2.9 函数模型及其综合应用-5年3年模拟北京高考
- 格式:doc
- 大小:420.50 KB
- 文档页数:8
2023-2024学年北京市高三三模数学模拟试题一、单选题1.如图,集合A B 、均为U 的子集,()U A B ⋂ð表示的区域为()A .IB .IIC .IIID .IV【正确答案】D【分析】由补集和交集的概念求解即可.【详解】由补集的概念,U A ð表示的区域如下图所示阴影区域,∴()U A B ⋂ð表示的区域为下图所示阴影区域,即为图中的区域Ⅳ.故选:D.2.在下列四个函数中,在定义域内单调递增的有()A .()tan =f x xB .()f x x =C .()2xf x =D .()2f x x=【正确答案】C【分析】A.利用正切函数的性质判断;B.利用绝对值函数的性质判断;C.利用指数函数的性质判断;D.利用二次函数的性质判断.【详解】解:A.()tan =f x x 的增区间为πππ,π,Z 22k k k ⎛⎫-+∈ ⎪⎝⎭,在整个定义域上不单调,故错误;B.()f x x =的增区间是[0,)+∞,在整个定义域上不单调,故错误;C.()2xf x =在R 上递增,故正确;D.()2f x x =的增区间是[0,)+∞,在整个定义域上不单调,故错误;故选:C3.设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为()A .a b c <<B .b a c<<C .b<c<aD .c<a<b【正确答案】D【分析】利用指数函数与对数函数的性质,即可得出,,a b c 的大小关系.【详解】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<.故选:D.本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:x y a =,当1a >时,函数递增;当01a <<时,函数递减;(2)利用对数函数的单调性:log a y x =,当1a >时,函数递增;当01a <<时,函数递减;(3)借助于中间值,例如:0或1等.4.已知tan 2x =,则tan 4x π⎛⎫+ ⎪⎝⎭的值为()A .3B .-3C .13D .34-【正确答案】B【分析】利用两角和的正切公式求解.【详解】解:因为tan 2x =,所以πtan tanπ214tan 3π41211tan tan 4x x x ++⎛⎫+===- ⎪-⋅⎝⎭-⋅,故选:B5.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米)2023年5月1日12350002023年5月15日6035500注:“累计里程”指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为()A .6升B .8升C .10升D .12升【正确答案】D【分析】分析表中数据,得出行驶路径和耗油量,可计算结果.【详解】由表中的数据可知,行驶路径500千米耗油量为60升,则该车每100千米平均耗油量为60125=升.故选:D6.已知||1,||0OA OB OA OB =⋅=,点C 在AOB ∠内,且30AOC ∠=︒.设()OC mOA nOB m n =+∈R、,则mn等于()A .13B .3CD 【正确答案】B【分析】由题意可得OA OB ⊥,建立坐标系,由已知条件可得()OC m =,进而可得tan 30︒==,即可得答案.【详解】解:因为||1,||0OA OB OA OB =⋅=,所以OA OB ⊥ ,又因为点C 在AOB ∠内,且30AOC ∠=︒,建立如图所示的坐标系:则(1,0)OA = ,OB =,又因为()OC mOA nOB m n =+∈R、,所以()OC m =,所以tan 303m ︒==,所以3mn=.故选:B.7.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB +的取值范围是A .B .C .D .【正确答案】B【详解】试题分析:易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以222||||10PA PB AB +==,令,PA PB θθ==,则)4PA PB πθθθ+==+.因为0,0PA PB ≥≥,所以02πθ≤≤.所以sin()14πθ≤+≤PA PB ≤+≤选B.法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.【考点定位】1、直线与圆;2、三角代换.8.已知{}n a 为无穷等差数列,则“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”是“存在2k ≥且*k ∈N ,使得0k a =”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【正确答案】B【分析】根据等差数列性质结合充分、必要条件分析判断.【详解】“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”,不能推出“存在2k ≥且*k ∈N ,使得0k a =”,例如32n a n =-,则121,1a a ==-,即1,2i j ==,满足120i j a a a a +=+=,但令320k a k =-=,则*32k =∉N ,故不存在存在2k ≥且*k ∈N ,使得0k a =,故“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”是“存在2k ≥且*k ∈N ,使得0k a =”的不充分条件;若“存在2k ≥且*k ∈N ,使得0k a =”,则取11,1i k j k =-≥=+,则1120i j k k k a a a a a -++=+==,故“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”是“存在2k ≥且*k ∈N ,使得0k a =”的必要条件;综上所述:“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”是“存在2k ≥且*k ∈N ,使得0k a =”的必要不充分条件.故选:B.9.十八世纪,瑞士数学家欧拉研究调和级数时,得到了以下结果:当n 很大时,1111ln 23n nγ++++=+ (其中γ为常数,其近似值为0.577)据此,可以估计111200012000230000+++ 的值为()A .4ln10B .ln6C .ln2D .3ln2【正确答案】D【分析】根据已知结论得两个等式相减即可得解.【详解】由题意得1111ln300002330000γ++++=+ ,1111ln200002320000γ++++=+ ,两式相减得,111300003ln 30000ln 20000ln ln 200012000230000200002+++=-== .故选:D .10.如图,平面中两条直线1l 和2l 相交于点O ,对于平面上任意一点M ,若,p q 分别是M 到直线1l 和2l 的距离,则称有序非负实数对(,)p q 是点M 的“距离坐标”.已知常数0,0p q ≥≥,给出下列命题:①若0p q ==,则“距离坐标”为(0,0)的点有且仅有1个;②若0pq =,且0p q +≠,则“距离坐标”为(,)p q 的点有且仅有2个;③若0pq ≠,则“距离坐标”为(,)p q 的点有且仅有4个.上述命题中,正确命题的个数是()A .0B .1C .2D .3【正确答案】D【分析】根据“距离坐标”的定义,依次分析各命题即可得答案.【详解】解:①,若0p q ==,则“距离坐标”为()0,0的点是两条直线的交点O ,因此有且仅有1个,故正确.②,若0pq =,且0p q +≠,则“距离坐标”为()0,q 或(),0p 的点有且仅有2个,故正确.③若0pq ≠,则0,0p q ≠≠,“距离坐标”为(),p q 的点有且仅有4个,为123,,,M M M M ,如图,故正确.故正确的命题个数为3个.故选:D二、填空题11.若5(1a =+,a b 为有理数),则a b +=_______________.【正确答案】120【分析】利用二项式定理展开5(1并计算,再利用有理项、无理项求解作答.【详解】由二项式定理得:1234555555513C 9C 97644(1=+++++=+依题意,76a +=+,a b 为有理数,因此76,44a b ==,所以120a b +=.故12012.银行储蓄卡的密码由6位数字组成,某人在银行自助取款机上取钱时,忘记了密码的最后1位数字,但记得密码的最后1位是偶数,则在第一次没有按对的条件下第2次按对的概率是_________.【正确答案】14/0.25【分析】根据条件概率公式直接计算即可.【详解】记事件A :第一次没有按对密码;事件B :第二次按对密码;()45P A =,()411545P AB =⨯=,()()()14P AB P B A P A ∴==.故答案为.14三、双空题13.在ABC 中,内角,,A B C 所对的边分别是,,a b c ,已知14b c a -=,2sin 3sin B C =,则bc=_______,cos A 的值为________.【正确答案】3214-【分析】利用正弦定理边角互化即可求得b c,利用余弦定理即可求得cos A .【详解】因为ABC 中,2sin 3sin B C =,所以由正弦定理可得23b c =,即32b c =.又因为14b c a -=,所以2a c =,所以由余弦定理可得()2222223212cos 32422c c c b c a A bc c c ⎛⎫+- ⎪+-⎝⎭===-⨯⨯,故32;14-14.已知n S 是数列{}n a 的前n 项和,且对任意的正整数n ,都满足:11122n nn a a +-=+,若112a =,则3a =________,2023S =______________.【正确答案】11220232024【分析】直接利用条件可递推出第三项,利用累加法可得数列通项再用裂项相消法求和即可.【详解】由11122n n n a a +-=+和112a =可得:21232311111146,612,a a a a a a -=⇒=∴-=⇒=即3a =112;由11122n n n a a +-=+可得:()112211111112,21,...,4n n n n n n a a a a a a ----=-=--=,累加得()()()124111111211n n n n a a a n n n n +--=⇒==-++,所以20231111112023 (1223202320242024)S ⎛⎫⎛⎫⎛⎫=-+-++-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故112,20232024四、填空题15.已知曲线:44C x x y y -=.①若00(,)P x y 为曲线C 上一点,则0020x y ->;②曲线C 在()0,1-处的切线斜率为0;③R,20m x y m ∃∈-+=与曲线C 有四个交点;④直线20x y m -+=与曲线C无公共点当且仅当((),0,m ∈-∞⋃+∞.其中所有正确结论的序号是_____________.【正确答案】①②【分析】分x 、y 的符号情况化简曲线C 的方程,从而可画出曲线C 的图象,结合图象逐一分析即可.【详解】当0x ≥,0y ≥时,曲线C 的方程为2244x y -=,即2214x y -=,曲线C 是双曲线的一部分;当0x ≥,0y <时,曲线C 的方程为2244x y +=,即2214x y +=,曲线C 是椭圆的一部分;当0x <,0y ≥时,曲线C 的方程为2244x y --=,曲线C 不存在;当0x <,0y <时,曲线C 的方程为2244x y -+=,即2214x y -=,曲线C 是双曲线的一部分;双曲线2214x y -=和2214y x -=有一条共同的渐近线20x y -=,综上,可作出曲线C的图象,如图:由图象可知曲线C 的图象上的点都在直线20x y -=的下方,所以当00(,)P x y 在曲线C 上时,有0020x y ->,故①正确;设过点()0,1-的直线l 的方程是1y kx =-,若直线l 与椭圆2214x y +=相切,则由22114y kx x y =-⎧⎪⎨+=⎪⎩得221408()k x kx -+=,2640k ∆==,得0k =;若直线l 与双曲线2214x y -=相切,则由22114y kx x y =-⎧⎪⎨-=⎪⎩得22(41)80k x kx --=,则2410k -≠且2640k ∆==,得0k =,此时直线l 的方程是1y =-,与曲线C 相切,故②正确;直线20x y m -+=是表示与直线20x y -=平行或重合的直线,由曲线C 的图象可知,直线20x y m -+=与曲线C 不可能有四个交点,故③错误;设直线20x y n -+=与椭圆2214x y +=相切,则由222014x y n x y -+=⎧⎪⎨+=⎪⎩得228440y ny n -+-=,所以221632(4)0n n ∆=--=,解得n =±C的图象,取n =-,即直线20x y --=与曲线C 相切,所以若直线20x y m -+=与曲线C 无公共点,结合曲线C 的图象,0m ≥或m <-.故①②.方法点睛:1.曲线方程中带有绝对值,一般是分绝对值里的式子的符号讨论去绝对值;2.直线与曲线的交点问题常采用数形结合的方法.五、解答题16.在ABC 中,76cos a b B =.(1)若3sin 7A =,求B ∠;(2)若8c =,从条件①、条件②这两个条件中选择一个作为已知,使ABC 存在.求ABC 的面积条件①:sin 47A =;条件②:sin B =【正确答案】(1)4π;(2)【分析】(1)直接由正弦定理边化角,结合倍角公式即可求解;(2)若选①:由正弦定理及倍角公式得4sin 23B =,ABC 不存在;若选②:先判断cos 0B >,再由sin 2B =求出cos B ,由73a b =及余弦定理求得a ,再计算面积即可.【详解】(1)由正弦定理得:7sin 6sin cos 3sin 2A B B B ==,又3sin 7A =,故sin 21B =,又()0,B π∈,故22B π=,4B π=;(2)若选①:由正弦定理得:7sin 6sin cos 3sin 2A B B B ==,又sin 47A =,故4sin 23B =,此时ABC 不存在;若选②:由7cos 06a B b =>,又sin 2B =,则1cos 2B =,73a b =,由余弦定理得2222cos b a c ac B =+-,即2276483a a a ⎛⎫=+- ⎪⎝⎭,解得3a =或245a =-(舍去),故ABC的面积为1sin 2ac B =.17.如图,在四棱锥P ABCD -中,PA ⊥底面,,//ABCD AD AB AB DC ⊥,2,1AD DC AP AB ====,点E 为棱PC的中点.(1)证明:BE DC ⊥;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF AC ⊥,求二面角F AB P --的余弦值.【正确答案】(1)证明见解析;(2(3.