2020届山东高三理科数学一轮复习课件第二章§28函数模型及综合应用
- 格式:ppt
- 大小:1.80 MB
- 文档页数:48
2.8 函数模型及其应用挖命题【考情探究】分析解读为了考查学生的综合能力与素养,高考加强了函数综合应用问题的考查力度,这一问题涉及的知识点一般较多,综合性也较强,属于中档以上的试题,题型以填空题和解答题为主,在高考中分值为5分左右,通常在如下方面考查:1.对函数实际应用问题的考查,这类问题多以社会实际生活为背景,设问新颖,要求学生掌握课本中的概念、公式、法则、定理等基础知识与方法.2.以课本知识为载体,把函数与方程、不等式、数列、解析几何等知识联系起来,构造不等式求参数范围,利用分离参数法求函数值域,进而求字母的取值等.破考点【考点集训】考点函数模型及其应用1.(2014湖南,8,5分)某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为( )A. B.- C. D.-1答案D2.(2018安徽黄山一模,12)已知定义在R上的函数f(x)满足f(x+2)=f(x),且f(x)是偶函数,当x∈[0,1]时, f(x)=x2.令g(x)=f(x)-kx-k,若在区间[-1,3]内,函数g(x)=0有4个不相等实根,则实数k的取值范围是( )A.(0,+∞)B.C.D.答案C3.(2017江西抚州七校联考,19)食品安全问题越来越引起人们的重视,农药、化肥的滥用给人民群众的健康带来了一定的危害,为了给消费者带来放心的蔬菜,某农村合作社计划每年投入200万元搭建甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P、种黄瓜的年收入Q与投入a(单位:万元)满足P=80+4,Q=a+120,设甲大棚的投入为x(单位:万元),每年两个大棚的总收益为f(x)(单位:万元).(1)求f(50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益f(x)最大?解析(1)∵甲大棚投入50万元,∴乙大棚投入150万元,∴f(50)=80+4+×150+120=277.5(万元).(2)f(x)=80+4+(200-x)+120=-x+4+250,依题意得-⇒20≤x≤180,故f(x)=-x+4+250(20≤x≤180).令t=∈[2,6],则f(t)=-t2+4t+250=-(t-8)2+282,当t=8,即x=128时, f(x)max=282.故甲大棚投入128万元,乙大棚投入72万元时,总收益最大,且最大收益为282万元.炼技法【方法集训】方法解函数应用题的方法步骤1.(2015四川,8,5分)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是( )A.16小时B.20小时C.24小时D.28小时答案C2.(2018河北承德期中,13)某商品价格y(单位:元)因上架时间x(单位:天)的不同而不同,假定商品的价格与上架时间的函数关系是一种指数型函数,即y=k·a x(a>0且a≠1,x∈N*).若商品上架第1天的价格为96元,而上架第3天的价格为54元,则该商品上架第4天的价格为元.答案过专题【五年高考】A组山东省卷、课标卷题组考点函数模型及其应用1.(2017山东,15,5分)若函数e x f(x)(e=2.718 28…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为.①f(x)=2-x②f(x)=3-x③f(x)=x3④f(x)=x2+2答案①④2.(2014山东,15,5分)已知函数y=f(x)(x∈R),对函数y=g(x)(x∈I),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈I),y=h(x)满足:对任意x∈I,两个点(x,h(x)),(x,g(x))关于点(x, f(x))对称.若h(x)是g(x)=-关于f(x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是.答案(2,+∞)B组其他自主命题省(区、市)卷题组考点函数模型及其应用1.(2015北京,8,5分)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油答案D2.(2018浙江,11,6分)我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则当z=81时,x= ,y= .答案8;113.(2017浙江,17,4分)已知a∈R,函数f(x)=-+a在区间[1,4]上的最大值是5,则a的取值范围是.答案-∞4.(2016浙江,18,15分)已知a≥3,函数F(x)=min{2|x-1|,x2-2ax+4a-2},其中min{p,q}=(1)求使得等式F(x)=x2-2ax+4a-2成立的x的取值范围;(2)(i)求F(x)的最小值m(a);(ii)求F(x)在区间[0,6]上的最大值M(a).解析(1)由于a≥3,故当x≤1时,(x2-2ax+4a-2)-2|x-1|=x2+2(a-1)(2-x)>0,当x>1时,(x2-2ax+4a-2)-2|x-1|=(x-2)(x-2a).