a x0.()(4)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=x a(a>0)的增长速度.()(5)“指数爆炸”是指数型函数y=a·b x+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.()题组二:教材改编2.某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是()A.收入最高值与收入最低值的比是3∶1B.结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D.前6个月的平均收入为40万元3.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本为C(x)=12x2+2x+20(万元).一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为______万件.4.]用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为________.题组三:易错自纠5.某市生产总值连续两年持续增加.第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为____________.6.已知某种动物繁殖量y(只)与时间x(年)的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们发展到________只.三、典型例题题型一:用函数图象刻画变化过程1.高为H,满缸水量为V的鱼缸的轴截面如图所示,其底部破了一个小洞,满缸水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图象是()2.物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是()3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油量最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油思维升华:判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.题型二:已知函数模型的实际问题典例(1)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为________分钟.(2)某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为p 元,销售量为Q 件,则销售量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2,则最大毛利润为(毛利润=销售收入-进货支出)( ) A .30元 B .60元 C .28 000元D .23 000元思维升华:求解所给函数模型解决实际问题的关注点 (1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该模型求解实际问题.跟踪训练 (1)拟定甲、乙两地通话m 分钟的电话费(单位:元)由f (m )=1.06(0.5[m ]+1)给出,其中m >0,[m ]是不超过m 的最大整数(如[3]=3,[3.7]=3,[3.1]=3),则甲、乙两地通话6.5分钟的电话费为______元. (2)某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元.又知总收入K 是单位产品数Q 的函数,K (Q )=40Q -120Q 2,则总利润L (Q )的最大值是________万元.题型三:构建函数模型的实际问题 命题点1:构造一次函数、二次函数模型典例 (1)某航空公司规定,乘飞机所携带行李的质量x (kg)与其运费y (元)之间的关系由如图所示的一次函数图象确定,那么乘客可免费携带行李的质量最大为________kg.(2)将进货单价为80元的商品按90元一个出售时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个,为了赚得最大利润,每个售价应定为________元. 命题点2:构造指数函数、对数函数模型典例 一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22. (1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?引申探究:本例的条件不变,试计算:今后最多还能砍伐多少年? 命题点3:构造y =x +ax(a >0)型函数典例 (1)某汽车运输公司购买了一批豪华大客车投入营运,据市场分析,每辆客车营运的总利润y (万元)与营运年数x 的关系如图所示(抛物线的一段),则为使其营运年平均利润最大,每辆客车营运年数为________.(2)某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如图),考虑防洪堤坚固性及石块用料等因素,设计其横断面要求面积为93平方米,且高度不低于3米.记防洪堤横断面的腰长为x 米,外周长(梯形的上底线段BC 与两腰长的和)为y 米.要使防洪堤的上面与两侧面的水泥用料最省(即横断面的外周长最小),则防洪堤的腰长x =________.命题点4:构造分段函数模型典例某景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x (元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分). (1)求函数y =f (x )的解析式;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?思维升华:构建数学模型解决实际问题,要正确理解题意,分清条件和结论,理顺数量关系,将文字语言转化成数学语言,建立适当的函数模型,求解过程中不要忽略实际问题对变量的限制.跟踪训练 (1)某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求.(已知lg 2≈0.301 0,lg 3≈0.477 1)(2)大学毕业生小赵想开一家服装专卖店,经过预算,该门面需要装修费为20 000元,每天需要房租、水电等费用100元,受经营信誉度、销售季节等因素的影响,专卖店销售总收益R 与门面经营天数x 的关系是R (x )=⎩⎪⎨⎪⎧400x -12x 2,0≤x ≤400,80 000,x >400,则总利润最大时,该门面经营的天数是________.函数应用问题:典例 (12分)已知美国某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设公司一年内共生产该款手机x 万部并全部销售完,每万部的销售收入为R (x )万美元,且R (x )=⎩⎪⎨⎪⎧400-6x ,0<x ≤40,7 400x-40 000x 2,x >40.