【分析】(1)可以建立空间直角坐标系,利用向量数量积来证明BE DC ⊥,;(2)向量法:先求平面PBD 的法向量A ,然后利用公式1sin cos ,n BE n BE n BEθ⋅==⋅ 求直线BE 与平面PBD 所成角的正弦值;(3)向量法:先求平面ABF 和平面PBA 的法向量12,n n ,再利用公式121212cos ,n n n n n n ⋅=⋅ 来求二面角F AB P --的余弦值.【详解】依题意,以点E 为原点建立空间直角坐标系(如图),可得(1,0,0),(2,2,0)B C ,(0,2,0),(0,0,2)D P ,由点E 为棱PC 的中点,得()1,1,1E .(1)向量()0,1,1BE = ,()2,0,0DC = ,故0BE DC ⋅= .∴BE CD ⊥.(2)向量(1,2,0),(1,0,2)BD PB =-=- ,设()1,,n x y z = 为平面PBD 的法向量,则00n BD n PB ⎧⋅=⎨⋅=⎩,即2020x y x z -+=⎧⎨-=⎩,不妨令1z =,可得()2,1,1n = 为平面PBD 的一个法向量.于是有3cos ,||||62n BE n BE n BE ⨯〈〉==⨯⨯ ,∴直线BE 与平面PBD 所成角的正弦值为33.(3)()2,2,2,(2,2,0),(1,0,0),CP AC AB =--== ,由点F 在棱PC 上,故(12,22,2)BF BC CF BC lCP l l l =+=+=-- ,由BF AC ⊥,得+22(12)(22=0)l l --,解得34l =,即113,,222BF ⎛⎫=- ⎪⎝⎭.设1(,,)n x y z = 为平面ABF 的法向量,则1100n AB n BF ⎧⋅=⎪⎨⋅=⎪⎩ ,即01130222x x y z =⎧⎪⎨-++=⎪⎩,不妨令1z =,可得1(0,3,1)n =- 为平面ABF 的一个法向量.取平面PAB 的法向量2(0,1,0)n = ,则121212310cos ,1010n n n n n n ⋅===-⋅ .易知,二面角F AB P --31010.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.18.诚信是立身之本,道德之基,某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“周实际回收水费周投入成本”表示每周“水站诚信度”,为了便于数据分析,以四周为一周期,下表为该水站连续十二周(共三个周期)的诚信数据统计:第一周第二周第三周第四周第一个周期95%98%92%88%第二个周期94%94%83%80%第三个周期85%92%95%96%(1)计算表中十二周“水站诚信度”的平均数X ;(2)分别从表中每个周期的4个数据中随机抽取1个数据,设随机变量X 表示取出的3个数中“水站诚信度”超过91%的数据的个数,求随机变量X 的分布列和期望;(3)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.【正确答案】(1)91%(2)见解析(3)两次活动效果均好.详见解析【分析】(1)利用平均数公式能求出表中十二周“水站诚信度”的平均数;(2)随机变量X 的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X 的分布列和数学期望;(3)根据后继一周都有提升可得两次活动效果均好.【详解】(1)表中十二周“水站诚信度”的平均数:959892889494838085929596191%12100x +++++++++++=⨯=.(2)随机变量X 的可能取值为0,1,2,3,()1212044464P X ==⨯⨯=,()3211211444444P X ==⨯⨯+⨯⨯1231444464+⨯⨯=,()3213212444444P X ==⨯⨯+⨯⨯3233044464+⨯⨯=,()32318344464P X ==⨯⨯=,∴X 的分布列为:X 0123P 1327321532932171590123232323232EX =⨯+⨯+⨯+⨯=.(3)两次活动效果均好.理由:活动举办后,“水站诚信度”由88%94%→和80%到85%看出,后继一周都有提升.本题考查平均数的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,在历年高考中都是必考题型之一.19.已知函数()ln f x ax x x =-.(1)当1a =时,求()f x 的零点;(2)讨论()f x 在[]1,e 上的最大值;(3)是否存在实数a ,使得对任意0x >,都有()f x a ≤?若存在,求a 的取值范围;若不存在,说明理由.【正确答案】(1)ex =(2)答案见解析(3)存在,a 的取值范围是1a =【分析】(1)利用导函数判断()f x 的单调性,进而判断零点的情况即可;(2)利用导函数判断()f x 在区间[]1,e 的单调性,进而求最值即可;(3)由题意只需()max f x a ≤即可,利用(2)中结论即1e 0a a --≤,利用导数求a 的范围即可.【详解】(1)()ln f x ax x x =-的定义域为()0,∞+,当1a =时,()ln f x x x x =-,()ln f x x '=-,所以当()0,1x ∈时,()0f x ¢>,()f x 单调递增,当()1,x ∈+∞时,()0f x '<,()f x 单调递减,又因为当0x →时()0f x >,()11f =,()e 0f =,所以()f x 仅有一个零点,e x =.(2)()1ln f x a x =--',令()0f x '=,解得1e a x -=,在区间()0,∞+内,x ()10,e a -1e a -()1e,a -+∞()f x '+0-()f x 单调递增极大值单调递减当1e 1a -≤(即1a ≤)时,在[]1,e 上()f x 单调递减,()max ()1f x f a ==,当1e e a -≥(即2a ≥)时,在[]1,e 上()f x 单调递增,()max ()e e e f x f a ==-,当11e e a -<<(即12a <<)时,在1e ,e a -⎡⎤⎣⎦上()f x 单调递增,在11,e a -⎡⎤⎣⎦上()f x 单调递减,()()1111max ()e e e 1e a a a a f x f a a ----==--=.综上所述,当1a ≤时,()f x 的最大值为a ,当2a ≥时,()f x 的最大值为e e a -,当12a <<时,()f x 的最大值为1e a -.(3)由(2)知在()0,∞+上,()11max ()ee a af x f --==,构造函数()()11e e a a g a f a a --=-=-,由题意应使()0g a ≤,()1e 1a g a -'=-,令()0g a '=,解得1a =.a (),1-∞1()1,+∞()g a '-0+()g a 单调递减极小值单调递增所以()min ()10g a g ==,所以使()0g a ≤的实数a 只有1a =,即a 的取值范围是1a =.20.已知椭圆C :2233x y +=,过点()D 1,0且不过点()2,1E 的直线与椭圆C 交于A ,B 两点,直线AE 与直线3x =交于点M .(Ⅰ)求椭圆C 的离心率;(Ⅱ)若AB 垂直于x 轴,求直线BM 的斜率;(Ⅲ)试判断直线BM 与直线D E 的位置关系,并说明理由.【正确答案】(Ⅰ(Ⅱ)1;(Ⅲ)平行,理由见解析.【详解】试题分析:本题主要考查椭圆的标准方程及其几何性质、直线的斜率、两直线的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.(Ⅰ)先将椭圆方程化为标准方程,得到a ,b ,c 的值,再利用c e a=计算离心率;(Ⅱ)由直线AB 的特殊位置,设出A ,B 点坐标,设出直线AE 的方程,由于直线AE 与3x =相交于M 点,所以得到M 点坐标,利用点B 、点M 的坐标,求直线BM 的斜率;(Ⅲ)分直线AB 的斜率存在和不存在两种情况进行讨论,第一种情况,直接分析即可得出结论,第二种情况,先设出直线AB 和直线AE 的方程,将椭圆方程与直线AB 的方程联立,消参,得到12x x +和12x x ,代入到1BM k -中,只需计算出等于0即可证明BM DE k k =,即两直线平行.试题解析:(Ⅰ)椭圆C 的标准方程为2213x y +=.所以a =1b =,c所以椭圆C 的离心率c e a ==.(Ⅱ)因为AB 过点(1,0)D 且垂直于x 轴,所以可设1(1,)A y ,1(1,)B y -.直线AE 的方程为11(1)(2)y y x -=--.令3x =,得1(3,2)M y -.所以直线BM 的斜率112131BM y y k -+==-.(Ⅲ)直线BM 与直线D E 平行.证明如下:当直线AB 的斜率不存在时,由(Ⅱ)可知1BM k =.又因为直线D E 的斜率10121DE k -==-,所以//BM DE .当直线AB 的斜率存在时,设其方程为(1)(1)y k x k =-≠.设11(,)A x y ,22(,)B x y ,则直线AE 的方程为1111(2)2y y x x --=--.令3x =,得点1113(3,)2y x M x +--.由2233{(1)x y y k x +==-,得2222(13)6330k x k x k +-+-=.所以2122613k x x k +=+,21223313k x x k -=+.直线BM 的斜率11212323BM y x y x k x +---=-.因为()()()()()()()11212121131232132BM k x x k x x x x k x x -+--------=--121221(1)[2()3)(3)(2)k x x x x x x --++-=--2222213312(1)[3)1313(3)(2)k k k k k x x -+-+-++=--0=,所以1BM DE k k ==.所以//BM DE .综上可知,直线BM 与直线D E 平行.椭圆的标准方程及其几何性质、直线的斜率、两直线的位置关系.21.若项数为()3N N ≥的数列12:,,,N N A a a a 满足:()*11,N 2,3,,i a a i N =∈= ,且存在{}2,3,,1M N ∈- ,使得{}{}11,2,111,2,1n n n M a a M n N +⎧≤≤-⎪-∈⎨--≤≤-⎪⎩,则称数列N A 具有性质P .(1)①若3N =,写出所有具有性质P 的数列3A ;②若44,3N a ==,写出一个具有性质P 的数列4A ;(2)若2024N =,数列2024A 具有性质P ,求2024A 的最大项的最小值;(3)已知数列1212:,,,,:,,,N N N N A a a a B b b b 均具有性质P ,且对任意{},1,2,,i j N ∈ ,当i j ≠时,都有,i j i j a a b b ≠≠.记集合{}112,,,N T a a a = ,{}212,,,N T b b b = ,求12T T ⋂中元素个数的最小值.【正确答案】(1)①3A :1,2,1或1,3,1或1,3,2;②4A :1,2,4,3(或1,3,4,3或1,3,5,3)(2)1013(3)3【分析】(1)直接根据性质P 的概念一一列举即可;(2)根据性质P 及累加法得M a M ≥和2025M a M ≥-,两式相加即可求解;(3)根据性质P 及累加法得23M a N ≤-,23M b N ≤-,求出并集中元素个数的最大值,从而求出交集中的元素个数最小值.【详解】(1)①3A :1,2,1或1,3,1或1,3,2;②4A :1,2,4,3(或1,3,4,3或1,3,5,3)(2)当2024N =时,{}2,3,,2023M ∈ .由12111,1,,1M M a a a a a -=-≥-≥ ,累加得M a M ≥;又由20242023202411,1,,1M M a a a a a +≥-≥-≥ ,累加得2025M a M ≥-;相加得22025M a ≥,又*M a ∈N ,所以1013M a ≥.所以数列2024A 的最大项M a 的最小值为1013,一个满足条件的数列为()()1,2,,101320261014,1015,,2024n n n a n n ⎧=⎪=⎨-=⎪⎩ ;(3)由12111,2,,2M M a a a a a -=-≤-≤ ,累加得21M a M ≤-.又1M N ≤-,所以23M a N ≤-,同理,23M b N ≤-,所以{}()12121,2,,23,card 23T T N T T N ⋃⊆-⋃≤- ,因为()()12card card T T N ==,所以()()()()121212card card card card 3T T T T T T ⋂=+-⋃≥,所以12T T ⋂中元素个数的最小值为3,一组满足条件的数列为()()()()()11211,2,,1222,3,,12425n n n n n N a b n n N N n N N n N ⎧=⎧-=-⎪⎪==-=-⎨⎨-=⎪⎩⎪-=⎩ ,此时{}121,24,25T T N N ⋂=--.思路点睛:此题考查数列与集合结合的新定义问题,属于难题,关于新定义题的思路有:(1)找出新定义有几个要素,找出要素分别代表什么意思;(2)由已知条件,看所求的是什么问题,进行分析,转换成数学语言;(3)将已知条件代入新定义的要素中;(4)结合数学知识进行解答.。
北京市陈经纶中学2025届高考数学三模试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.阅读下侧程序框图,为使输出的数据为,则①处应填的数字为A .B .C .D .2.国家统计局服务业调查中心和中国物流与采购联合会发布的2018年10月份至2019年9月份共12个月的中国制造业采购经理指数(PMI)如下图所示.则下列结论中错误的是( )A .12个月的PMI 值不低于50%的频率为13B .12个月的PMI 值的平均值低于50%C .12个月的PMI 值的众数为49.4%D .12个月的PMI 值的中位数为50.3%3.已知等差数列{}n a 的前n 项和为n S ,37a =,39S =,则10a =( ) A .25B .32C .35D .404.已知直线x y t +=与圆()2222x y t tt R +=-∈有公共点,则()4t t -的最大值为( )A .4B .289C .329D .3275.一只蚂蚁在边长为4的正三角形区域内随机爬行,则在离三个顶点距离都大于2的区域内的概率为( ) A .316π-B .34C .36π D .146.已知双曲线C 的两条渐近线的夹角为60°,则双曲线C 的方程不可能为( )A .221155x y -=B .221515x y -=C .221312y x -=D .221217y x -=7.若命题:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题:在边长为4的正方形内任取一点,则的概率为,则下列命题是真命题的是( )A .B .C .D .8.若样本1231,1,1,,1n x x x x ++++的平均数是10,方差为2,则对于样本12322,22,22,,22n x x x x ++++,下列结论正确的是( ) A .平均数为20,方差为4 B .平均数为11,方差为4 C .平均数为21,方差为8 D .平均数为20,方差为89.若集合}{}{2,33A x y x B x x ==-=-≤≤,则A B =( )A .[]3,2-B .{}23x x ≤≤ C .()2,3D .{}32x x -≤<10.设i 是虚数单位,a R ∈,532aii a i+=-+,则a =( ) A .2-B .1-C .1D .211.已知正四面体A BCD -外接球的体积为86π,则这个四面体的表面积为( ) A .183B .163C .143D .12312.如图所示,在平面直角坐标系xoy 中,F 是椭圆22221(0)x y a b a b+=>>的右焦点,直线2b y =与椭圆交于B ,C两点,且90BFC ∠=︒,则该椭圆的离心率是( )A .63B .34C .12D .32二、填空题:本题共4小题,每小题5分,共20分。