所以,使得等式F(x)=x2-2ax+4a-2成立的x的取值范围为[2,2a].(2)(i)设函数f(x)=2|x-1|,g(x)=x2-2ax+4a-2,则f(x)min=f(1)=0,g(x)min=g(a)=-a2+4a-2,所以,由F(x)的定义知m(a)=min{f(1),g(a)},即m(a)=--(ii)当0≤x≤2时,F(x)≤f(x)≤max{f(0), f(2)}=2=F(2),当2≤x≤6时,F(x)≤g(x)≤max{g(2),g(6)}=max{2,34-8a}=max{F(2),F(6)}.-所以,M(a)=C组教师专用题组考点函数模型及其应用1.(2014辽宁,12,5分)已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)-f(y)|<|x-y|.若对所有x,y∈[0,1],|f(x)-f(y)|<k恒成立,则k的最小值为( )A. B. C. D.答案B2.(2013天津,8,5分)已知函数f(x)=x(1+a|x|).设关于x的不等式f(x+a)<f(x)的解集为A.若-⊆A,则实数a 的取值范围是( )A.-B.-C.-∪D.-∞-答案A3.(2014湖北,14,5分)设f(x)是定义在(0,+∞)上的函数,且f(x)>0,对任意a>0,b>0,若经过点(a, f(a)),(b,-f(b))的直线与x轴的交点为(c,0),则称c为a,b关于函数f(x)的平均数,记为M f(a,b).例如,当f(x)=1(x>0)时,可得M f(a,b)=c=,即M f(a,b)为a,b的算术平均数.(1)当f(x)= (x>0)时,M f(a,b)为a,b的几何平均数;(2)当f(x)= (x>0)时,M f(a,b)为a,b的调和平均数.(以上两空各只需写出一个符合要求的函数即可)答案(1)(2)x4.(2014四川,15,5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[-M,M].例如,当φ1(x)=x3,φ2(x)=sin x 时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D, f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B;④若函数f(x)=aln(x+2)+(x>-2,a∈R)有最大值,则f(x)∈B.其中的真命题有.(写出所有真命题的序号)答案①③④5.(2016江苏,19,16分)已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)-6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)-2有且只有1个零点,求ab的值.解析(1)因为a=2,b=,所以f(x)=2x+2-x.①方程f(x)=2,即2x+2-x=2,亦即(2x)2-2×2x+1=0,所以(2x-1)2=0,于是2x=1,解得x=0.②由条件知f(2x)=22x+2-2x=(2x+2-x)2-2=(f(x))2-2.因为f(2x)≥mf(x)-6对于x∈R恒成立,且f(x)>0,所以m≤对于x∈R恒成立.而=f(x)+≥2·=4,且=4,所以m≤4,故实数m的最大值为4.(2)因为函数g(x)=f(x)-2只有1个零点,而g(0)=f(0)-2=a0+b0-2=0,所以0是函数g(x)的唯一零点.因为g'(x)=a x ln a+b x ln b,又由0<a<1,b>1知ln a<0,ln b>0,所以g'(x)=0有唯一解x0=lo-.令h(x)=g'(x),则h'(x)=(a x ln a+b x ln b)'=a x(ln a)2+b x(ln b)2,从而对任意x∈R,h'(x)>0,所以g'(x)=h(x)是(-∞,+∞)上的单调增函数.于是当x∈(-∞,x0)时,g'(x)<g'(x0)=0;当x∈(x0,+∞)时,g'(x)>g'(x0)=0.因而函数g(x)在(-∞,x0)上是单调减函数,在(x0,+∞)上是单调增函数.下证x0=0.若x0<0,则x0<<0,于是g<g(0)=0.又g(log a2)=+-2>-2=0,且函数g(x)在以和log a2为端点的闭区间上的图象不间断,所以在和log a2之间存在g(x)的零点,记为x1.因为0<a<1,所以log a2<0.又<0,所以x1<0,与“0是函数g(x)的唯一零点”矛盾.若x0>0,同理可得,在和log b2之间存在g(x)的非0的零点,矛盾.因此,x0=0.于是-=1,故ln a+ln b=0,所以ab=1.【三年模拟】一、选择题(每小题5分,共35分)1.(2018宁夏银川月考,5)国家规定个人稿费纳税条件为:不超过800元的不纳税;超过800元而不超过4 000元的按超过部分的14%纳税;超过4 000元的按全稿酬的11%纳税.若某人共纳税420元,则这个人的稿费为( )A.3 000元B.3 800元C.3 818元D.5 600元答案B2.