(1)写出年利润W (万美元)关于年产量x (万部)的函数解析式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.四、反馈练习1.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )x 1.992 3 4 5.15 6.126 y1.5174.041 87.51218.01A.y =2x -2 B .y =12(x 2-1)C .y =log 2xD .y =12log x2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系图象正确的是( )3.国家规定某行业征税如下:年收入在280万元及以下的税率为p %,超过280万元的部分按(p +2)%征税,有一公司的实际缴税比例为(p +0.25)%,则该公司的年收入是( ) A .560万元 B .420万元 C .350万元D .320万元4.某大型民企为激励创新,计划逐年加大研发资金投入.若该民企2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该民企全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( ) A .2017年 B .2018年 C .2019年D .2020年5.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 m 3的,按每立方米m 元收费;用水超过10 m 3的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为( ) A .13 m 3 B .14 m 3 C .18 m 3D .26 m 36.某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( ) A .10.5万元 B .11万元 C .43万元D .43.025万元7.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt (其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则k =________,经过5小时,1个病毒能繁殖为________个.8.西北某羊皮手套公司准备投入适当的广告费对其生产的产品进行促销.在一年内,根据预算得羊皮手套的年利润L 万元与广告费x 万元之间的函数解析式为L =512-)82(xx (x >0).则当年广告费投入________万元时,该公司的年利润最大.9.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为____m.10.某市用37辆汽车往灾区运送一批救灾物资,假设以v km/h 的速度直达灾区,已知某市到灾区公路线长400 km ,为了安全起见,两辆汽车的间距不得小于2)20(v km ,那么这批物资全部到达灾区的最少时间是________ h(车身长度不计).11.声强级Y (单位:分贝)由公式Y =10lg )10(12I给出,其中I 为声强(单位:W/m 2). (1)平常人交谈时的声强约为10-6 W/m 2,求其声强级;(2)一般常人能听到的最低声强级是0分贝,求能听到最低声强为多少?(3)比较理想的睡眠环境要求声强级Y ≤50分贝,已知熄灯后两位同学在宿舍说话的声强为5×10-7 W/m 2,问这两位同学是否会影响其他同学休息?12.某书商为提高某套丛书的销售量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到15-0.1x 万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格,问: (1)每套丛书售价定为100元时,书商能获得的总利润是多少万元? (2)每套丛书售价定为多少元时,单套丛书的利润最大?13.一艘轮船在匀速行驶过程中每小时的燃料费与速度v 的平方成正比,且比例系数为k ,除燃料费外其他费用为每小时96元.当速度为10海里/小时时,每小时的燃料费是6元.若匀速行驶10海里,当这艘轮船的速度为________海里/小时时,总费用最小.14.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ).这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项.据此可得,最佳乐观系数x =________.15.某地西红柿从2月1日开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/100 kg)与上市时间t (单位:天)的数据如下表:时间t 60 100 180 种植成本Q11684116Q 与上市时间t 的变化关系:Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t . 利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是________;(2)最低种植成本是________(元/100 kg).16.某店销售进价为2元/件的产品A,该店产品A每日的销售量y(单位:千件)与销售价格x(单位:元/件)满足关系式y=10x-2+4(x-6)2,其中2<x<6.(1)若产品A销售价格为4元/件,求该店每日销售产品A所获得的利润;(2)试确定产品A的销售价格,使该店每日销售产品A所获得的利润最大.(保留1位小数)。
1.几种常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0) 对数函数模型f(x)=b log a x+c(a,b,c为常数,a>0且a≠1,b≠0) 幂函数模型f(x)=ax n+b(a,b,n为常数,a≠0,n≠0)2.三种函数模型性质比较y=a x(a>1)y=log a x(a>1)y=x n(n>0) 在(0,+∞)上的单调性增函数增函数增函数增长速度越来越快越来越慢相对平稳图象的变化随x值增大,图象与y轴接近平行随x值增大,图象与x轴接近平行随n值变化而不同常用结论“对勾”函数的性质形如f(x)=x+ax(a>0)的函数模型称为“对勾”函数模型:(1)该函数在(-∞,-a)和(a,+∞)上单调递增,在[-a,0)和(0,a]上单调递减.(2)当x>0时,x=a时取最小值2a,当x<0时,x=-a时取最大值-2a.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)幂函数增长比直线增长更快.()(2)不存在x0,使a x0<x n0<log a x0.