第九节函数模型及应用A组基础题组1.某工厂八年来某产品总产量y与时间t(年)的函数关系如图所示,则下列说法中正确的是()①前三年总产量增长速度越来越慢;②前三年总产量增长速度越来越快;③第三年后,这种产品年产量保持不变;④第三年后,这种产品停止生产.A.①③B.①④C.②③D.②④2.世界人口在过去40年内翻了一番,则每年人口平均增长率约是(参考数据lg 2≈0.301 0,100.007 5≈1.017)()A.1.5%B.1.6%C.1.7%D.1.8%3.(2015北京,8,5分)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油4.一个人以6 m/s的速度去追停在交通灯前的汽车,当他离汽车25 m时,交通灯由红变绿,汽车以1 m/s2的加速度匀加速开走,那么()A.人可在7 s内追上汽车B.人可在10 s内追上汽车C.人追不上汽车,其间距最少为5 mD.人追不上汽车,其间距最少为7 m5.(2014湖南,8,5分)某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A. B.C. D.-16.(2015四川,13,5分)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是小时.7.西北某羊皮手套公司准备投入适当的广告费对其生产的产品进行促销.根据预算得羊皮手套的年利润L万元与年广告费x万元之间的函数解析式为L=-(x>0).则当年广告费投入万元时,该公司的年利润最大.8.(2014山东德州一模)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元.(1)分别写出两类产品的收益与投资额的函数关系;(2)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益?其最大收益是多少万元?9.(2015湖北四校联考,20)某工厂生产某种商品的年固定成本为250万元,每生产x千件,需另投入成本为C(x)(万元),当年产量不足80千件时,C(x)=x2+10x;当年产量不少于80千件时,C(x)=51x+-1 450.通过市场分析,每件商品售价定为500元,且该厂生产的商品当年能全部售完.(1)求出年利润L(x)(万元)关于年产量x(千件)的函数解析式;(2)求年产量为多少千件时,该厂在这一商品的生产中所获利润最大.B组提升题组10.某校甲、乙两食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月的增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知该年9月份两食堂的营业额又相等,则该年5月份()A.甲食堂的营业额较高B.乙食堂的营业额较高C.甲、乙两食堂的营业额相同D.不能确定甲、乙哪个食堂的营业额较高11.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓能全租出去;当月租金每增加50元时(月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花100元的日常维修等费用(租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为()A.3 000元B.3 300元C.3 500元D.4 000元12.(2015浙江五校第一次联考)一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量(单位:cm3)为y=ae-bt,经过8 min后发现容器内还有一半的沙子,则再经过min,容器中的沙子只有开始时的八分之一.13.(2014浙江,17,4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15 m,AC=25 m,∠BCM=30°,则tan θ的最大值是.(仰角θ为直线AP与平面ABC所成角)14.(2016山东德州期中)某厂家举行大型的促销活动,经市场分析,某产品的促销费用为x万元时,销售量P万件满足P=3-(其中0≤x≤a,a为正的常数).现假定生产量与销售量相等,已知生产该产品P万件需投入成本(10+2P)万元,产品的销售价格定为万元/万件.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,厂家的利润最大?答案全解全析A组基础题组1.D由题图知,前三年产品总产量与时间的函数图象越来越陡,说明总产量增长的速度越来越快;三年后总产量与时间的函数图象平行于横轴,说明该产品不再生产了,故选D.2.C设每年人口平均增长率为x,则(1+x)40=2,两边取以10为底的对数,得40 lg(1+x)=lg 2,所以lg(1+x)=≈0.007 5,由100.007 5≈1.017,得1+x≈1.017,所以x约是1.7%.3.D对于A选项:由题图可知,当乙车速度大于40 km/h时,乙车每消耗1升汽油,行驶里程都超过5 km,则A错;对于B选项:由题意可知,以相同速度行驶相同路程,燃油效率越高,耗油越少,故三辆车中甲车耗油最少,则B错;对于C选项:甲车以80千米/小时的速度行驶时,燃油效率为10 km/L,则行驶1小时,消耗了汽油80×1÷10=8(升),则C错;对于D选项:当行驶速度小于80 km/h时,在相同条件下,丙车的燃油效率高于乙车,则在该市用丙车比用乙车更省油,则D对.综上,选D.4.D设汽车经过t秒行驶的路程为s米,则s=t2,车与人的间距d=(s+25)-6t=t2-6t+25=(t-6)2+7,当t=6时,d取得最小值,为7(m).5.D设两年前的年底该市的生产总值为a,则第二年年底的生产总值为a(1+p)(1+q).设这两年生产总值的年平均增长率为x,则a(1+x)2=a(1+p)(1+q),由于连续两年持续增加,所以x>0,因此x=-1,故选D.6.答案24解析依题意有192=e b,48=e22k+b=e22k·e b,所以e22k===,所以e11k=或-(舍去),于是该食品在33 ℃的保鲜时间是e33k+b=(e11k)3·e b=×192=24(小时).7.答案 4解析L=-=-(x>0).当-=0,即x=4时,L取得最大值21.5.故当年广告费投入4万元时,该公司的年利润最大.8.解析(1)设两类产品的收益与投资额的函数分别为f(x)=k 1x,g(x)=k2.由已知得f(1)==k1,g(1)==k2,所以f(x)=x(x≥0),g(x)=(x≥0).(2)设投资债券等稳健型产品为x万元,则投资股票等风险型产品为(20-x)万元.则收益y=f(x)+g(20-x)=+(0≤x≤20).令t=(0≤t≤2),则y=+t=-(t-2)2+3,所以当t=2,即x=16时,收益最大,最大收益为3万元.9.解析(1)因为每件商品售价为0.05万元,则x千件商品销售额为0.05×1 000x万元,依题意得当0<x<80时,L(x)=0.05×1 000x-x2-10x-250=-x2+40x-250;当x≥80时,L(x)=0.05×1 000x-51x-+1 450-250=1 200-.所以L(x)=(2)当0<x<80时,L(x)=-(x-60)2+950,所以当x=60时,L(x)取得最大值950.当x≥80时,L(x)=1 200-≤1 200-2=1 200-200=1 000,当且仅当x=,即x=100时,L(x)取得最大值1 000.因为950<1 000,所以当年产量为100千件时,该厂在这一商品的生产中所获利润最大.B组提升题组10.A设甲、乙两食堂1月份的营业额均为m,甲食堂的营业额每月增加a(a>0),乙食堂的营业额每月增加的百分率为x,由题意可得,m+8a=m×(1+x)8,则5月份甲食堂的营业额y1=m+4a,乙食堂的营业额y2=m×(1+x)4=,因为-=(m+4a)2-m(m+8a)=16a2>0,所以y1>y2,故5月份甲食堂的营业额较高.11.B设利润为y元,租金定为(3 000+50x)元(0≤x≤70,x∈N*),则y=(3 000+50x)(70-x)-100(70-x)=(2 900+50x)(70-x)=50(58+x)(70-x)≤50,当且仅当58+x=70-x,即x=6时,等号成立,故每套房月租金定为3 000+300=3 300(元)时,公司获得最大利润,故选B.12.答案16解析当t=0时,y=a,当t=8时,y=ae-8b=a,∴e-8b=,容器中的沙子只有开始时的八分之一时,ae-bt=a,则e-bt==(e-8b)3=e-24b,则t=24,所以再经过16 min.13.答案解析过点P作PN⊥BC于N,连接AN,则∠PAN=θ,如图.设PN=x m,由∠BCM=30°,得CN=x m.在直角△ABC中,AB=15 m,AC=25 m,则BC=20 m,故BN=(20-x)m.从而AN2=152+(20-x)2=3x2-40x+625,故tan2θ====.当=时,tan2θ取最大值,即当x=时,tan θ取最大值.14.解析(1)由题知,该产品的销售价为2×万元/万件,销售量为P万件,促销费用与成本之和为(10+2P+x)万元,∴y=2××P-10-2P-x=10+2P-x,又∵P=3-(其中0≤x≤a,a为正的常数),∴y=16-x-,∴将该产品的利润y万元表示成促销费用x万元的函数为y=16-(0≤x≤a).(2)由(1)知,y=16-,∴y=17-≤17-2=13,当且仅当=x+1,即x=1时取等号,已知0≤x≤a,①若a≥1,则当x=1时,y取得最大值,为13,∴促销费用投入1万元时,厂家的利润最大;②若0<a<1,∵y=16-,∴y'=,令y'>0,解得-3<x<1,∴y=17-在[0,a]上单调递增,∴当x=a时,函数取得最大值,∴促销费用投入a万元时,厂家的利润最大.综合①②可得,当a≥1时,促销费用投入1万元时,厂家的利润最大,当0<a<1时,促销费用投入a 万元时,厂家的利润最大.。
2025届北京市中央民大附中高考数学三模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在直角梯形ABCD 中,0AB AD ⋅=,30B ∠=︒,AB =2BC =,点E 为BC 上一点,且AE xAB yAD =+,当xy 的值最大时,||AE =( )A B .2 C .2D .2.已知n S 是等差数列{}n a 的前n 项和,若201820202019S S S <<,设12n n n n b a a a ++=,则数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T 取最大值时n 的值为( ) A .2020B .20l9C .2018D .20173.将函数()sin 6f x x π⎛⎫=+⎪⎝⎭图象上每一点的横坐标变为原来的2倍,再将图像向左平移3π个单位长度,得到函数()y g x =的图象,则函数()y g x =图象的一个对称中心为( )A .,012π⎛⎫⎪⎝⎭B .,04π⎛⎫⎪⎝⎭C .(),0πD .4,03π⎛⎫⎪⎝⎭4.△ABC 的内角A ,B ,C 的对边分别为,,a b c ,已知1,30a b B ==,则A 为( )A .60B .120C .60或150D .60或1205.已知非零向量,a b 满足a b λ=,若,a b 夹角的余弦值为1930,且()()23a b a b -⊥+,则实数λ的值为( )A .49-B .23C .32或49-D .326.设i 为虚数单位,复数()()1z a i i R =+-∈,则实数a 的值是( ) A .1B .-1C .0D .27.公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面1000米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米,当阿基里斯跑完下一个100米时,乌龟先他10米,当阿基里斯跑完下-个10米时,乌龟先他1米....所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为0.1米时,乌龟爬行的总距离为( )A .5101900-米B .510990-米C .4109900-米D .410190-米8.已知函数()()cos 0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭的最小正周期为π,且满足()()f x f x ϕϕ+=-,则要得到函数()f x 的图像,可将函数()sin g x x ω=的图像( ) A .向左平移12π个单位长度 B .向右平移12π个单位长度C .向左平移512π个单位长度 D .向右平移512π个单位长度 9.在直角坐标平面上,点(),P x y 的坐标满足方程2220x x y -+=,点(),Q a b 的坐标满足方程2268240a b a b ++-+=则y bx a--的取值范围是( ) A .[]22-,B .4747,33⎡⎤---+⎢⎥⎣⎦C .13,3⎡⎤--⎢⎥⎣⎦ D .6767,33⎡⎤-+⎢⎥⎣⎦10.某四棱锥的三视图如图所示,则该四棱锥的表面积为( )A .8B .83C .82+D .842+11.已知数列{}n a 满足()*331log 1log n n a a n N ++=∈,且2469a a a ++=,则()13573log a a a ++的值是( )A .5B .3-C .4D .99112.设函数()(1)x g x e e x a =+-(a R ∈,e 为自然对数的底数),定义在R 上的函数()f x 满足2()()f x f x x -+=,且当0x ≤时,'()f x x <.若存在01|()(1)2x x f x f x x ⎧⎫∈+≥-+⎨⎬⎩⎭,且0x 为函数()y g x x =-的一个零点,则实数a 的取值范围为( ) A .,2e ⎛⎫+∞⎪ ⎪⎝⎭B .(,)e +∞C .[,)e +∞D .,2e⎡⎫+∞⎪⎢⎪⎣⎭二、填空题:本题共4小题,每小题5分,共20分。