(2018山西大同模拟,6)将出货单价为80元的商品按90元一个出售时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个,为了赚得最大利润,每个售价应定为( )A.85元B.90元C.95元D.100元答案C3.(2018福建三明联考,6)用清水洗衣服,每次能洗去污垢的,要使存留的污垢不超过1%,则至少要洗的次数是(参考数据lg 2≈0.301)( )A.3B.4C.5D.6答案B4.(2018山东师大附中模拟,10)已知函数f(x)=ln x+ln(4-x),则( )A.f(x)在(0,4)上单调递增B.f(x)在(0,4)上单调递减C.y=f(x)的图象关于直线x=2对称D.y=f(x)的图象关于点(2,0)对称答案C5.(2017山西名校联考,12)设函数f(x)=-4x+2x+1-1,g(x)=lg(ax2-4x+1),若对任意x1∈R,都存在x2∈R,使f(x1)=g(x2),则实数a的取值范围为( )A.(0,4]B.(-∞,4]C.(-4,0]D.[4,+∞)答案B6.(2017福建质检,5)当生物死亡后,其体内原有的碳14的含量大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用该放射性探测器探测不到,则它经过的“半衰期”个数至少是( )A.8B.9C.10D.11答案C7.(2018安徽十大名校联考,12)若函数f(x)=--有4个零点,则实数m的取值范围是( )A.(16,20)B.(-20,-16)C.(-∞,-20)∪(-16,+∞)D.(-∞,16)∪(20,+∞)答案B二、填空题(每小题5分,共15分)8.(2018福建三明期末,14)物体在常温下的温度变化可以用牛顿冷却定律来描述:设物体的初始温度是T0,经过一定时间t后的温度是T,则T-T a=(T0-T a)·,其中T a称为环境温度,h称为半衰期.现有一杯用88 ℃热水冲的速溶咖啡,放在24 ℃的房间中,如果咖啡降到40 ℃需要20分钟,那么此杯咖啡从40 ℃降温到32 ℃时,还需要分钟.答案109.(2018上海嘉定一模,10)已知函数f(x)是定义在R上且周期为4的偶函数,当x∈[2,4]时, f(x)=-,则f的值为.答案10.(2018陕西西安中学期中,16)已知函数f(x)=---(a是常数且a>0),对于下列命题:①函数f(x)的最小值是-1;②函数f(x)在R上是单调函数;③若f(x)>0在∞上恒成立,则a的取值范围是a>1.其中正确命题的序号是.答案①③三、解答题(共20分)11.(2019届山东博兴一中10月月考,20)响应国家提出的“大众创业,万众创新”的号召,小王大学毕业后决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本2万元,每生产x万件,需另投入流动成本W(x)万元,在年产量不足8万件时,W(x)=x2+2x.在年产量不小于8万件时,W(x)=7x+-37.每件产品售价6元.通过市场分析,小王生产的商品能当年全部售完.(1)写出年利润P(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?解析(1)因为每件商品售价为6元,则x万件商品销售收入为6x万元.依题意得当0<x<8时,P(x)=6x--2=-x2+4x-2,当x≥8时,P(x)=6x---2=35-.故P(x)=----(2)当0<x<8时,P(x)=-(x-6)2+10.此时,当x=6时,P(x)取得最大值,最大值为P(6)=10(万元).当x≥8时,P(x)=35-≤35-2·=15当且仅当即时取等号,此时,当x=10时, P(x)取得最大值,最大值为15万元.因为10<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元.12.(2019届山东寿光现代中学10月月考,19)近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司计划在甲、乙两座城市共投资240万元,根据行业规定,每个城市至少要投资80万元,由前期市场调研可知:甲城市收益P与投入a(单位:万元)满足P=4-6,乙城市收益Q与投入a(单位:万元)满足Q=设甲城市的投入为x(单位:万元),两个城市的总收益为f(x)(单位:万元).(1)当投资甲城市128万元时,求此时公司总收益;(2)试问如何安排甲、乙两个城市的投资,才能使公司总收益最大?解析(1)当x=128时,此时甲城市投资128万元,乙城市投资112万元,所以总收益f(128)=4-6+×112+2=88(万元)答:此时公司总收益为88万元.(2)由题意知,甲城市投资x万元,乙城市投资(240-x)万元,依题意得-解得80≤x≤160,当80≤x<120,120<240-x≤160时,f(x)=4-6+32=4+26<26+16;当120≤x≤160,80≤240-x≤120时,f(x)=4-6+(240-x)+2=-x+4+56,令t=,则t∈[2,4],所以y=-t2+4t+56=-(t-8)2+88,当t=8,即x=128时,y的最大值为88.因为88-(26+16)=2(31-8)>0,故f(x)的最大值为88万元.答:当甲城市投资128万元,乙城市投资112万元时,总收益最大,且最大收益为88万元.。