()(3)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y =x a (a >1)的增长速度.( )(4)“指数爆炸”是指数型函数y =a ·b x +c (a ≠0,b >0,b ≠1)增长速度越来越快的形象比喻.( )答案:(1)× (2)× (3)√ (4)× 二、易错纠偏常见误区| (1)对三种函数增长速度的理解不深致错; (2)建立函数模型出错;(3)分段函数模型的分并把握不准.1.已知f (x )=x 2,g (x )=2x ,h (x )=log 2x ,当x ∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是 ( )A .f (x )>g (x )>h (x )B .g (x )>f (x )>h (x )C .g (x )>h (x )>f (x )D .f (x )>h (x )>g (x )解析:选B .由图象知,当x ∈(4,+∞)时,增长速度由大到小依次为g (x )>f (x )>h (x ).故选B .2.在某个物理实验中,测量得变量x 和变量y 的几组数据,如表,则对x ,y A .y =2x B .y =x 2-1 C .y =2x -2D .y =log 2x解析:选D .根据x =0.50,y =-0.99,代入计算,可以排除A ;根据x =2.01,y =0.98,代入计算,可以排除B ,C ;将各数据代入函数y =log 2x ,可知满足题意.3.某城市客运公司确定客票价格的方法是:如果行程不超过100 km ,票价是0.5元/km ,如果超过100 km ,超过100 km 的部分按0.4元/km 定价,则客运票价y (元)与行程千米数x (km)之间的函数关系式是________.解析:由题意可得y =⎩⎪⎨⎪⎧0.5x ,0<x ≤100,0.4x +10,x >100.答案:y =⎩⎨⎧0.5x ,0<x ≤100,0.4x +10,x >100利用函数图象刻画实际问题(师生共研)(2020·高考北京卷)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W 与时间t 的关系为W =f (t ),用-f (b )-f (a )b -a的大小评价在[]a ,b 这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示.给出下列四个结论:①在[t 1,t 2]这段时间内,甲企业的污水治理能力比乙企业强; ②在t 2时刻,甲企业的污水治理能力比乙企业强; ③在t 3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t 1],[t 1,t 2],[t 2.t 3]这三段时间中,在[0,t 1]的污水治理能力最强.其中所有正确结论的序号是________. 【解析】 设y =-f (b )-f (a )b -a,由已知条件可得甲、乙两个企业在[t 1,t 2]这段时间内污水治理能力强弱的数值计算式为-f (t 2)-f (t 1)t 2-t 1,由题图易知y 甲>y 乙,即甲企业的污水治理能力比乙企业强,所以①对;由题意知在某一时刻企业污水治理能力的强弱由这一时刻的切线的斜率的绝对值表示,所以②对;在t3时刻,由题图可知甲、乙两企业的污水排放量都在污水达标排放量以下,所以③对;由计算式-f(b)-f(a)b-a可知,甲企业在[0,t1]这段时间内污水治理能力最弱,所以④错.【答案】①②③正确理解题目所给的信息,并把信息翻译成数学问题是解决本题的第一个关键;理解一段时间内企业污水治理能力的强弱的计算式,并把这个计算式与函数图象在某点处切线的斜率联系起来是正确解决本题的第二个关键.1.(2020·河南信阳质量检测)如图1是某条公共汽车线路收支差额y与乘客量x的图象.由于目前本条线路亏损,公司有关人员提出了两种扭亏为盈的建议,如图2,3所示.根据图象判断下列说法正确的是()①图2的建议为减少运营成本;②图2的建议可能是提高票价;③图3的建议为减少运营成本;④图3的建议可能是提高票价.A.①④B.②④C.①③D.②③解析:选A.根据题意和题图2知,两条直线平行即票价不变,直线向上平移说明当乘客量为0时,收入是0,但是支出变少了,说明此建议是降低成本而保持票价不变.由题图3知,当乘客量为0时,支出不变,但是直线的倾斜角变大,即相同的乘客量时收入变大,也就是票价提高了,说明此建议是提高票价而保持成本不变,综上可得①④正确,②③错误.故选A.2.汽车的“燃油效率”是指汽车每消耗1 L汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1 L汽油,乙车最多可行驶5 kmB.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80 km/h的速度行驶1 h,消耗10 L汽油D.某城市机动车最高限速80 km/h,相同条件下,在该市用丙车比用乙车更省油解析:选D.对于A选项,从图中可以看出当乙车的行驶速度大于40 km/h 时的燃油效率大于5 km/L,故乙车消耗1 L汽油的行驶路程可大于5 km,所以A错误,对于B选项,由图可知甲车消耗汽油最少.对于C选项,甲车以80 km/h 的速度行驶时的燃油效率为10 km/L,故行驶1 h的路程为80 km,消耗8 L汽油,所以C错误,对于D选项,当最高限速为80 km/h且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更省油,所以D正确.已知函数模型解决实际问题(师生共研)(1)人们用分贝(dB)来划分声音的等级,声音的等级d(x)(单位:dB)与声音强度x(单位:W/m2)满足d(x)=9lgx1×10-13.一般两人小声交谈时,声音的等级约为54 dB,在有50人的课堂上讲课时,老师声音的等级约为63 dB,那么老师上课时声音强度约为一般两人小声交谈时声音强度的()A .1倍B .10倍C .100倍D .1 000倍(2)(2020·陇西咸阳二模)为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量y (mg/m 3)与时间t (h)的函数关系式为y =⎩⎪⎨⎪⎧kt ,0<t <12,1kt ,t ≥12(如图所示),实验表明,当药物释放量y <0.75(mg/m 3)时对人体无害.求:①k =________;②为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过________分钟人方可进入房间.【解析】 (1)设老师上课时声音强度,一般两人小声交谈时声音强度分别为x 1 W/m 2,x 2 W/m 2,根据题意得d (x 1)=9lg x 11×10-13=63,解得x 1=10-6, d (x 2)=9lg x 21×10-13=54, 解得x 2=10-7,所以x 1x 2=10,所以老师上课时声音强度约为一般两人小声交谈时声音强度的10倍,故选B .(2)①由题图可知,当t =12时,y =1,即1k ×12=1⇒k =2.