北京市西城35中2025届高考数学三模试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知向量(,1)a m =,(1,2)b =-,若(2)a b b -⊥,则a 与b 夹角的余弦值为( ) A .21313-B .21313C .61365-D .613652.1777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随意向这张白纸上投放一根这样的针,则针落地后与直线相交的概率约为( ) A .12πB .3πC .2πD .1π3.已知圆锥的高为3,底面半径为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为( ) A .53B .329C .43D .2594.如图,在底面边长为1,高为2的正四棱柱1111ABCD A B C D -中,点P 是平面1111D C B A 内一点,则三棱锥P BCD -的正视图与侧视图的面积之和为( )A .2B .3C .4D .55.在复平面内,复数z a bi =+(a ,b R ∈)对应向量OZ (O 为坐标原点),设OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则()cos sin z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:()1111cos sin z r i θθ=+,()2222cos sin z r i θθ=+,则()()12121212cos sin z z rr i θθθθ=+++⎡⎤⎣⎦,由棣莫弗定理可以导出复数乘方公式:()()cos sin cos sin nnr i r n i n θθθθ+=+⎡⎤⎣⎦,已知)4z i =,则z =( )A .B .4C .D .166.方程()()f x f x '=的实数根0x 叫作函数()f x 的“新驻点”,如果函数()ln g x x =的“新驻点”为a ,那么a 满足( )A .1a =B .01a <<C .23a <<D .12a <<7.已知角α的终边经过点()3,4-,则1sin cos αα+= A .15-B .3715C .3720D .13158.已知等差数列{}n a 的公差为-2,前n 项和为n S ,若2a ,3a ,4a 为某三角形的三边长,且该三角形有一个内角为120︒,则n S 的最大值为( ) A .5B .11C .20D .259.若集合{}|sin 21A x x ==,,42k B y y k Z ππ⎧⎫==+∈⎨⎬⎩⎭,则( ) A .A B A ⋃=B .R RC B C A ⊆C .AB =∅D .R R C A C B ⊆10.己知集合{|13}M y y =-<<,{|(27)0}N x x x =-,则M N ⋃=( ) A .[0,3)B .70,2⎛⎤ ⎥⎝⎦C .71,2⎛⎤- ⎥⎝⎦D .∅11.设a b c ,,为非零实数,且a c b c >>,,则( ) A .a b c +>B .2ab c >C .a b2c +> D .112a b c+> 12.已知角α的终边经过点P(0sin 47,cos 47),则sin(013α-)=A .12B C .12-D . 二、填空题:本题共4小题,每小题5分,共20分。
2025届北京市十一学校高考数学五模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知抛物线24y x =的焦点为F ,P 为抛物线上一点,(1,1)A ,当PAF ∆周长最小时,PF 所在直线的斜率为( ) A .43-B .34-C .34D .432.已知函数有三个不同的零点 (其中),则的值为( )A .B .C .D .3.阅读名著,品味人生,是中华民族的优良传统.学生李华计划在高一年级每周星期一至星期五的每天阅读半个小时中国四大名著:《红楼梦》、《三国演义》、《水浒传》及《西游记》,其中每天阅读一种,每种至少阅读一次,则每周不同的阅读计划共有( ) A .120种B .240种C .480种D .600种4.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中左视图中三角形为等腰直角三角形,则该几何体外接球的体积是( )A .16πB .323πC .23πD .2053π5.已知集合{}23100A x x x =--<,集合{}16B x x =-≤<,则A B 等于( )A .{}15x x -<< B .{}15x x -≤< C .{}26x x -<<D .{}25x x -<<6.二项式52x x ⎫⎪⎭的展开式中,常数项为( )A .80-B .80C .160-D .1607.已知双曲线C :()222210,0x y a b a b -=>>的焦距为2c ,焦点到双曲线C 的渐近线的距离为32c ,则双曲线的渐近线方程为() A .3y x =±B .2y x =±C .y x =±D .2y x =±8.已知等差数列{}n a 的前n 项和为n S ,若816S =,61a =,则数列{}n a 的公差为( ) A .32B .32-C .23D .23-9.为了贯彻落实党中央精准扶贫决策,某市将其低收入家庭的基本情况经过统计绘制如图,其中各项统计不重复.若该市老年低收入家庭共有900户,则下列说法错误的是( )A .该市总有 15000 户低收入家庭B .在该市从业人员中,低收入家庭共有1800户C .在该市无业人员中,低收入家庭有4350户D .在该市大于18岁在读学生中,低收入家庭有 800 户10.已知双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线的倾斜角为θ,且5cos θ=则该双曲线的离心率为( )A 5B 5C .2D .411.已知()3,0A -,)3,0B,P 为圆221x y +=上的动点,AP PQ =,过点P 作与AP 垂直的直线l 交直线QB于点M ,若点M 的横坐标为x ,则x 的取值范围是( ) A .1x ≥B .1x >C .2x ≥D .2x ≥12.3本不同的语文书,2本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率是( ) A .12B .14C .15D .110二、填空题:本题共4小题,每小题5分,共20分。
§2.9函数的模型及其应用A组基础题组1.(2021浙江重点中学协作体适应性测试,4)已知0<a<1,则a2、2a、log2a的大小关系是( )A.a2>2a>log2aB.2a>a2>log2aC.log2a>a2>2aD.2a>log2a>a22.(2021福建泉州一中期中,5,5分)给出四个函数,分别满足:①f(x+y)=f(x)+f(y),②g(x+y)=g(x)g(y),③h(xy)=h(x)+h(y),④m(xy)=m(x)m(y).下列为四个函数的图象,对应正确的是( )A.①甲,②乙,③丙,④丁B.①乙,②丙,③甲,④丁C.①丙,②甲,③乙,④丁D.①丁,②甲,③乙,④丙3.(2021湖北,5,5分)小明骑车上学,开头时匀速行驶,途中因交通堵塞停留了一段时间,后来为了赶时间加快速度行驶.与以上大事吻合得最好的图象是( )4.(2021陕西,3,5分)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin+k,据此函数可知,这段时间水深(单位:m)的最大值为( )A.5B.6C.8D.105.(2022北京,8,5分)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),下图记录了三次试验的数据.依据上述函数模型和试验数据,可以得到最佳加工时间为( ) A.3.50分钟 B.3.75分钟 C.4.00分钟 D.4.25分钟6.(2021浙江五校第一次联考)一个容器装有细沙acm3,细沙从容器底部一个微小的小孔渐渐地漏出,tmin后剩余的细沙量为y=ae-bt(cm3),经过8min后发觉容器内还有一半的沙子,则再经过min,容器中的沙子只有开头时的八分之一.7.(2022杭州学军中学其次次月考,13,4分)不等式2x-1>m(x2-1)对满足|m|≤2的一切实数m都成立,则x的取值范围是.8.(2021湖南师大附中月考)某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.8元;当超过4吨时,超过部分按每吨3元收费.已知某个月甲、乙两户共交水费y元,并且该月甲、乙两户的用水量分别为5x、3x吨.(1)求y与x的函数关系式;(2)若该月甲、乙两户共交水费26.4元,分别求出该月甲、乙两户的用水量和水费.9.(2022上海普陀调研测试,21,14分)某中学为了落实“阳光运动一小时”活动,方案在一块直角三角形ABC 的空地上修建一个占地面积为S平方米的矩形AMPN健身场地.如图,点M在AC上,点N在AB上,且P点在斜边BC上,已知∠ACB=60°且|AC|=30米,|AM|=x米,x∈[10,20].(1)试用x表示S,并求S的取值范围;(2)若在矩形AMPN以外(阴影部分)铺上草坪.已知:矩形AMPN健身场地每平方米的造价为元,草坪每平方米的造价为(k为正常数)元.设总造价T关于S的函数为T=f(S),试问:如何选取AM的长,才能使总造价T最低?B组提升题组1.(2022湖南,8,5分)某市生产总值连续两年持续增加,第一年的增长率为p,其次年的增长率为q,则该市这两年生产总值的年平均增长率为( )A. B.C. D.-12.(2021北京,8,5分)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率状况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油3.(2021浙江重点中学协作体摸底)一高为H,满缸水量为V的鱼缸截面如图所示,其底部破了一个小洞,满缸水从洞中流出.若鱼缸水深为h时,水的体积为V1,则函数V1=f(h)的大致图象可能是图.4.(2021浙江杭州九中期末)某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y(单位:10万元)与营运年数x(x∈N*)为二次函数关系(如图所示),则每辆客车营运年时,其营运的年平均利润最大.5.求实数a的范围,使得关于x的方程x2-ax+2=0在[1,3]上有解.6.(2022杭州学军中学其次次月考,18,14分)已知集合P=,y=log2(ax2-2x+2)的定义域为Q.(1)若P∩Q≠⌀,求实数a的取值范围;(2)若方程log2(ax2-2x+2)=2在内有解,求实数a的取值范围.7.(2021江苏,17,14分)某山区外围有两条相互垂直的直线型大路,为进一步改善山区的交通现状,方案修建一条连接两条大路和山区边界的直线型大路,记两条相互垂直的大路为l1,l2,山区边界曲线为C,方案修建的大路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设大路l与曲线C相切于P点,P的横坐标为t.①请写出大路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,大路l的长度最短?求出最短长度.8.(2022超级中学原创猜测卷六文,20,15分)某市为迎接元旦的到来,拟在市观光巡游区建筑一个花坛,已知用钢管焊接而成的花坛围栏如图所示,它的外框是一个等腰梯形PQRS,内部是一段抛物线和一根横梁,抛物线的顶点与梯形上底边的中点均是焊接点O,梯形的腰紧靠在抛物线上,且两腰的中点是梯形的腰、抛物线与横梁的焊接点A,B,抛物线与梯形下底边的两个焊接点为C,D.已知梯形的高是40米,C,D两点间的距离是40米.(1)求横梁AB的长度;(2)求制作梯形外框的用料长度.(注:钢管的粗细等因素忽视不计,≈1.41)A组基础题组1.B 由于当0<a<1时,a2∈(0,1),2a>1,log2a<0,所以2a>a2>log2a,故选B.2.D 由题图可知丁是正比例函数图象,满足①;甲是指数型函数图象,满足②;乙是对数型函数图象,满足③;丙是幂函数图象,满足④.故选D.3.C 小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排解A.因交通堵塞停留了一段时间,与学校的距离不变,故排解D.后来为了赶时间加快速度行驶,故排解B.故选C.4.C 由于函数y=3sin+k的最小值为2,所以-3+k=2,得k=5,故这段时间水深的最大值为3+5=8(m),选C.5.B 由已知得解得∴p=-0.2t2+1.5t-2=-+,∴当t==3.75时p最大,即最佳加工时间为3.75分钟.故选B.6.答案16解析当t=0时,y=a,当t=8时,y=ae-8b=a,∴e-8b=,容器中的沙子只有开头时的八分之一,即y=ae-bt=a,e-bt==(e-8b)3=e-24b,则t=24,24-8=16. 7.答案解析构造函数f(m)=(x2-1)m-(2x-1),则f(m)是关于m的一次函数,要使2x-1>m(x2-1)对任意|m|≤2恒成立,即f(m)<0对任意m∈[-2,2]恒成立,只需解得x∈.8.解析(1)当甲的用水量不超过4吨,即5x≤4时,乙的用水量也不超过4吨,y=(5x+3x)×1.8=14.4x;当甲的用水量超过4吨,乙的用水量不超过4吨,即3x≤4且5x>4时,y=4×1.8+3x×1.8+3(5x-4)=20.4x-4.8; 当乙的用水量超过4吨,即3x>4时,y=1.8×8+3(5x-4+3x-4)=24x-9.6.所以y=(2)y=f(x)在各段区间上均为单调递增函数,当x∈时,y max=f<26.4;当x∈时,y max=f<26.4;当x∈时,令24x-9.6=26.4,解得x=1.5.所以甲户用水量为5x=7.5吨,水费为4×1.8+3.5×3=17.7(元);乙户用水量为3x=4.5吨,水费为4×1.8+0.5×3=8.7(元).9.解析(1)在Rt△PMC中,|MC|=30-x米,∠PCM=60°,∴|PM|=|MC|·tan∠PCM=(30-x)米,则S=x(30-x),x ∈[10,20],于是200≤S≤225.(2)矩形AMPN健身场地造价T1=37k元,又△ABC的面积为450平方米,∴草坪造价T2=(450-S)元,又T=T1+T2,∴f(S)=25k,200≤S≤225.∵+≥12,当且仅当=,即S=216时等号成立,此时x(30-x)=216,解得x=12或x=18,∴选取AM的长为12米或18米时总造价T最低.B组提升题组1.D 设两年前的年底该市的生产总值为a,则其次年年底的生产总值为a(1+p)(1+q).设这两年生产总值的年平均增长率为x,则a(1+x)2=a(1+p)(1+q),由于连续两年持续增加,所以x>0,因此x=-1,故选D.2.D 对于A选项:由题图可知,当乙车速度大于40km/h时,乙车每消耗1升汽油,行驶里程都超过5km,则A错; 对于B选项:由题意可知,以相同速度行驶相同路程,燃油效率越高,耗油越少,故三辆车中甲车耗油最少,则B 错;对于C选项:甲车以80千米/小时的速度行驶时,燃油效率为10km/L,则行驶1小时,消耗了汽油80×1÷10=8(升),则C错;对于D选项:当行驶速度小于80km/h时,在相同条件下,丙车的燃油效率高于乙车,则在该市用丙车比用乙车更省油,则D对.