8第五章图像分割.
- 格式:ppt
- 大小:13.60 MB
- 文档页数:2
图像分割技术图像分割就是将一副数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等,而任何相邻区域之间器性质具有明显的区别。
主要包括:边缘分割技术、阈值分割技术和区域分割技术。
1.边缘分割技术边缘检测是检测图像特性发生变化的位置,是利用物体和背景在某种图像特性上的差异来实现的。
不同的图像灰度不同,边界处会有明显的边缘,利用此特征可以分割图像。
边缘检测分割法是通过检测出不同区域边界来进行分割的。
常见的边缘检测方法:微分算子、Canny算子和LOG算子等,常用的微分算子有Sobel算子、Roberts算子和Prewit算子等。
(1)图像中的线段对于图像的间断点,常用检测模板:-1 -1 -1 -1 8 -1 -1 -1 -1⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦对于图像中的线段,常用的检测模板:检测图像中的线段:close all;clear all;clc;I=imread('gantrycrane.png');I=rgb2gray(I);h1=[-1,-1,-1;2 2 2;-1 -1 -1];%模板h2=[-1 -1 2;-1 2 -1;2 -1 -1];h3=[-1 2 -1;-1 2 -1;-1 2 -1];h4=[2 -1 -1;-1 2 -1;-1 -1 2];J1=imfilter(I,h1);%线段检测J2=imfilter(I,h2);J3=imfilter(I,h3);J4=imfilter(I,h4);J=J1+J2+J3+J4;%4种线段相加figure,subplot(121),imshow(I);subplot(122),imshow(J);(2)微分算子○1Roberts算子的计算公式:采用edge()函数进行图像的边缘检测。
Roberts算子进行图像的边缘检测:close all; clear all;clc;I=imread('rice.png');I=im2double(I);%Roberts算法进行边缘检测[J,thresh]=edge(I,'roberts',35/255);figure,subplot(121),imshow(I);subplot(122),imshow(J);○2Prewitt算子对于复杂的图像,Roberts算子不能较好的得到图像的边缘,而需要采用更加复杂的3*3的算子,Prewittd算子如下,这两个分别表示图像的水平梯度和垂直梯度。
图像分割的基础知识⼀、分割的基本了解1. 图像分割是⼀个定义不明确问题(ill defined ),⼀副图像的最有分割结果往往是根据实际的应⽤任务⽽确定的。
现有的图像算法,也是针对某⼀个具体的应⽤⽽设计的。
图像分割理论没有实质性的突破,所以,没有通⽤的分割理论。
2. 主要的研究⽅向是:交互式分割:是否需要⽤户交互。
主流的有两种⽅案:基于边界(boundary )的交互⽅式。
⽤户画出⼀条⼤致的边界曲线。
算法就是优化这条曲线,逼近物体边界。
代表算法是snake 算法。
基于种⼦(seed )的交互⽅式。
⽤户只需要在前景或者背景区域粗略地标记⼀些种⼦点,通常是⿏标点击的区域,标记为种⼦区域,分割出前景物体。
代表算法是Graph Cut 算法。
特定类图像分割语义图像分割:分割出图像中的物体并识别出它们的类别。
场景理解。
协同图像分割:协同分割的典型定义是指根据⼀组给定的图像集共同分割出其中“相似的东西”。
⼆、测地距离(geodesic distance )测地距离是地理上的概念,就是地球表⾯的两点的最短距离。
显然,和欧⼏⾥德距离(Euclidean distance )还是有区别的。
后来这个概念被推⼴到数学空间,例如在图论中,测地距离就是图中两个节点之间的最短距离。
如下图,d 15是欧⽒距离,d 12+d 23+d 34+d 45是测地距离。
三、图论分割算法基本原理⼀幅图像可以被映射成⼀个加权的⽆向图,其中像素点被当作图中的顶点,⽽相邻的像素之间的视觉性质(⽐如灰度级别,颜⾊或者纹理)的相似度当作相应的边的权值,于是图像的分割结果就可以通过对图的分割处理来获得。
把每个像素点认为成图的顶点,图的每个顶点(除边界点外)有四个邻接顶点,邻接顶点之间两两相连接,边长有权重,⽐如直接⽤像素值的差值。
这⾥不采⽤简单的欧⽒距离,相邻像素点的欧⽒距离是1。
四、基于测地距离的交互式分割算法流程1. 给定⼀张有待分割的图⽚,算法根据图论分割算法的基本原理,⽣成⼀张对应的距离图。
遥感数字图像处理教程_图像分割
图像分割是指将一幅图像分成若干个具有一定语义的区域的过程。
在
遥感图像处理中,图像分割是一项重要的任务,可以用来提取地表覆盖类型、检测目标等。
图像分割方法有很多种,常见的包括基于阈值、基于边缘、基于区域
和基于特征的方法。
基于阈值的图像分割是最简单的方法之一,通过设定一个阈值,将图
像中灰度值高于或低于该阈值的像素分为不同的区域。
这种方法适用于目
标与背景之间的灰度差异明显的情况。
基于边缘的图像分割是通过检测图像中的边缘来进行分割的。
常见的
边缘检测算法有Sobel算子、Canny算子等。
通过检测边缘,可以将图像
中不同区域的边界分开。
基于区域的图像分割是将图像划分为具有一定连通性和一致性的区域。
该方法首先通过像素之间的相似性来合并区域,然后再根据区域的属性进
行进一步的合并和细分。
基于特征的图像分割是利用图像中的一些特征来进行分割,如颜色、
纹理、形状等。
通过提取图像中的特征并使用合适的分类算法,可以将图
像分割为具有不同特征的区域。
图像分割在遥感图像处理中有着广泛的应用,例如提取森林、湖泊等
地表覆盖类型,检测城市建筑、道路等目标,以及监测农作物、污染等环
境指标。