②由题意可得⎩⎪⎨⎪⎧t ≥12,12t <0.75,解得t >23,故为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过23×60=40(分钟)人方可进入房间.【答案】 (1)B (2)2 40求解所给函数模型解决实际问题的关键点(1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该模型求解实际问题.(2020·河南安阳模拟)5G 技术的数学原理之一便是著名的香农公式:C =W log 2⎝ ⎛⎭⎪⎫1+S N .它表示:在受噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中S N 叫做信噪比.按照香农公式,若不改变带宽W ,而将信噪比SN 从1 000提升至2 000,则C 大约增加了( )A .10 %B .30 %C .50 %D .100 %解析:选A .将信噪比SN 从 1 000提升至 2 000,C 大约增加了W log 2(1+2 000)-W log 2(1+1 000)W log 2(1+1 000)=log 22 001-log 21 001log 21 001≈10.967-9.9679.967≈10 %,故选A .构建函数模型解决实际问题(多维探究) 角度一 构造一次函数、二次函数模型(1)某航空公司规定,乘飞机所携带行李的质量x (kg)与其运费y (元)之间的关系由如图所示的一次函数图象确定,那么乘客可免费携带行李的质量最大为______kg.(2)将进货单价为80元的商品按90元一个出售时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个.为了赚得最大利润,每个售价应定为______元.【解析】 (1)由图象可求得一次函数的解析式为y =30x -570,令30x -570=0,解得x =19.(2)设每个售价定为x 元,则利润y =(x -80)·[400-(x -90)·20]=-20[(x -95)2-225].所以当x =95时,y 最大. 【答案】 (1)19 (2)95角度二 构建指数函数、对数函数模型某公司为激励创新,计划逐年加大研发资金投入.若该公司2021年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) A .2023年 B .2024年 C .2025年D .2026年【解析】 根据题意,知每年投入的研发资金增长的百分率相同,所以,从2021年起,每年投入的研发资金组成一个等比数列{a n },其中,首项a 1=130,公比q =1+12%=1.12,所以a n =130×1.12n -1.由130×1.12n -1>200,两边同时取对数,得n -1>lg 2-lg 1.3lg 1.12,又lg 2-lg 1.3lg 1.12≈0.30-0.110.05=3.8,则n >4.8,即a 5开始超过200,所以2025年投入的研发资金开始超过200万元,故选C .【答案】 C角度三构建函数y=ax+bx(a>0,b>0)模型某养殖场需定期购买饲料,已知该场每天需要饲料200千克,每千克饲料的价格为1.8元,饲料的保管费与其他费用平均每千克每天0.03元,购买饲料每次支付运费300元.求该养殖场多少天购买一次饲料才能使平均每天支付的总费用最少.【解】设该养殖场x(x∈N*)天购买一次饲料可使平均每天支付的总费用最少,平均每天支付的总费用为y元.因为饲料的保管费与其他费用每天比前一天少200×0.03=6(元),所以x天饲料的保管费与其他费用共是6(x-1)+6(x-2)+…+6=3x2-3x(元).从而有y=1x(3x2-3x+300)+200×1.8=300x+3x+357≥417,当且仅当300x =3x,即x=10时,y有最小值.故该养殖场10天购买一次饲料才能使平均每天支付的总费用最少.角度四构建分段函数模型某景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分).(1)求函数y=f(x)的解析式;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?【解】(1)当x≤6时,y=50x-115,令50x-115>0,解得x>2.3,因为x为整数,所以3≤x≤6,x∈Z.当x>6时,y=[50-3(x-6)]x-115=-3x2+68x-115.令-3x 2+68x -115>0, 有3x 2-68x +115<0,结合x 为整数得6<x ≤20,x ∈Z .所以y =f (x )=⎩⎪⎨⎪⎧50x -115(3≤x ≤6,x ∈Z ),-3x 2+68x -115(6<x ≤20,x ∈Z ).(2)对于y =50x -115(3≤x ≤6,x ∈Z ), 显然当x =6时,y max =185; 对于y =-3x 2+68x -115=-3⎝ ⎛⎭⎪⎫x -3432+8113(6<x ≤20,x ∈Z ),当x =11时,y max =270.因为270>185,所以当每辆自行车的日租金定为11元时,才能使一日的净收入最多.(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同关系式构成,如出租车计价与路程之间的关系,应构建分段函数模型求解.但应关注以下两点:①分段要简洁合理,不重不漏;②分段函数的最值是各段的最大(或最小)值中的最大(或最小)值.(2)指数函数、对数函数模型解题,关键是对模型的判断,先设定模型,将有关数据代入验证,确定参数,求解时要准确进行指、对数运算,灵活进行指数与对数的互化.1.(2020·四川绵阳模拟)2020年3月,国内新冠肺炎疫情得到有效控制,人们开始走出家门享受春光.某旅游景点为吸引游客,推出团体购票优惠方案如表:1 290元;若合并成一个团队购票,则需支付门票费990元,那么这两个旅游团队的人数之差为( )A .20B .30C .35D .40解析:选B .设两个旅游团队的人数分别为a ,b 且a ,b ∈N *,不妨令a ≥b ,因为1 290不能被13整除,所以a +b ≥51.若51≤a +b ≤100,则11(a +b )=990,得a +b =90,①由分别购票共需支付门票费为1 290元可知,11a +13b =1 290,② 联立①②解得b =150,a =-60,不符合题意; 若a +b >100,则9(a +b )=990,得a +b =110,③由分别购票共需支付门票费为1 290元可知,1≤b ≤50,51≤a ≤100, 得11a +13b =1 290,④联立③④解得a =70,b =40. 所以这两个旅游团队的人数之差为70-40=30.故选B .2.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤______次才能达到市场要求.