综上,选D.3.答案②解析当h=0时,V1=0,可排解①③;由于鱼缸中间粗两头细,所以当h在四周时,体积变化较快;当h小于时,体积增加得越来越快;当h大于时,体积增加得越来越慢.故填②.4.答案 5解析由题图可得营运总利润y=-(x-6)2+11,则营运的年平均利润为=-x-+12,∵x∈N*,∴≤-2+12=2,当且仅当x=,即x=5时取“=”.∴当x=5时,营运的年平均利润最大.5.解析①当x=1是方程的解时,a=3.②当x=3是方程的解时,a=.③设f(x)=x2-ax+2,则函数在(1,3)内有唯一零点的条件为或解得3<a<或a=2.④当方程x2-ax+2=0在(1,3)上有两解时,设f(x)=x2-ax+2,则解得2<a<3.综上,实数a的取值范围是2≤a≤.6.解析(1)由已知得Q={x|ax2-2x+2>0},若P∩Q≠⌀,则说明在内至少有一个x值,使不等式ax2-2x+2>0成立,即在内至少有一个x值,使a>-成立,令u=-,则只需a>u min,又u=-2+,当x∈时,∈,从而u∈,∴a的取值范围是a>-4.(2)∵方程log2(ax2-2x+2)=2在内有解,∴ax2-2x+2=4,即ax2-2x-2=0在内有解,即存在x∈,使a=+=2-,∵≤2-≤12,∴≤a≤12,即a的取值范围是.7.解析(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5).将其分别代入y=,得解得(2)①由(1)知,y=(5≤x≤20),则点P的坐标为,y'=-,设在点P处的切线l交x,y轴分别于A,B点,l的方程为y-=-(x-t),由此得A,B.故f(t)==,t∈[5,20].②设g(t)=t2+,则g'(t)=2t-.令g'(t)=0,解得t=10.当t∈(5,10)时,g'(t)<0,g(t)是减函数;当t∈(10,20)时,g'(t)>0,g(t)是增函数.从而,当t=10时,函数g(t)有微小值,也是最小值,所以g(t)min=300,此时f(t)min=15.答:当t=10时,大路l的长度最短,最短长度为15千米.8.解析(1)建立如图所示的平面直角坐标系,设梯形的下底边与y轴交于点M,抛物线的方程为x2=2py(p<0). 由题意得D(20,-40),代入抛物线的方程得p=-5,所以抛物线的方程为x2=-10y. 当y=-20时,x=±10,即A(-10,-20),B(10,-20),所以|AB|=20≈28.2.故横梁AB的长度约为28.2米.(2)由题意得梯形的腰QR的中点是梯形的腰QR与抛物线唯一的公共点,设直线RQ的方程为y+20=k(x-10)(k<0),由得x2+10kx-100(2+k)=0,则Δ=100k2+400(2+k)=0,解得k=-2,所以直线RQ的方程为y=-2x+20.从而得Q(5,0),R(15,-40).所以|OQ|=5,|MR|=15,|RQ|=30,所以梯形的周长为2×(5+15+30)=100≈141(米),故制作梯形外框的用料长度约为141米.。
2.9函数模型及其应用必备知识预案自诊知识梳理1.常见的函数模型(1)一次函数模型:f(x)=kx+b(k,b为常数,k≠0);(2)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0);(3)反比例函数模型:f(x)=kk(k为常数,k≠0);(4)指数型函数模型:f(x)=ab x+c(a,b,c为常数,a≠0,b〉0,b≠1);(5)对数型函数模型:f(x)=m log a x+n(m,n,a为常数,m≠0,a〉0,a≠1);(6)幂型函数模型:f(x)=ax n+b(a,b,n为常数,a≠0);(7)分段函数模型:y={k1(k),k∈k1,k2(k),k∈k2,k3(k),k∈k3;(8)对勾函数模型:y=x+kk(a为常数,a>0)。
2。
指数、对数、幂函数模型的性质比较性质函数y=a x(a>1)y=log a x(a〉1)y=xα(α〉0)在(0,+∞)内的增减性增长速度越来越快越来越慢相对平稳图像的变化随x的增大逐渐表现为与平行随x的增大逐渐表现为与平行随α值变化而各有不同值的比较存在一个x0,当x〉x0时,有log a x<xα〈a x考点自诊1。
判断下列结论是否正确,正确的画“√”,错误的画“×"。
(1)幂函数增长比一次函数增长更快。
() (2)在(0,+∞)内,随着x的增大,y=a x(a〉1)的增长速度会超过并远远大于y=xα(α〉0)的增长速度.()(3)指数型函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题。
()(4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)〈f(x)〈g(x)。
()(5)“指数爆炸”是指数型函数y=a·b x+c(a>0,b>1)增长速度越来越快的形象比喻。
()2。
(2020山东潍坊临朐模拟二,3)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况。
北京市育英中学2025届高考数学五模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.对于函数()f x ,定义满足()00f x x =的实数0x 为()f x 的不动点,设()log a f x x =,其中0a >且1a ≠,若()f x 有且仅有一个不动点,则a 的取值范围是( )A .01a <<或a =B .1a <<C .01a <<或1e a e =D .01a <<2.已知i 为虚数单位,复数z 满足()1z i i ⋅-=,则复数z 在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知抛物线C :28x y =,点P 为C 上一点,过点P 作PQ x ⊥轴于点Q ,又知点()5,2A ,则PQ PA +的最小值为( )A .132B .2C .3D .54.已知函数2()2f x x x =-,集合{|()0}A x f x =≤,{}|()0B x f x '=≤,则AB =( )A .[-1,0]B .[-1,2]C .[0,1]D .(,1][2,)-∞⋃+∞5.双曲线2214x y -=的渐近线方程是( )A .y x =B .y x =C .2x y =±D .2y x =±6.某校8位学生的本次月考成绩恰好都比上一次的月考成绩高出50分,则以该8位学生这两次的月考成绩各自组成样本,则这两个样本不变的数字特征是( ) A .方差B .中位数C .众数D .平均数7.已知函数()()4,2x f x x g x a x =+=+,若[]121,3,2,32x x ⎡⎤∀∈∃∈⎢⎥⎣⎦,使得()()12f x g x ≥,则实数a 的取值范围是( ) A .1a ≤ B .1a ≥ C .0a ≤D .0a ≥8.已知复数z 满足0z z -=,且9z z ⋅=,则z =( ) A .3B .3iC .3±D .3i ±9.己知a =544log 21b =, 2.913c ⎛⎫= ⎪⎝⎭,则( ) A .a b c >> B .a c b >> C .b c a >> D .c a b >>10.已知[]2240a b a b +=⋅∈-,,,则a 的取值范围是( ) A .[0,1]B .112⎡⎤⎢⎥⎣⎦,C .[1,2]D .[0,2]11.已知函数()222cos 1f x x x =-+,将()f x 的图象上的所有点的横坐标缩短到原来的12,纵坐标保持不变;再把所得图象向上平移1个单位长度,得到函数()y g x =的图象,若()()129g x g x ⋅=,则12x x -的值可能为( ) A .54π B .34π C .2π D .3π 12.已知函数()log (|2|)(0a f x x a a =-->,且1a ≠),则“()f x 在(3,)+∞上是单调函数”是“01a <<”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。
2.8 函数模型及函数的综合应用挖命题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点1.函数的模型及实际应用了解指数函数、对数函数、幂函数的增长特征,体会直线上升、指数增长、对数增长等不同函数类型增长的含义2015北京,82015北京文,8函数的实际应用函数的图象★☆☆2011北京文,7 基本不等式2.函数的综合应用问题了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用,了解函数与方程、不等式之间的联系,并能解决一些具体的实际问题★☆☆分析解读为了考查学生的综合能力与素养,高考加强了函数综合应用问题的考查力度,这一问题一般涉及的知识点较多,综合性也较强,属于中档以上的试题,题型以填空题和解答题为主,在高考中分值为5分左右,通常在如下方面考查:1.对函数实际应用问题的考查,这类问题多以社会实际生活为背景,设问新颖,要求学生掌握课本中的概念、公式、法则、定理等基础知识与方法.2.以课本知识为载体,把函数与方程、不等式、数列、解析几何等知识联系起来,构造不等式求参数范围,利用分离参数法求函数值域,进而求字母的取值等.破考点【考点集训】考点一函数的模型及实际应用1.去年某地的月平均气温y(℃)与月份x(月)近似地满足函数y=a+bsinπ6x+φ(a,b为常数,0<φ<π2).其中三个月份的月平均气温如下表:x5811y133113则该地2月份的月平均气温约为℃,φ=.答案-5;π6考点二函数的综合应用问题2.动点P从点A出发,按逆时针方向沿周长为l的平面图形运动一周,A,P两点间的距离y与动点P所走过的路程x的关系如图所示,则动点P所走的图形可能是( )答案D3.若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为( )A.5或8B.-1或5C.-1或-4D.-4或8答案 D4.(2017课标Ⅰ,9,5分)已知函数f(x)=ln x+ln(2-x),则( ) A. f(x)在(0,2)单调递增B. f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称答案 C5.单位圆的内接正n(n ≥3)边形的面积记为f(n),则f(3)= . 下面是关于f(n)的描述:①f(n)=n 2sin 2πn;②f(n)的最大值为π;③f(n)<f(n+1);④f(n)<f(2n)≤2f(n). 其中正确结论的序号为 .(请写出所有正确结论的序号) 答案3√34;①③④ 炼技法 【方法集训】方法 函数模型的实际应用问题(2015四川,13,5分)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b (e=2.718…为自然对数的底数,k,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是 小时. 答案 24过专题 【五年高考】A 组 自主命题·北京卷题组1.(2015北京,8,5分)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油答案D2.(2015北京文,8,5分)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米) 2015年5月1日1235 0002015年5月15日4835 600注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为( )A.6升B.8升C.10升D.12升答案BB组统一命题、省(区、市)卷题组考点一函数的模型及实际应用1.(2014湖南,8,5分)某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为( )A.p+q2B.(p+1)(q+1)-12C.√pqD.√(p +1)(q +1)-1答案 D2.(2018浙江,11,6分)我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则{x +y +z =100,5x +3y +13z =100,当z=81时,x= ,y= . 答案 8;11考点二 函数的综合应用问题(2014山东,15,5分)已知函数y=f(x)(x ∈R ),对函数y=g(x)(x ∈I),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x ∈I),y=h(x)满足:对任意x ∈I,两个点(x,h(x)),(x,g(x))关于点(x, f(x))对称.若h(x)是g(x)=√4-x 2关于f(x)=3x+b 的“对称函数”,且h(x)>g(x)恒成立,则实数b 的取值范围是 . 答案 (2√10,+∞)C 组 教师专用题组考点一 函数的模型及实际应用(2015江苏,17,14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l 1,l 2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5千米和40千米,点N 到l 1,l 2的距离分别为20千米和2.5千米,以l 2,l 1所在的直线分别为x,y 轴,建立平面直角坐标系xOy,假设曲线C 符合函数y=ax 2+b(其中a,b 为常数)模型.(1)求a,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t. ①请写出公路l 长度的函数解析式f(t),并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.解析 (1)由题意知,点M,N 的坐标分别为(5,40),(20,2.5). 将其分别代入y=a x 2+b ,得{a25+b =40,a 400+b =2.5,解得{a=1 000,b =0.(2)①由(1)知,y=1 000x 2(5≤x ≤20),则点P 的坐标为(t,1 000t 2),设在点P 处的切线l 交x,y 轴分别于A,B 点,y'=-2 000x 3, 则l 的方程为y-1 000t 2=-2 000t 3(x-t),由此得A (3t2,0),B (0,3 000t 2). 故f(t)=√(3t 2)2+(3 000t 2)2=32√t 2+4×106t 4,t ∈[5,20]. ②设g(t)=t 2+4×106t 4,则g'(t)=2t-16×106t 5. 令g'(t)=0,解得t=10√2.当t ∈(5,10√2)时,g'(t)<0,g(t)是减函数; 当t ∈(10√2,20)时,g'(t)>0,g(t)是增函数;从而,当t=10√2时,函数g(t)有极小值,也是最小值,所以g(t)min =300,此时f(t)min =15√3. ∴当t=10√2时,公路l 的长度最短,最短长度为15√3千米.