(已知lg 2≈0.301 0,lg 3≈0.477 1)解析:设至少过滤n 次才能达到市场要求, 则2%⎝ ⎛⎭⎪⎫1-13n ≤0.1%,即⎝ ⎛⎭⎪⎫23n ≤120,所以n lg 23≤-1-lg 2,所以n ≥7.39,所以n =8. 答案:83.为了响应政府推进“菜篮子”工程建设的号召,某经销商投资60万元建了一个蔬菜生产基地,第一年支出各种费用8万元,以后每年支出的费用比上一年多2万元,每年销售蔬菜的收入为26万元.设f (n )表示前n 年的纯利润,则从第________年开始盈利.[f (n )=前n 年的总收入—前n 年的总费用支出—投资额]解析:由题意知f (n )=26n -⎣⎢⎡⎦⎥⎤8n +n (n -1)2×2-60=-n 2+19n -60. 令f (n )>0,即-n 2+19n -60>0,解得4<n <15, 所以从第5年开始盈利. 答案:5高考新声音2 美育为魂,陶养身心“美”是景与情的交融,以美育人,让学生懂得爱、爱美,提高学生审美和人文素养,以美育为背景的考题,多以提高学生审美和人文素养为题材,常以图、文并用的方式表现,意在考查逻辑推理和数学运算等核心素养.(2019·高考全国卷Ⅰ)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12(5-12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A .165 cmB .175 cmC .185 cmD .190 cm【解析】 26+26÷0.618+(26+26÷0.618)÷0.618≈178(cm),故其身高可能是175 cm,故选B.【答案】 B本题涉及了“黄金比”和“断臂维纳斯”,并渗透了估值思想.以往高考试题中往往选择中国古代《九章算术》中的数学文化题,这一网红题选择大家熟悉的黄金分割为背景,通过设置真实情景,引导学生从“解题”到“解决问题”能力的培养,使学生能够灵活运用所学知识分析问题和解决问题.中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美.给出定义:能够将圆的周长和面积同时平分的图象对应的函数称为这个圆的“优美函数”,给出下列命题:①对于任意一个圆O,其“优美函数”有无数个;②函数f(x)=ln(x2+x2+1)可以是某个圆的“优美函数”;③函数y=1+sin x可以同时是无数个圆的“优美函数”;④函数y=2x+1可以同时是无数个圆的“优美函数”;⑤函数y=f(x)是“优美函数”的充要条件为函数y=f(x)的图象是中心对称图形.其中正确的命题是________.(填序号)解析:①对于任意一个圆O,其对称轴有无数条,所以其“优美函数”有无数个,①正确;②函数f(x)=ln(x2+x2+1)的定义域为R,值域为[0,+∞),其图象关于y轴对称,且在x轴及其上方,故不可以是某个圆的“优美函数”,②错误;③根据y=sin x的图象可知函数y=1+sin x的图象可以将圆的周长和面积平分,又y=1+sin x的图象可以延伸,所以可以同时是无数个圆的“优美函数”,③正确;④函数y =2x +1的图象只要过圆心,就可以同时是无数个圆的“优美函数”,④正确;⑤错误,有些中心对称图形对应的函数不一定是圆的“优美函数”,比如“双曲线”,故答案为①③④.答案:①③④[A 级 基础练]1.(2020·江西南昌模拟)衡东土菜辣美鲜香,享誉三湘.某衡东土菜馆为实现100万元年经营利润目标,拟制订员工的奖励方案:在经济利润超过6万元的前提下奖励,且奖金y (单位:万元)随经营利润x (单位:万元)的增加而增加,但奖金总数不超过3万元,同时奖金不能超过利润的20%.下列函数模型中,符合该要求的是( )(参考数据:1.015100≈4.432,lg 11≈1.041) A .y =0.04x B .y =1.015x -1 C .y =tan ⎝ ⎛⎭⎪⎫x 19-1D .y =log 11(3x -10)解析:选D .对于函数y =0.04x ,当x =100时,y =4>3,不符合题意;对于函数y =1.015x -1,当x =100时,y ≈3.432>3,不符合题意;对于函数y =tan ⎝ ⎛⎭⎪⎫x 19-1,不满足在x ∈(6,100]上单调递增,不符合题意;对于函数y =log 11(3x -10),满足在x ∈(6,100]上是增函数,且y ≤log 11(3×100-10)=log 11290<log 111 331=3,画出y =15x 与y =log 11(3x -10)的图象如图所示,符合题意,故选D .2.已知某服装厂生产某种品牌的衣服,销售量q (x )(单位:百件)关于每件衣服的利润x (单位:元)的函数解析式为q (x )=⎩⎨⎧1 260x +1,0<x ≤20,90-35x ,20<x ≤180,则当该服装厂所获效益最大时,x =( )A .20B .60C .80D .40解析:选C .设该服装厂所获效益为f (x )元, 则f (x )=100xq (x )=⎩⎪⎨⎪⎧126 000x x +1,0<x ≤20,100x (90-35x ),20<x ≤180.当0<x ≤20时,f (x )=126 000x x +1=126 000-126 000x +1, f (x )在区间(0,20]上单调递增, 所以当x =20时,f (x )有最大值120 000. 当20<x ≤180时,f (x )=9 000x -3005·x x , 则f ′(x )=9 000-4505·x ,令f ′(x )=0,得x =80,当20<x <80时,f ′(x )>0,f (x )单调递增,当80≤x ≤180时,f ′(x )≤0,f (x )单调递减,所以当x =80时,f (x )有极大值,也是最大值,为240 000.故选C . 3.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对于进价),则该家具的进价是( )A .118元B .105元C .106元D .108元解析:选D .设进价为a 元,由题意知132×(1-10%)-a =10%·a ,解得a =108.故选D .4.素数也叫质数,法国数学家马林·梅森是研究素数的数学家中成就很高的一位,因此后人将“2n -1”形式(n 是素数)的素数称为梅森素数.已知第20个梅森素数为P =24 423-1,第19个梅森素数为Q =24 253-1,则下列各数中与PQ 最接近的数为(参考数据:lg 2≈0.3)( )A .1045B .1051C .1056D .1059解析:选B .由题知P Q =24 423-124 253-1≈2170.令2170=k ,则lg 2170=lg k ,所以170lg2=lg k .又lg 2≈0.3,所以51=lg k ,即k =1051,所以与PQ 最接近的数为1051.故选B .5.车辆驾驶人员饮酒后或者醉酒后驾车血液中的酒精含量阈值见表.