评析本题主要考查函数的概念、导数的几何意义及其应用,考查运用数学模型及数学知识分析和解决实际问题的能力.考点二 函数的综合应用问题1.(2017天津,8,5分)已知函数f(x)={x 2-x +3,x ≤1,x +2x,x >1.设a ∈R ,若关于x 的不等式f(x)≥|x2+a|在R 上恒成立,则a 的取值范围是( ) A.[-4716,2] B.[-4716,3916] C.[-2√3,2] D.[-2√3,3916]答案 A2.(2017浙江,17,5分)已知a ∈R ,函数f(x)=|x +4x-a|+a 在区间[1,4]上的最大值是5,则a 的取值范围是 . 答案 (-∞,92]3.(2014湖北,14,5分)设f(x)是定义在(0,+∞)上的函数,且f(x)>0,对任意a>0,b>0,若经过点(a, f(a)),(b,-f(b))的直线与x 轴的交点为(c,0),则称c 为a,b 关于函数f(x)的平均数,记为M f (a,b).例如,当f(x)=1(x>0)时,可得M f (a,b)=c=a+b2,即M f (a,b)为a,b 的算术平均数.(1)当f(x)= (x>0)时,M f (a,b)为a,b 的几何平均数; (2)当f(x)= (x>0)时,M f (a,b)为a,b 的调和平均数2aba+b. (以上两空各只需写出一个符合要求的函数即可) 答案 (1)√x (2)x4.(2014四川,15,5分)以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[-M,M].例如,当φ1(x)=x 3,φ2(x)=sin x 时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A ”的充要条件是“∀b ∈R ,∃a ∈D,f(a)=b ”; ②函数f(x)∈B 的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B; ④若函数f(x)=aln(x+2)+xx 2+1(x>-2,a ∈R )有最大值,则f(x)∈B.其中的真命题有 .(写出所有真命题的序号)答案 ①③④5.(2010北京,14,5分)如图放置的边长为1的正方形PABC 沿x 轴滚动.设顶点P(x,y)的纵坐标与横坐标的函数关系式是y=f(x),则f(x)的最小正周期为 ;y=f(x)在其两个相邻零点间的图象与x 轴所围区域的面积为 .说明:“正方形PABC 沿x 轴滚动”包括沿x 轴正方向和沿x 轴负方向滚动.沿x 轴正方向滚动指的是先以顶点A 为中心顺时针旋转,当顶点B 落在x 轴上时,再以顶点B 为中心顺时针旋转,如此继续.类似地,正方形PABC 可以沿x 轴负方向滚动.答案 4;π+16.(2016浙江,18,15分)已知a ≥3,函数F(x)=min{2|x-1|,x 2-2ax+4a-2},其中min{p,q}={p,p ≤q,q,p >q.(1)求使得等式F(x)=x 2-2ax+4a-2成立的x 的取值范围; (2)(i)求F(x)的最小值m(a);(ii)求F(x)在区间[0,6]上的最大值M(a). 解析 (1)由于a ≥3,故当x ≤1时,(x 2-2ax+4a-2)-2|x-1|=x 2+2(a-1)(2-x)>0, 当x>1时,(x 2-2ax+4a-2)-2|x-1|=(x-2)(x-2a).所以,使得等式F(x)=x 2-2ax+4a-2成立的x 的取值范围为[2,2a]. (2)(i)设函数f(x)=2|x-1|,g(x)=x 2-2ax+4a-2,则 f(x)min =f(1)=0,g(x)min =g(a)=-a 2+4a-2, 所以,由F(x)的定义知m(a)=min{f(1),g(a)},即m(a)={0,3≤a ≤2+√2,-a 2+4a -2,a >2+√2.(ii)当0≤x ≤2时,F(x)≤f(x)≤max{f(0), f(2)}=2=F(2),当2≤x ≤6时,F(x)≤g(x)≤max{g(2),g(6)}=max{2,34-8a}=max{F(2),F(6)}. 所以,M(a)={34-8a,3≤a <4,2,a ≥4.思路分析 (1)先分类讨论去掉绝对值符号,再利用作差法求解;(2)分段函数求最值的方法是分别求出各段上的最值,较大(小)的值就是这个函数的最大(小)值.评析本题主要考查函数的单调性与最值、分段函数、不等式性质等基础知识,同时考查推理论证能力、分析问题和解决问题的能力.7.(2013江西,21,14分)设函数f(x)={1ax,0≤x ≤a,11-a(1-x), a <x ≤1.a 为常数且a ∈(0,1).(1)当a=12时,求f (f (13));(2)若x 0满足f(f(x 0))=x 0,但f(x 0)≠x 0,则称x 0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x 1,x 2;(3)对于(2)中的x 1,x 2,设A(x 1, f(f(x 1))),B(x 2, f(f(x 2))),C(a 2,0),记△ABC 的面积为S(a),求S(a)在区间[13,12]上的最大值和最小值.解析 (1)当a=12时, f (13)=23, f (f (13))=f (23)=2(1-23)=23. (2)f(f(x))={1a 2x,0≤x ≤a 2,1a(1-a)(a-x),a 2<x ≤a,1(1-a)2(x-a),a <x <a 2-a +1,1a(1-a)(1-x),a 2-a +1≤x ≤1.当0≤x ≤a 2时,由1a2x=x 解得x=0,因为f(0)=0,故x=0不是f(x)的二阶周期点; 当a 2<x ≤a 时,由1a(1-a)(a-x)=x 解得x=a-a 2+a+1∈(a2,a),因f (a-a 2+a+1)=1a ·a-a 2+a+1=1-a 2+a+1≠a-a 2+a+1,故x=a-a 2+a+1为f(x)的二阶周期点;当a<x<a 2-a+1时,由1(1-a)2(x-a)=x解得x=12-a∈(a,a 2-a+1), 因f (12-a )=11-a ·(1-12-a )=12-a,故x=12-a不是f(x)的二阶周期点;当a 2-a+1≤x ≤1时, 由1a(1-a)(1-x)=x 解得x=1-a 2+a+1∈(a2-a+1,1),因f (1-a 2+a+1)=11-a ·(1-1-a 2+a+1)=a -a 2+a+1≠1-a 2+a+1,故x=1-a 2+a+1为f(x)的二阶周期点.因此,函数f(x)有且仅有两个二阶周期点,x 1=a-a 2+a+1,x 2=1-a 2+a+1.(3)由(2)得A (a -a 2+a+1,a -a 2+a+1),B (1-a 2+a+1,1-a 2+a+1),则S(a)=12·a 2(1-a)-a 2+a+1,S'(a)=12·a(a 3-2a 2-2a+2)(-a 2+a+1)2,因为a ∈[13,12],a 2+a<1, 所以S'(a)=12·a(a 3-2a 2-2a+2)(-a 2+a+1)2=12·a[(a+1)(a -1)2+(1-a 2-a)](-a 2+a+1)2>0.或令g(a)=a 3-2a 2-2a+2,g'(a)=3a 2-4a-2 =3(a -2-√103)(a -2+√103),因a ∈(0,1),g'(a)<0,所以g(a)在区间[13,12]上的最小值为g (12)=58>0,故对于任意a ∈[13,12],g(a)=a 3-2a 2-2a+2>0, S'(a)=12·a(a 3-2a 2-2a+2)(-a 2+a+1)2>0. 则S(a)在区间[13,12]上单调递增, 故S(a)在区间[13,12]上的最小值为S (13)=133,最大值为S (12)=120.评析本题考查了函数的零点、值域,是一道信息创新题,只有准确地理解信息,并具有较强的运算能力和数据处理能力,才能有效地解决此题. 【三年模拟】一、选择题(每小题5分,共25分)1.(2017北京平谷零模,8)某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了5次涨停(每次上涨10%),又经历了5次跌停(每次下跌10%),则该股民购进的这支股票的盈亏情况(不考虑其他费用)为( )A.略有盈利B.略有亏损C.没有盈利也没有亏损D.无法判断盈亏情况答案 B2.(2019届中央民大附中10月月考文,7)已知某厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-13x 3+81x-234,则使该厂家获得最大年利润的年产量为( )A.9万件B.11万件C.12万件D.13万件答案 A3.(2019届北京牛栏山一中期中,8)在股票买卖过程中,经常会用各种曲线来描述某一只股票的变化趋势,其中一种曲线是即时价格曲线y=f(x),一种曲线是平均价格曲线y=g(x).例如:f(2)=3表示开始交易后2小时的即时价格为3元,g(2)=4表示开始交易后2小时内所有成交股票的平均价格为4元.下列四个图中,实线表示y=f(x),虚线表示y=g(x).其中可能正确的是( )答案B4.(2019届北京八中10月月考,5)调查表明,酒后驾驶是导致交通事故的主要原因,交通法规规定:驾驶员在驾驶机动车时血液中酒精含量不得超过0.02 mg/ml.如果某人喝了少量酒后,血液中酒精含量迅速上升到0.3 mg/ml,在停止喝酒后,血液中酒精含量以每小时50%的速度减少,他至少要经过小时才可以驾驶机动车(精确到小时)( )A.1B.2C.4D.6答案C],使得5.(2019届北京海淀期中,8)函数f(x)=x,g(x)=x2-x+3,若存在x1,x2,…,x n∈[0,92f(x1)+f(x2)+…+f(x n-1)+g(x n)=g(x1)+g(x2)+…+g(x n-1)+f(x n),则n的最大值为( )A.5B.6C.7D.8答案D二、填空题(每小题5分,共15分)6.(2018北京东城二模,14)某种物质在时刻t(min)的浓度M(mg/L)与t的函数关系为M(t)=ar t+24(a,r为常数).在t=0 min和t=1 min时,测得该物质的浓度分别为124 mg/L和64 mg/L,那么在t=4 min时,该物质的浓度为mg/L;若该物质的浓度小于24.001 mg/L,则最小整数t的值为.(参考数据:lg 2≈0.301 0) 答案26.56;13,若对于定义域内的任意x1,都存在x2使得f(x1)>f(x2), 7.(2019届北京牛栏山一中期中,13)已知函数f(x)=x-a(x+a)2则满足条件的实数a的取值范围是.答案a≥08.(2019届北京海淀期中,13)能说明“若f(x)>g(x)对任意的x∈[0,2]都成立,则f(x)在[0,2]上的最小值大于g(x)在[0,2]上的最大值”为假命题的一对函数可以是f(x)= ,g(x)= .答案x+1;x(答案不唯一)。
2.8函数模型及函数的综合应用探考情悟真题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点函数模型及函数的综合应用①了解指数函数、对数函数、幂函数的增长特征,体会直线上升、指数增长、对数增长等不同函数类型增长的含义②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用,了解函数与方程、不等式之间的联系,并能解决一些具体的实际问题2019北京,14函数的实际应用一元一次不等式★☆☆2015北京,8函数的图象2015北京文,8分析解读为了考查学生的综合能力与素养,高考加强了函数综合应用问题的考查力度,这一问题涉及的知识点较多,综合性也较强,属于中档以上的试题,题型以填空题和解答题为主,通常在如下方面考查:1.对函数实际应用问题的考查,这类问题多以社会实际生活为背景,设问新颖,要求学生掌握课本中的概念、公式、法则、定理等基础知识与方法.2.以课本知识为载体,把函数与方程、不等式、数列、解析几何等知识联系起来,构造不等式求参数取值范围;利用分离参数法求函数值域,进而求参数的取值范围等.破考点练考向【考点集训】考点函数模型及函数的综合应用1.(2020届北京四中期中,9)某商场实行购物优惠活动,规定:(1)一次性消费不超过200元,则不予优惠;(2)一次性消费超过200元但不超过500元,则按9折优惠;(3)一次性消费超过500元,其中500元按9折给予优惠,超过500元的部分按8折给予优惠.某人两次去购物,分别付款168元和423元,若他只去一次购买同样价格的商品,则应付款()A.472.8元B.510.4元C.522.8元D.560.4元答案D2.(2018北京东城一模,14)动点P从点A出发,按逆时针方向沿周长为l的平面图形运动一周,A,P两点间的距离y与动点P所走过的路程x的关系如图所示,则动点P所走的图形可能是()答案D3.(2019北京顺义期末,8)设函数f(x)的定义域为A,如果对于任意的x1∈A,都存在x2∈A,使得f(x1)+f(x2)=2m(其中m为常数)成立,则称函数f(x)在A上“与常数m相关联”.给定函数①y=1;②y=x3;③y=2x;④y=ln x;⑤y=cos x+1,则在其定义域上“与常数1相关联”的所有函数是()A.①②⑤B.①③C.②④⑤D.②④答案C4.(20195·3原创冲刺卷一,11)设函数f(x)=2|x-1|+log3(x-1)2,不等式f(ax)≤f(x+3)在x∈(1,2]上恒成立,则实数a的取值范围是()A.-∞B.(-∞,2]C.D.-32答案D炼技法提能力【方法集训】方法函数模型的实际应用问题1.(2019北大附中模拟文,6)某电力公司在工程招标中根据技术、商务、报价三项评分标准进行综合评分,按照综合得分的高低进行综合排序,综合排序高者中标.分值权重表如下:总分技术商务报价100%50%10%40%技术分、商务分是由公司的技术、资质、资信等实力来决定的,报价分则相对灵活.报价分的评分方法:基准价的基准分是68分,若报价每高于基准价1%,则在基准分的基础上扣0.8分,最低得分为48分;若报价每低于基准价1%,则在基准分的基础上加0.8分,最高得分为80分;若报价低于基准价15%以上(不含15%),每再低1%,则在80分的基础上扣0.8分.在某次招标中,基准价为1000万元.甲、乙两公司的综合得分如下表:公司技术商务报价甲80分90分A分甲分乙70分100分A乙甲公司的报价为1100万元,乙公司的报价为800万元,则甲,乙公司的综合得分分别是() A.73分,75.4分 B.73分,80分C.74.6分,76分D.74.6分,75.4分答案A2.(2020届北京铁二中10月月考,8)将甲桶中的a L水缓慢注入空桶乙中,t min后甲桶中剩余的水量符合指数衰减曲线y=ae nt.假设过5min后甲桶和乙桶的水量相等,若再过m min甲桶中的水只有4L,则m的值为()A.5B.8C.9D.10答案A3.(2020届北京人大附中统练七,6)有关数据显示,中国快递行业产生的包装垃圾在2015年约为400万吨,2016年的年增长率为50%,有专家预测,如果不采取措施,未来包装垃圾还将以此增长率增长,从()年开始,快递业产生的包装垃圾将超过4000万吨.(参考数据:lg2≈0.301 0,lg3≈0.4771)()A.2020B.2021C.2022D.2023答案B【五年高考】A组自主命题·北京卷题组考点函数模型及函数的综合应用1.