经过反复试验,一般情况下,某人喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如图,且该图表示的函数模型为f (x )=⎩⎪⎨⎪⎧40sin ⎝ ⎛⎭⎪⎫π3x +13,0≤x <2,90e -0.5x +14,x ≥2,则该人喝一瓶啤酒后至少经过多长时间才可以驾车(时间以整小时计算)?(参考数据:ln 15≈2.71,ln 30≈3.40)( )车辆驾驶人员血液酒精含量阈值 驾驶行为类型 阈值(mg/100 mL) 饮酒后驾车 ≥20,<80 醉酒后驾车≥80A .5 hB .6 hC .7 hD .8 h解析:选B .由题意可知当酒精含量阈值低于20时才可以开车,结合分段函数建立不等式90e -0.5x +14<20,解得x >5.42,取整数,故为6个小时.故选B .6.(2020·辽宁辽南协作校一模)考古学家经常利用碳14的含量来推断古生物死亡的时间.当有机体生存时,会持续不断地吸收碳14,从而其体内的碳14含量会保持在一定的水平;但当有机体死亡后,就会停止吸收碳14,其体内的碳14含量就会逐渐减少,而且每经过大约5 730年后会变为原来的一半.假设有机体生存时碳14的含量为1,如果用y 表示该有机体死亡x 年后体内碳14的含量,则y 与x 的关系可以表示为________.解析:依题意可设y =⎝ ⎛⎭⎪⎫12ax,当x =5 730时,y =12,即有12=⎝ ⎛⎭⎪⎫12 5 730a ,解得a=15 730,故答案为y =⎝ ⎛⎭⎪⎫12x5 730.答案:y =⎝ ⎛⎭⎪⎫12x5 7307.(2020·安徽滁州定远4月模拟)某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量P (毫克/升)与时间t (小时)的关系为P = P 0e -kt ,如果在前5小时消除了10%的污染物,那么污染物减少19%需要花费的时间为________小时.解析:由题意可知,(1-0.1)P 0 =P 0e -5k ,即0.9=e -5k ,故-5k =ln 0.9,又(1-0.19)P 0=P 0e -kt ,即0.81=e -kt ,所以-kt =ln 0.81=2ln 0.9=-10k ,所以t =10.答案:108.为研究西南高寒山区一种常见树的生长周期中前10年的生长规律,统计显示,生长4年的树高为73米,如图所示的散点图记录了样本树的生长时间t (年)与树高y (米)之间的关系.请你据此判断,在下列函数模型:①y =2t -a ;②y =a +log 2t ;③y =12t +a ;④y =t +a 中(其中a 为正的常实数),拟合生长年数与树高的关系最好的是________(填写序号),估计该树生长8年后的树高为________米.解析:由散点图的走势,知模型①不合适.曲线过点⎝ ⎛⎭⎪⎫4,73,则后三个模型的解析式分别为②y =13+log 2t ;③y =12t +13;④y =t +13,易知拟合最好的是②.将t =8代入②得8年后的树高为103米.答案:② 1039.声强级Y (单位:分贝)由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12给出,其中I 为声强(单位:W/m 2).(1)平常人交谈时的声强约为10-6W/m 2,求其声强级;(2)一般常人能听到的最低声强级是0分贝,求能听到最低声强为多少? (3)比较理想的睡眠环境要求声强级Y ≤50分贝,已知熄灯后两位同学在宿舍说话的声强为5×10-7W/m 2,问这两位同学是否会影响其他同学休息?解:(1)当声强为10-6W/m 2时, 由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12得Y =10lg ⎝ ⎛⎭⎪⎪⎫10-610-12=10lg 106=60(分贝). (2)当Y =0时,由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12得10lg ⎝ ⎛⎭⎪⎫I 10-12=0.所以I 10-12=1,即I =10-12W/m 2,则常人能听到的最低声强为10-12W/m 2. (3)当声强为5×10-7W/m 2时,声强级Y =10lg ⎝ ⎛⎭⎪⎪⎫5×10-710-12=10lg(5×105)=50+10lg 5, 因为50+10lg 5>50,所以这两位同学会影响其他同学休息.10.某书商为提高某套丛书的销售量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到(15-0.1x )万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格,问:(1)每套丛书售价定为100元时,书商能获得的总利润是多少万元? (2)每套丛书售价定为多少元时,单套丛书的利润最大?解:(1)每套丛书售价定为100元时,销售量为15-0.1×100=5(万套),此时每套丛书的供货价格为30+105=32(元),所以书商所获得的总利润为5×(100-32)=340(万元).(2)每套丛书售价定为x 元时,由⎩⎪⎨⎪⎧15-0.1x >0,x >0,解得0<x <150.依题意,设单套丛书的利润为P ,则P =x -⎝ ⎛⎭⎪⎫30+1015-0.1x =x -100150-x -30,=-⎣⎢⎡⎦⎥⎤(150-x )+100150-x +120. 因为0<x <150,所以150-x >0,则(150-x )+100150-x≥2(150-x )·100150-x=2×10=20,当且仅当150-x =100150-x,即x =140时等号成立, 此时,P max =-20+120=100.所以每套丛书售价定为140元时,单套丛书的利润最大,最大值为100元.[B 级 综合练]11.某种热饮需用开水冲泡,其基本操作流程如下:①先将水加热到100 ℃,水温y (℃)与时间t (min)近似满足一次函数关系;②用开水将热饮冲泡后在室温下放置,温度y (℃)与时间t (min)近似满足的函数关系式为y =80⎝ ⎛⎭⎪⎫12t -a10+b (a ,b为常数).通常这种热饮在40 ℃时口感最佳.某天室温为20 ℃时,冲泡热饮的部分数据如图所示,那么按上述流程冲泡一杯热饮,并在口感最佳时饮用,最少需要的时间为( )A .35 minB .30 minC .25 minD .20 min解析:选C .由题意知,当0≤t ≤5时,函数图象是一条线段;当t ≥5时,函数的解析式为y =80⎝ ⎛⎭⎪⎫12t -a10+b .将点(5,100)和点(15,60)代入解析式可得⎩⎨⎧100=80⎝ ⎛⎭⎪⎫125-a10+b ,60=80⎝ ⎛⎭⎪⎫1215-a10+b ,解得a =5,b =20,故函数的解析式为y =80⎝ ⎛⎭⎪⎫12t -510+20,t≥5.令y =40,解得t =25,所以最少需要的时间为25 min.故选C .12.(2020·安徽淮北一中第五次月考)华罗庚是上世纪我国伟大的数学家,以华氏命名的数学科研成果有“华氏定理”“华氏不等式”“华王方法”等.他除了数学理论研究,还在生产一线大力推广了“优选法”和“统筹法”.“优选法”是指研究如何用较少的试验次数,迅速找到最优方案的一种科学方法.在当前防疫取得重要进展的时刻,为防范机场带来的境外输入,某机场海关在对入境人员进行检测时采用了“优选法”提高检测效率:每1 6人为一组,把每个人抽取的鼻咽拭子分泌物混合检查,如果为阴性则全部放行;若为阳性,则对该16人再次抽检确认感染者.某组16人中恰有一人感染(鼻咽拭子样本检验是阳性),若逐一检测可能需要15次才能确认感染者.现在先把这16人均分为2组,选其中一组8人的样本检查,若为阴性则认定在另一组;若为阳性则认定在本组.继续把认定的这组的8人均分两组,选其中一组4人的样本混合检查……以此类推,最终从这16人中认定那名感染者需要检测的次数为()A.3 B.4C.6 D.7解析:选B.先把这16人均分为2组,选其中一组8人的样本混合检查,若为阴性则认定在另一组;若为阳性则认定在本组,此时进行了1次检测.继续把认定的这组的8人均分两组,选其中一组4人的样本混合检查,若为阴性则认定在另一组;若为阳性则认定在本组,此时进行了2次检测.继续把认定的这组的4人均分两组,选其中一组2人的样本混合检查,若为阴性则认定在另一组;若为阳性则认定在本组,此时进行了3次检测.选认定的这组的2人中一人进行样本检查,若为阴性则认定是另一个人;若为阳性则认定为此人,此时进行了4次检测.所以,最终从这16人中认定那名感染者需要经过4次检测.故选B.13.某地下车库在排气扇发生故障的情况下测得空气中一氧化碳含量达到了危险状态,经抢修排气扇恢复正常.排气4分钟后测得车库内的一氧化碳浓度为64 ppm,继续排气4分钟后又测得浓度为32 ppm.由检验知该地下车库一氧化碳浓度y(ppm)与排气时间t(分钟)之间存在函数关系y=c(12)mt(c,m为常数).(1)mc的值为________;(2)若空气中一氧化碳浓度不高于0.5 ppm 为正常,则这个地下车库中的一氧化碳含量达到正常状态至少需排气________分钟.解析:(1)由题意可列方程组⎩⎪⎨⎪⎧64=c ⎝ ⎛⎭⎪⎫124m ,32=c ⎝ ⎛⎭⎪⎫128m ,两式相除,解得⎩⎨⎧c =128,m =14, 则mc =128×14=32.(2)由题意可列不等式128⎝ ⎛⎭⎪⎫1214t ≤0.5, 所以⎝ ⎛⎭⎪⎫1214t ≤⎝ ⎛⎭⎪⎫128,即14t ≥8,解得t ≥32. 故至少排气32分钟,这个地下车库中的一氧化碳含量才能达到正常状态. 答案:(1)32 (2)3214.某旅游景点预计2021年1月份起前x 个月的旅游人数的和p (x )(单位:万人)与x 的关系近似为p (x )=12x (x +1)·(39-2x )(x ∈N *,且x ≤12).已知第x个月的人均消费额q (x )(单位:元)与x 的近似关系是q (x )=⎩⎪⎨⎪⎧35-2x ,x ∈N *,且1≤x ≤6,160x,x ∈N * 且7≤x ≤12. (1)写出2021年第x 个月的旅游人数f (x )(单位:万人)与x 的函数关系式;(2)试问2021年第几个月的旅游消费总额最大?最大月旅游消费总额为多少元?解:(1)当x =1时,f (1)=p (1)=37,当2≤x ≤12,且x ∈N *时,f (x )=p (x )-p (x -1)=12x (x +1)(39-2x )-12x (x -1)(41-2x )=-3x 2+40x ,经验证x =1时也满足此式.所以f (x )=-3x 2+40x (x ∈N *,且1≤x ≤12).(2)第x (x ∈N *)个月的旅游消费总额为。
普通高中课程标准实验教科书—数学[人教版]高三新数学第一轮复习教案(讲座7)—函数模型及其应用一.课标要求:1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义;2.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
二.命题走向函数应用问题是高考的热点,高考对应用题的考察即考小题又考大题,而且分值呈上升的趋势。
高考中重视对环境保护及数学课外的的综合性应用题等的考察。
出于“立意”和创设情景的需要,函数试题设置问题的角度和方式也不断创新,重视函数思想的考察,加大函数应用题、探索题、开放题和信息题的考察力度,从而使高考考题显得新颖、生动和灵活。
预测2007年的高考,将再现其独特的考察作用,而函数类应用题,是考察的重点,因而要认真准备应用题型、探索型和综合题型,加大训练力度,重视关于函数的数学建模问题,学会用数学和方法寻求规律找出解题策略。
(1)题型多以大题出现,以实际问题为背景,通过解决数学问题的过程,解释问题;(2)题目涉及的函数多以基本初等函数为载体,通过它们的性质(单调性、极值和最值等)来解释生活现象,主要涉计经济、环保、能源、健康等社会现象。
三.要点精讲1.解决实际问题的解题过程(1)对实际问题进行抽象概括:研究实际问题中量与量之间的关系,确定变量之间的主、被动关系,并用x、y分别表示问题中的变量;(2)建立函数模型:将变量y表示为x的函数,在中学数学内,我们建立的函数模型一般都是函数的解析式;(3)求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点正确选择函数知识求得函数模型的解,并还原为实际问题的解.这些步骤用框图表示:2.解决函数应用问题应着重培养下面一些能力:(1)阅读理解、整理数据的能力:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等;(2)建立函数模型的能力:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记考察函数的定义域;(3)求解函数模型的能力:主要是研究函数的单调性,求函数的值域、最大(小)值,计算函数的特殊值等,注意发挥函数图象的作用。
四.典例解析题型1:正比例、反比例和一次函数型例1.某地区1995年底沙漠面积为95万公顷,为了解该地区沙漠面积的变化情况,进行了连续5年的观测,并将每年年底的观测结果记录如下表。
根据此表所给的信息进行预测:(1)如果不采取任何措施,那么到2010年底,该地区的沙漠面积将大约变为多少万公顷;(2)如果从2000年底后采取植树造林等措施,每年改造0.6万公顷沙漠,那么到哪一年年底该地区沙漠面积减少到90万公顷?解析:(1)由表观察知,沙漠面积增加数y与年份数x之间的关系图象近似地为一次函数y=k x+b的图象。
将x=1,y=0.2与x=2,y=0.4,代入y=k x+b,求得k=0.2,b=0,所以y=0.2x(x∈N)。
因为原有沙漠面积为95万公顷,则到2010年底沙漠面积大约为95+0.5×15=98(万公顷)。
(2)设从1996年算起,第x年年底该地区沙漠面积能减少到90万公顷,由题意得95+0.2x-0.6(x-5)=90,解得x=20(年)。
故到2015年年底,该地区沙漠面积减少到90万公顷。
点评:初中我们学习过的正比例、反比例和一元一次函数的定义和基本性质,我们要牢固掌握。
特别是题目中出现的“成正比例”、“成反比例”等条件要应用好。