(2015北京,8,5分)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油答案D2.(2015北京文,8,5分)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米) 2015年5月1日12350002015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为()A.6升B.8升C.10升D.12升答案B3.(2019北京,14,5分)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为.答案①130②15B组统一命题、省(区、市)卷题组考点函数模型及函数的综合应用1.(2019课标Ⅱ,4,5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:1(rp2+22=(R+r)13.设α=.由于α的值很小,因此在近似计算中33+34+5(1+p2≈3α3,则r的近似值为()答案D2.(2019天津,8,5分)已知a∈R.设函数f(x)=2-2ax+2a,x≤1,tEns>1.若关于x的不等式f(x)≥0在R上恒成立,则a的取值范围为()A.[0,1]B.[0,2]C.[0,e]D.[1,e]答案C3.(2018浙江,11,6分)我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则++=100,5+3+13z=100,当z=81时,x=,y=.答案8;11C组教师专用题组考点函数模型及函数的综合应用1.(2014湖南,8,5分)某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A.rB.(r1)(r1)-1C.BD.(+1)(+1)-1答案D2.(2017天津,8,5分)已知函数f(x)=2-x+3,x≤1,+2,x>1.设a∈R,若关于x的不等式f(x)a在R 上恒成立,则a的取值范围是()A.-4716,2B.-4716C.[-23,2]D.-23,答案A3.(2019浙江,16,4分)已知a∈R,函数f(x)=ax3-x.若存在t∈R,使得|f(t+2)-f(t)|≤23则实数a的最大值是.答案434.(2014山东,15,5分)已知函数y=f(x)(x∈R),对函数y=g(x)(x∈I),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈I),y=h(x)满足:对任意x∈I,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)=4-2关于f(x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是.答案(210,+∞)5.(2017浙江,17,4分)已知a∈R,函数f(x)=+4-a+a在区间[1,4]上的最大值是5,则a的取值范围是.答案-∞6.(2014湖北,14,5分)设f(x)是定义在(0,+∞)上的函数,且f(x)>0,对任意a>0,b>0,若经过点(a, f(a)),(b,-f(b))的直线与x轴的交点为(c,0),则称c为a,b关于函数f(x)的平均数,记为M f(a,b).例如,当f(x)=1(x>0)时,可得M f(a,b)=c=r2,即M f(a,b)为a,b的算术平均数.(1)当f(x)=(x>0)时,M f(a,b)为a,b的几何平均数;(2)当f(x)=(x>0)时,M f(a,b)为a,b的调和平均数2B r.(以上两空各只需写出一个符合要求的函数即可)答案(1)(2)x7.(2014四川,15,5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[-M,M].例如,当φ1(x)=x3,φ2(x)=sin x时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B;④若函数f(x)=aln(x+2)+2+1(x>-2,a∈R)有最大值,则f(x)∈B.其中的真命题有.(写出所有真命题的序号)答案①③④8.(2010北京,14,5分)如图放置的边长为1的正方形PABC沿x轴滚动.设顶点P(x,y)的纵坐标与横坐标的函数关系式是y=f(x),则f(x)的最小正周期为;y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为.说明:“正方形PABC沿x轴滚动”包括沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续.类似地,正方形PABC可以沿x轴负方向滚动.答案4;π+19.(2016浙江,18,15分)已知a≥3,函数F(x)=min{2|x-1|,x2-2ax+4a-2},其中min{p,q}=s≤s s>u(1)求使得等式F(x)=x2-2ax+4a-2成立的x的取值范围;(2)(i)求F(x)的最小值m(a);(ii)求F(x)在区间[0,6]上的最大值M(a).解析(1)由于a≥3,故当x≤1时,(x2-2ax+4a-2)-2|x-1|=x2+2(a-1)(2-x)>0,当x>1时,(x2-2ax+4a-2)-2|x-1|=(x-2)(x-2a).所以,使得等式F(x)=x2-2ax+4a-2成立的x的取值范围为[2,2a].(2)(i)设函数f(x)=2|x-1|,g(x)=x2-2ax+4a-2,则f(x)min=f(1)=0,g(x)min=g(a)=-a2+4a-2,所以,由F(x)的定义知m(a)=min{f(1),g(a)},即m(a)=0,3≤≤2+2,-2+4a-2,a>2+2.(ii)当0≤x≤2时,F(x)≤f(x)≤max{f(0),f(2)}=2=F(2),当2≤x≤6时,F(x)≤g(x)≤max{g(2),g(6)}=max{2,34-8a}=max{F(2),F(6)}.所以,M(a)=34-8s3≤<4,2,≥4.思路分析(1)先分类讨论去掉绝对值符号,再利用作差法求解;(2)分段函数求最值的方法是分别求出各段上的最值,较大(小)的值就是这个函数的最大(小)值.评析本题主要考查函数的单调性与最值、分段函数、不等式性质等基础知识,同时考查推理论证能力、分析问题和解决问题的能力.10.(2015江苏,17,14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l 1,l 2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5千米和40千米,点N 到l 1,l 2的距离分别为20千米和2.5千米,以l 2,l 1所在的直线分别为x,y 轴,建立平面直角坐标系xOy,假设曲线C 符合函数y=2+b (其中a,b 为常数)模型.(1)求a,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t.①请写出公路l 长度的函数解析式f(t),并写出其定义域;②当t 为何值时,公路l 的长度最短?求出最短长度.解析(1)由题意知,点M,N 的坐标分别为(5,40),(20,2.5).将其分别代入y=2+b ,40,=2.5,解得=1000,=0.(2)①由(1)知,y=10002(5≤x ≤20),则点P 的坐标为设在点P 处的切线l 交x,y 轴分别于A,B 点,y'=-20003,则l 的方程为y-10002=-20003(x-t),由此得,B故∈[5,20].②设g(t)=t 2+4×1064,则g'(t)=2t-16×1065.令g'(t)=0,解得t=102.当t∈(5,102)时,g'(t)<0,g(t)是减函数;当t∈(102,20)时,g'(t)>0,g(t)是增函数;从而,当t=102时,函数g(t)有极小值,也是最小值,所以g(t)min=300,此时f(t)min=153.∴当t=102时,公路l的长度最短,最短长度为153千米.评析本题主要考查函数的概念、导数的几何意义及应用,考查运用数学模型及数学知识分析和解决实际问题的能力.11.(2013江西,21,14分)设函数0≤x≤a,a<x≤1.a为常数且a∈(0,1).(1)当a=12时,求f(2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2;(3)对于(2)中的x1,x2,设A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),记△ABC的面积为S(a),求S(a)在区.解析(1)当a=12时,=23,f1-=23.(2)f(f(x))=x≤2,2<x≤a,<x<2-a+1,2-a+1≤x≤1.当0≤x≤a2时,由12x=x解得x=0,因为f(0)=0,故x=0不是f(x)的二阶周期点;当a2<x≤a时,由1o1-p(a-x)=x解得x=-2+a+1∈(a2,a),因=1·-2+a+1=1-2+a+1≠-2+a+1,故x=-2+a+1为f(x)的二阶周期点;当a<x<a2-a+1时,由1(1-p2(x-a)=x解得x=12-∈(a,a2-a+1),因=11-·1-=12-,故x=12-不是f(x)的二阶周期点;当a2-a+1≤x≤1时,由1(1-x)=x解得x=12∈(a2-a+1,1),因=11-·1-=-2+a+1≠1-2+a+1,故x=1-2+a+1为f(x)的二阶周期点.因此,函数f(x)有且仅有两个二阶周期点,x1=2,x2=1-2+a+1.(3)由(2)得则S(a)=12·2(1-a)-2+a+1,S'(a)=12·o3-22-2a+2)22,因为a2+a<1,所以S'(a)=12·o3-22-2a+2)(-2+a+1)2=12·n(r1)(t1)2+(1-2-a)](-2+a+1)2>0.或令g(a)=a3-2a2-2a+2,g'(a)=3a2-4a-2=3因a∈(0,1),g'(a)<0,所以g(a)=58>0,故对于任意a3-2a2-2a+2>0,S'(a)=12·o3-22-2a+2)(-22>0.则S(a),故S(a)=133,最大值为=120.评析本题考查了函数的零点、值域,是一道信息创新题,只有准确地理解信息,并具有较强的运算能力和数据处理能力,才能正确解答此题.【三年模拟】一、选择题(每小题5分,共35分)1.(2019中央民大附中月考文,7)已知某厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-13x3+81x-234,则使该厂家获得最大年利润的年产量为()A.9万件B.11万件C.12万件D.13万件答案A2.(2020届北京八一学校开学摸底,7)在股票买卖过程中,经常会用各种曲线来描述某一只股票的变化趋势,其中一种曲线是即时价格曲线y=f(x),一种曲线是平均价格曲线y=g(x).例如:f(2)=3表示某股票开始交易后2小时的即时价格为3元,g(2)=4表示某股票开始交易后2小时内所有成交股票的平均价格为4元.下列四个图象中,实线表示y=f(x),虚线表示y=g(x).其中可能正确的是()答案B3.(2019北京丰台二模,8)某码头有总质量为13.5吨的一批货箱,每个货箱质量都不超过0.35吨,任何情况下,都要一次运走这批货箱,则至少需要准备载重1.5吨的卡车()A.12辆B.11辆C.10辆D.9辆答案B4.(2020届北京牛栏山一中9月月考,8)在交通工程学中,常作如下定义:交通流量Q(辆/小时):单位时间内通过道路上某一横断面的车辆数;车流速度V(千米/小时):单位时间内车流平均行驶过的距离;车流密度K(辆/千米):单位长度道路上某一瞬间所存在的车辆数.一般地,V和K满足一个线性关系:V=v01-其中v0,k0是正数),则以下说法正确的是()A.随着车流密度增大,车流速度增大B.随着车流密度增大,交通流量增大C.随着车流密度增大,交通流量先减小、后增大D.随着车流密度增大,交通流量先增大、后减小答案D5.(2019北京丰台二模文,8)某快递公司的四个快递点A,B,C,D呈环形分布(如图所示),每个快递点均已配备10辆快递车辆.因业务发展需要,需将A,B,C,D四个快递点的快递车辆分别调整为5,7,14,14辆,要求调整只能在相邻的两个快递点间进行,且每次只能调整1辆快递车辆,则()A.最少需要8次调整,相应的可行方案有1种B.最少需要8次调整,相应的可行方案有2种C.最少需要9次调整,相应的可行方案有1种D.最少需要9次调整,相应的可行方案有2种答案D6.(2019北京海淀期中,8)函数f(x)=x,g(x)=x2-x+3,若存在x1,x2,…,x n∈0,,使得f(x1)+f(x2)+…+f(x n-1)+g(x n)=g(x1)+g(x2)+…+g(x n-1)+f(x n),则n的最大值为()A.5B.6C.7D.8答案D7.(2020届北大附中周测,7)已知函数f(x)=cosπx,g(x)=e ax-a+12(a≠0),若∃x1,x2∈[0,1],使得f(x1)=g(x2),则实数a的取值范围是()A.-12,0+∞C.(-∞,0)+∞D.-12,0∪0,答案B二、填空题(每小题5分,共15分)8.(2018北京东城二模,14)某种物质在时刻t(min)的浓度M(mg/L)与t的函数关系为M(t)=ar t+24(a,r为常数).在t=0min和t=1min时,测得该物质的浓度分别为124mg/L和64 mg/L,那么在t=4min时,该物质的浓度为mg/L;若该物质的浓度小于24.001mg/L,则最小整数t的值为.(参考数据:lg2≈0.3010)答案26.56;139.(2019北京牛栏山一中期中,13)已知函数f(x)=t(rp2,若对于定义域内的任意x1,都存在x2使得f(x1)>f(x2),则满足条件的实数a的取值范围是.答案a≥010.(2019北京西城二模文,14)因市场战略储备的需要,某公司从1月1日起每月1日购买相同金额的某种物资,连续购买了4次.由于市场变化,5月1日该公司不得不将此物资全部卖出.已知该物资的购买和卖出都是以份为计价单位进行交易,且该公司在买卖的过程中没有亏本,那么下面三个折线图中反映了这种物资每份价格(单位:万元)的可能变化情况的是.(写出所有正确的图表序号)答案②③三、解答题(共25分)11.(2020届北京八一学校10月月考,18)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒(接缝处忽略不计),E、F 在AB上,是被切去的一个等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?(2)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.解析(1)设包装盒的高为h(cm),底面边长为a(cm),则a=2x,h=2(30-x),0<x<30.∴S=4ah=8x(30-x)=-8(x-15)2+1800,∴当x=15时,包装盒的侧面积S最大.(2)V=a2h=22(-x3+30x2),∴V'=62x(20-x),令V'=0,得x=20,当x∈(0,20)时,V'>0;当x∈(20,30)时,V'<0.所以当x=20时,包装盒容积V最大,此时,ℎ=12.故此时包装盒的高与底面边长的比值是12.12.(2020届北京四中期中,19)近年来,某企业每年消耗电费约24万元,为了节能减排,决定将一个可使用15年的太阳能供电设备接入本企业电网.安装这种供电设备的工本费(万元)与太阳能电池板的面积(平方米)成正比,比例系数约为0.5,为了保证正常用电,安装后采用太阳能和电能互补供电模式.假设在此模式下,该企业每年消耗的电费C(万元)与太阳能电池板的面积x(平方米)之间的函数关系是C(x)=20r100(x≥0,k为常数),记F为该企业安装这种太阳能供电设备的费用与该企业15年消耗的总电费之和.(1)试解析C(0)的实际意义,并建立F关于x的函数关系式;(2)当x为多少平方米时,F取得最小值?最小值是多少万元?解析本题考查函数的实际应用,考查学生运用数学知识分析与解决实际问题的能力,体现数学建模的核心素养.(1)C(0)的实际意义是安装这种太阳能电池板的面积为0时的电费,即未安装太阳能供电设备时该企业每年消耗的电费.由C(0)=100=24,得k=2400.所以F=15×240020r100+0.5x=1800r5+0.5x,x≥0.(2)因为F=1800r5+0.5x=1800r5+0.5(x+5)-2.5≥21800×0.5-2.5=57.5,当且仅当1800r5=0.5(x+5),即x=55时,取等号.所以当x为55平方米时,F取得最小值,最小值为57.5万元.。
2.9 函数模型及其综合应用五年高考考点 函数的实际应用1.(2013天津,8,5分)已知函数|).|1()(x a x x f +=设关于x 的不等式)()(x f a x f <+的解集为A .若,]21,21[A ⊆-则实数a 的取值范围是( ) )0,251.(-A )0,231.(-B )231,0()0,251.(+- C )251,.(--∞D2.(2012北京,8,5分)某棵果树前n 年的总产量S 。
与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为 ( )5.A 7.B 9.C 11.D3.(2013湖南.16,5分)设函数,)(xx x c b a x f -+=其中.0,0>>>>b c a c(1)记集合c b a c b a M ,,1),,{(=不能构成一个三角形的三条边长,且a=b},则M c b a ∈),,(所对应的)(x f 的零点的取值集合为(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是 .(写出所有正确结论的序号);0)(),1,(>-∞∈∀x f x ①,R x ∈∃②使c b a xx x ,,不能构成一个三角形的三条边长;③若△ABC 为钝角三角形,则),2,1(∈∃x 使.0)(=x f4.(2013课标全国I .21,12分)设函数)(,)(2x g b ax x x f ++=).(d cx e x +=若曲线)(x f y =⋅和曲线)(x g y =都过点P(O ,2),且在点P 处有相同的切线.24+=x y (1)求a ,b ,c ,d 的值;(2)若2-≥x 时,),()(x kg x f ≤求k 的取值范围.5.(2012江苏,17,14分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米,某炮位于坐标原点,已知炮弹发射后的轨迹在方程k x k kx y <+-=22)1(201)0>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.6.(2012上海.21,14分)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图,现假设:①失事船的移动路径可视为抛物线;49122x y =②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为7t . (1)当t=0.5时,写出失事船所在位置P 的纵坐标.若此时两船恰好会合,求救援船速度的大小和方向; (2)问救援船的时速至少是多少海里才能追上失事船?智力背景上帝之数—— 神秘的完美数 所谓的上帝之数就是这样的一些完美数,它的所有的真因予(包括1, 但是不包括本身)之和正好等于这个数本身.例如:;3216;3216++=⨯⨯=142174128⨯⨯=⨯⨯= 且,28147421=++++6和28是最小的两个完美数,这在古希腊就已经被发现了,由于6是古时传说中上帝创造世界所用的天数,而28是月亮绕地球一周所需的天数,这使得完美数充满了神秘的色彩,现在以我们人类的认知水平还无法揭开这些数的神秘面纱, 7.(2011湖北.17,12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度”(单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为O ;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20020≤≤x 时,车流速度w 是车流密度x 的一次函数. (1)当2000≤≤x 时,求函数v(x)的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时))()(x v x x f ⋅=可以达到最大,并求出最大值.(精确到1辆/小时)8.(2011江苏,17,14分)请你设计一个包装盒,如图所示,AB-CD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒.E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两 个端点,设⋅==)(cm x FB AE(1)某广告商要求包装盒的侧面积)(2cm s 最大,试问x 应取何值?(2)某厂商要求包装盒的容积)(3cm V 最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.解读探究知识清单2.三种增长型函数之间增长速度的比较(1)指数函数)1(>=a a y x 与幂函数)0(>=ααx y在区间),0(+∞上,无论α比a 大多少,尽管在x 的一定范围内xa 会小于,αx 但由于xa y =的增长度⑧ αx y =的增长速度,因而总存在一个,0x 当0x x >时有⑨(2)对数函数)1(log >=a x y a 与幂函数)0(>=ααx y 不论a 与α值的大小如何,对数函数)1(log >=a x y a 的增长速度总会⑩ αx y =的增长速度,因而在定义域内总存在一个实数,0x 使0x x >时有由(1)(2)可以看出三种增长型的函数尽管均为增函数,但它们的增长速度不同,且不在同一个档次上,因此在),0(+∞上,总会存在一个,0x 使0x x >时有智力背景不可能的三接棍 许多图案和实例,一旦熟悉起来便觉得想当然.在1958年英国的《心理学杂志》 上.R .朋罗斯发表了他的不可能的三接棍,他称之为立体的矩形构造:三个直角显示出垂直,但它是不可 能存在于空间的.这里三个直角似乎形成一个三角形,但三角形是一个平面而非立体的图形,它的三个角的和为,180o而非.2700【知识拓展】1.函数的应用是数学应用问题的主要类型之一,教材中介绍了函数知识在增长率、物理等方面的应用,首先要深刻理解、准确把握题目中的概念和公式,把以上类型摘清搞懂,由此初步掌握解决函数应用问题的基本方法,为逐步提高解答应用问题的能力打下良好的基础.2.解函数应用题关键是建立数学模型,要顺利地建立数学模型,重点要过好三关:(1)事理关:通过阅读、理解,明白问题讲的是什么,熟悉实际背景,为解题打开突破口. (2)文理关:将实际问题的文字语言转化为数学的符号语言,用数学式子表达数学关系.(3)数理关:在构建数学模型的过程中,对已有数学知识进行检验,从而认定或构建相应的数学模型,完成由实际问题向数学问题的转化.3.学习过程中要注意从数学的角度理解、分析、研究、把握问题,先独立尝试,后对比验证,特别要强调开展自主的、独立的探讨活动,这样才有利于培养阅读理解、分析和解决实际问题的能力,有助于提高对数学思想方法的认识,有利于培养数学意识,·知识清单答案突破方法方法 函数模型的应用函数应用的基本过程:例(2012河南安阳二模.18,12分)某厂生产某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C(x)万元,当年产量不足80千件时,x x x C 1031)(2+=(万元);当年产量不少于80千件时,14501000051)(-+=xx x C (万元).通过市场分析,若每件售价为500元时,该厂年内生产该商品能全部销售完.(1)写出年利润L (万元)关于年产量x (千件)的函数解析式; (2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?解题思路解析 (1)当*,800N x x ∈<<时,2501031100001000500)(2---⨯=x x x x L;2504032-+-=x x f 当*,80N x x ∈≥时, (2分)2501450001051100001000500)(0-+--⨯=xx xx L),10000(1200xx +-= (4分) ⎪⎩⎪⎨⎧⋅∈≥+-⋅∈<<-+-=∴*),80()10000(1200),,800(2504031)(2N x x x x N x x x x x L (2)当*,800N x x ∈<<时, (6分),950)60(31)(2+--=x x L.‘.当x= 60时,)(x L 取得最大值.950)60(=L (8分) 当*,80N x x ∈≥时,xx x x x L 10000.21200)10000(1200)(-≤+-= ,10002001200=-=∴ 当,10000xx =即100=x 时, )(x L 取得最大值.9501000)100(>=L (11分)综上所述,当100=x 时,)(x L 取得最大值1000,即年产量为100千件时,该厂在这一商品的生产中所获利润最大. (12分)【方法点拨】 求解函数应用题的一般方法:“数学建模”是解决数学应用题的重要方法,解应用题的一般程序:智力背景懂得数学,一辈子受用不尽 人们用最美的词句赞荑数学:“自然科学的皇后”、“皇冠”、“明珠”、 “稀世珍宝”、“巍峨的阶梯”、“金碧辉煌的宫殿”、“人造宇宙”等,这些一点儿也不夸张.数学原本就是培养思考力最好的方法,即使讨厌数学的人,也能透过“头脑体操”让自己拥有数学式的逻辑思考;数学能让人排除不必要的杂物,看透事物本质,并得到解决问题的启示.会数学,不仅等于拥有万种知识的钥匙,也能透过数学来探索人生的其他可能性,三年模拟A 组 2011-2013年模拟探究专项基础测试时间:45分钟 分值.40分 一、选择题(共5分) 1.(2013山西临汾一模.11)某家具的标价为132元,若降价以九折出售(即优惠10% ),仍可获利10%(相对进货价),则该家具的进货价是 ( ) A .118元 B.105元 C.106元 D.108元 二、解答题(共35分) 2.(2013山东德州一模,18)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比已知投资1万元时两类产品的收益分别为0.125万元和0.5万元. (1)分别写出两类产品的收益与投资的函数关系;(2)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?3.(2012山东聊城5月模拟.19)某村计划建造一个室内面积为2800m 的矩形蔬菜温室,在温室内,沿左、右两侧与后侧内墙各保留Im 宽的通道,沿前侧内墙保留3m 宽的空地,当矩形温室的左后两侧边长各为多少时,蔬菜的种植面积最大?最大面积是多少? 4.(2012河南鹤壁二模.17)某食品公司为了解某种新品种食品的市场需求,进行了20天的测试,人为地调控每天产品的单价P(元/件):前10天每天单价呈直线下降趋势(第10天免费赠送品尝),后10天呈直线上升,其中4天的单价记录如下表:而这20天相应的销售量Q (百件/天)与时间x 对应的点(x ,Q)在如图所示的半圆上. (1)写出每天销售收入y (元)与时间x (天)的函数;(2)在这20天中哪一天销售收入最高?此时单价P 定为多少元为好?(结果精确到1元)智力背景隐藏予大自然中的“对称” 对称的事物是荧的,它广泛存在于大自然中: 1.斑马的条纹以它的身体为基准形成左右对称. 2.仿蛱蝶的翅膀上的图案是对反射变换对称. 3.雪的结晶,为对60度倍数角旋转变换对称. 4.星龟甲壳上的六角形图案,为对旋转变换对称,B 组 2011-2013年模拟探究专项提升测试时间:30分钟 分值:35分一、填空题(每题5分,共10分) 1.(2013河南焦作4月,14)某商人购货,进价已按原价a 扣去25%.他希望对货物定一新价,以便按新价让利20% 销售后仍可获得售价25%的利润,则此商人经营这种货物的件数x 与按新价让利总额y 之间的函数关系式为 . 2.(2013浙江余杭一模,13)某汽车运输公司,购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数*)(N x x 为二次函数关系,如图所示,则每辆客车营运 年,其营运的年平均利润最大,二、解答题(共25分)3.(2013福建宁德5月.18)有一种新型的洗衣液,去污速度特别快.已知每投放),41(R k k k ∈≤≤且 个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度y (克/升)随着时间x (分钟)变化的函数关系式近似为),(x f k y ⋅=其中=)(x f ⎪⎩⎪⎨⎧≤<-≤≤--).144(217),40(1824x x x x 若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和,根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起到有效去污的作用.(1)若只投放一次k 个单位的洗衣液,两分钟时水中洗衣液的浓度为3(克/升),求k 的值; (2)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟? 4.(2011天津十校联考5月,18)某市居民自来水收费标准如下:每户每月用水不超过4吨时每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y 元,已知甲、乙两用户该月用水量分别为5x 、3x(吨). (1)求y 关于x 的函数;(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.智力背景网球选手的动作暗含数学原理 科学家发现, 世界顶级网球选手的动作和判断力与托马斯·贝叶斯1763年发现的贝叶斯定理非常相近.这项定理的概率运算规则表明,根据事件先前发生的次数可以计算它以后发生的概率.一种称作“贝叶斯方法”的统计学方法以已知事件发生的频率为基础,测算某些事情发生的概率.这正是一位有经验选手的大脑如何在几乎看不到网球的情况下对快速运行的球做出判断的过程.。