例2.(2006安徽理21)(已知函数()f x 在R 上有定义,对任何实数0a >和任何实数x ,都有()()f ax af x =(Ⅰ)证明()00f =;(Ⅱ)证明(),0,0kx x f x hx x ≥⎧=⎨<⎩ 其中k 和h 均为常数;证明(Ⅰ)令0x =,则()()00f af =,∵0a >,∴()00f =。
(Ⅱ)①令x a =,∵0a >,∴0x >,则()()2f x xf x =。
假设0x ≥时,()f x kx =()k R ∈,则()22f x kx =,而()2xf x x kx kx =⋅=,∴()()2fx xf x =,即()f x kx =成立。
②令x a =-,∵0a >,∴0x <,()()2f x xf x -=- 假设0x <时,()f x hx =()h R ∈,则()22f x hx -=-,而()2xf x x hx hx -=-⋅=-,∴()()2f x xf x -=-,即()f x hx =成立。
∴(),0,0kx x fx hx x ≥⎧=⎨<⎩成立。
点评:该题应用了正比例函数的数字特征,从而使问题得到简化。
而不是一味的向函数求值方面靠拢。
题型2:二次函数型例3.一辆中型客车的营运总利润y (单位:万元)与营运年数x (x ∈N )的变化关系如表所示,则客车的运输年数为()时该客车的年平均利润最大。
(A )4 (B )5 (C )6 (D )7解析:表中已给出了二次函数模型c bx axy ++=2,由表中数据知,二次函数的图象上存在三点(4,7),(6,11),(8,7),则⎪⎩⎪⎨⎧+⋅+⋅=+⋅+⋅=+⋅+⋅=.887,6611,447222c b a c b a c b a 。
解得a =-1,b =12,c =-25, 即25122-+-=x x y 。
而取“=”的条件为x x 25=,即x =5,故选(B )。
点评:一元二次函数是高中数学函数中最重要的一个模型,解决此类问题要充分利用二次函数的结论和性质,解决好实际问题。
例4.行驶中的汽车,在刹车后由于惯性的作用,要继续向前滑行一段距离后才会停下,这段距离叫刹车距离。
为测定某种型号汽车的刹车性能,对这种型号的汽车在国道公路上进行测试,测试所得数据如下表。
在一次由这种型号的汽车发生的交通事故中,测得刹车距离为15.13m ,问汽车在刹车时的速度是多少?解析:所求问题就变为根据上表数据,建立描述v 与s 之间关系的数学模型的问题。
此模型不能由表格中的数据直接看出,因此,以刹车时车速v 为横轴,以刹车距离s 为纵轴建立直角坐标系。
根据表中的数据作散点图,可看出应选择二次函数作拟合函数。
假设变量v 与s 之间有如下关系式:c bv av s ++=2,因为车速为0时,刹车距离也为0,所以二次曲线的图象应通过原点(0,0)。
再在散点图中任意选取两点A (30,7.30),B (80,44.40)代入,解出a 、b 、c 于是v v s 0563.00062.02+=。
(代入其他数据有偏差是许可的)将s=15.13代入得v v 0563.00062.013.152+=,解得v ≈45.07。
所以,汽车在刹车时的速度是45.07km/h 。
例5.(2003北京春,理、文21)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?解:(1)当每辆车的月租金定为3600元时,未租出的车辆数为:5030003600- =12,所以这时租出了88辆车.(2)设每辆车的月租金定为x 元,则租赁公司的月收益为:f (x )=(100-503000-x )(x -150)-503000-x ×50,整理得:f (x )=-502x+162x -21000=-501(x -4050)2+307050.所以,当x =4050时,f (x )最大,其最大值为f (4050)=307050.即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大收益为307050元.点评:本题贴近生活。
要求考生读懂题目,迅速准确建立数学模型,把实际问题转化为数学问题并加以解决。
题型3:分段函数型例6.某集团公司在2000年斥巨资分三期兴建垃圾资源化处理工厂,如下表:如果每期的投次从第二年开始见效,且不考虑存贷款利息,设2000年以后的x 年的总收益为f (x )(单位:千万元),试求f (x )的表达式,并预测到哪一年能收回全部投资款。
解析:由表中的数据知,本题需用分段函数进行处理。
由表中的数据易得, f (x )=⎪⎩⎪⎨⎧∈-+-+∈-+∈}765{ ),4(4)2(42}43{ ),2(42}21{ ,2 ,,,,x x x x x x x x x 。
显然,当n ≤4时,不能收回投资款。
当n ≥5时,由f (n)=10n-24>70, 得n>9.4,取n=10。
所以到2010年可以收回全部投资款。
点评:分段函数是根据实际问题分类讨论函数的解析式,从而寻求在不同情况下实际问题的处理结果。
例7.(2000全国,21)某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图2—10中(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图2—10中(2)的抛物线表示.图2—10(1)写出图中(1)表示的市场售价与时间的函数关系式P =f (t ); 写出图中(2)表示的种植成本与时间的函数关系式Q =g (t );(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大? (注:市场售价和种植成本的单位:元/102 ,kg ,时间单位:天) 解:(1)由图(1)可得市场售价与时间的函数关系为f (t )=⎩⎨⎧≤<-≤≤-;300200,3002,2000,300t t t t由图(2)可得种植成本与时间的函数关系为 g (t )=2001(t -150)2+100,0≤t ≤300.(2)设t 时刻的纯收益为h (t ),则由题意得h (t )=f (t )-g (t ),即h (t )=⎪⎪⎩⎪⎪⎨⎧≤<-+-≤≤++-.300200,21025272001,2000,2175********t t t t t t当0≤t ≤200时,配方整理得h (t )=-2001(t -50)2+100,所以,当t =50时,h (t )取得区间[0,200]上的最大值100; 当200<t ≤300时,配方整理得 h (t )=-2001(t -350)2+100,所以,当t =300时,h (t )取得区间(200,300]上的最大值87.5.综上,由100>87.5可知,h (t )在区间[0,300]上可以取得最大值100,此时t =50,即从二月一日开始的第50天时,上市的西红柿纯收益最大.点评:本题主要考查由函数图象建立函数关系式和求函数最大值的问题.考查运用所学知识解决实际问题的能力. 题型4:三角函数型例8.某港口水的深度y (m)是时间t (0≤t ≤24,单位:h )的函数,记作y =f (t)。