第四章 压水堆功率控制系统
- 格式:pdf
- 大小:1.75 MB
- 文档页数:38
压水堆工作原理
压水堆(PressurizedWaterReactor,简称PWR)是一种核反应堆类型,被广泛应用于核能发电领域。
其工作原理如下:
1. 反应堆芯
反应堆芯是PWR的关键部件,其由一系列燃料组件构成,每个燃料组件包含燃料棒和冷却剂管等组件。
燃料棒中填充有铀等放射性物质,通过核裂变释放出能量,产生热量。
2. 冷却剂
冷却剂是PWR中使用的介质,一般采用水作为冷却剂。
冷却剂在反应堆芯中循环流动,将燃料棒中释放的热量带走。
3. 循环系统
PWR的循环系统包括主循环泵、蒸汽发生器和蒸汽涡轮机等组件。
主循环泵将冷却剂从蒸汽发生器中抽出,经过反应堆芯后再回到蒸汽发生器中,循环往复。
4. 蒸汽发生器
蒸汽发生器是PWR中的热交换器,其将循环中的冷却剂与次级循环中的水进行热交换,使次级循环中的水转化成蒸汽,从而驱动蒸汽涡轮机发电。
5. 控制系统
PWR的控制系统主要包括反应堆压力、温度和放射性物质等参数的检测和控制。
其中,反应堆压力和温度的控制是保证反应堆安全运行的关键措施。
总之,PWR在运行过程中通过将燃料的裂变产生的热量带走,利用蒸汽涡轮机将热能转化为电能,从而实现核能发电。
该技术具有能源密度高、污染低、稳定性强等优点,被视为未来能源发展的重要方向之一。
压水堆一回路系统及重要设备概述简介压水堆一回路系统是一种应用广泛的核能发电系统,它是通过将核反应堆产生的热能转化为蒸汽驱动涡轮,最终产生电能。
本文将对压水堆一回路系统的结构和重要设备进行概述,旨在帮助读者对该系统有一个基本的了解。
压水堆一回路系统结构压水堆一回路系统由多个主要组件组成,包括主核反应堆、主循环泵、蒸汽发生器、冷却器、控制杆和涡轮机。
下面将对每个组件进行简要介绍。
主核反应堆主核反应堆是压水堆一回路系统的核心组件,它产生核链式反应,产生大量的热能。
主核反应堆由燃料棒、反应堆压力容器和反应堆堆芯组成,其中燃料棒是用于产生核反应的关键部分。
主循环泵主循环泵是负责将冷却剂水从主核反应堆中抽出并循环送回反应堆的设备。
主循环泵通过高压泵送液体冷却剂进入反应堆,同时承担了循环压力维持和热能传递的重要任务。
蒸汽发生器蒸汽发生器是将主循环泵中传回的高温高压冷却剂转化为蒸汽的装置。
首先,冷却剂通过蒸汽发生器中的热交换器,将其热能传递给辅助循环水,使其变为蒸汽。
然后,蒸汽被输送到涡轮机中驱动发电。
冷却器冷却器是用于将从蒸汽发生器中排出的过热的冷却剂冷却至常压状态的装置。
冷却器通常通过自然对流或强制对流的方式,利用环境的冷却效应将冷却剂降温。
降温后的冷却剂将返回主循环泵,再次循环。
控制杆控制杆是用于调节核反应堆中核链式反应的装置。
通过控制杆的升降,可以调节核反应堆的输出功率。
控制杆通常由各种吸中子材料制成,如硼化钡或碳化硼。
涡轮机涡轮机是压水堆一回路系统中的最后一个设备,它是通过蒸汽的压力和流速来驱动发电机,产生电能。
涡轮机的设计和工作原理与传统的蒸汽动力发电厂相似。
压水堆一回路系统的运行原理压水堆一回路系统的运行原理是基于核反应堆产生的热能驱动涡轮机工作。
下面将简要介绍一下压水堆一回路系统的运行过程。
1.主核反应堆中的核链式反应产生大量的热能,使冷却剂水的温度升高。
2.主循环泵将热能传递给反应堆中的冷却剂水,并将其循环送回反应堆。
压水堆功率调节系统动态特性仿真研究
付小波;张大发
【期刊名称】《计算机仿真》
【年(卷),期】2009(026)011
【摘要】采用SIMULINK仿真平台,建立压水堆功率调节系统的仿真模型,对其进行时域分析,分析其单位阶跃响应,验证系统的性能指标是否满足要求.同时在同一功率定值下引入阶跃和斜坡反应性扰动,采用PID控制方案研究功率控制系统的动态特性和控制效果,并对传递函数进行优化.通过计算反应性扰动下的堆功率响应,了解系统的稳定特性、调节品质和系统各环节参数对系统的影响,为功率调节系统性能改进提供了参考.系统仿真分析表明:k=0.6时调节系统不仅能很好地克服反应性扰动,又具有良好的随动特性.
【总页数】4页(P21-24)
【作者】付小波;张大发
【作者单位】海军工程大学核能科学与工程系,湖北,武汉,430033;海军工程大学核能科学与工程系,湖北,武汉,430033
【正文语种】中文
【中图分类】TL362
【相关文献】
1.一体化压水堆非能动余热排出系统动态特性仿真 [J], 沈全华;盖秀清;傅晟威
2.压水堆机组二回路热力系统实时仿真研究 [J], 葛斌;吴毅
3.一体化压水堆动态特性的仿真研究 [J], 袁建东;夏国清;付明玉
4.压水堆核电厂蒸汽排放控制系统实时仿真研究 [J], 王宝生;王冬青;张建民;邱建文;王建
5.压水堆核电厂控制系统仿真研究 [J], 崔震华;王远隆;廖忠岳;周祖鉴
因版权原因,仅展示原文概要,查看原文内容请购买。
培训教材压水堆核电站反应堆控制系统编写:校对:审核:中国核动力研究设计院前言目前压水型反应堆已成功运用于商用核电站和军用核动力装置。
压水型反应堆控制系统由反应堆冷却剂平均温度控制系统、稳压器压力控制系统、稳压器水位控制系统、蒸汽发生器水位控制系统和蒸汽排放控制系统组成。
本文是在总结秦山二期反应堆控制系统设计经验的基础上编写而成,主要内容包括反应堆控制系统的功能及其组成、各控制系统的功能、控制通道说明及其相关的报警和逻辑动作等内容。
由于编者时间仓促,书中难免有不妥之处,欢迎提出宝贵意见,谢谢。
目录第一章概述 (5)第二章反应堆冷却剂平均温度控制系统 (6)2.1反应堆冷却剂平均温度控制的功能 (6)2.2用于反应堆冷却剂平均温度控制的测量值 (6)2.2.1 反应堆冷却剂温度测量 (7)2.2.2 中子通量测量 (7)2.2.3 汽机负荷测量 (7)2.2.4 反应堆功率定值 (8)2.3控制系统说明 (8)2.3.1 控制系统结构 (8)2.3.2 稳态运行程序 (10)2.4棒控系统逻辑动作 (11)2.4.1 C1、C2、C3、C4、C11、C20、C21和C22联锁信号 (11)2.4.2 核蒸汽供给系统要求的汽机降负荷 (12)2.4.3 允许信号P4、P7、P8、P10、P12、P13和P16 (12)2.4.4 控制棒棒位监督及其他 (14)第三章稳压器压力控制系统 (15)3.1稳压器压力控制系统的功能 (15)3.2稳压器压力的测量 (15)3.3用于稳压器压力控制的执行机构 (15)3.3.1 电加热器 (16)3.3.2 喷雾系统 (16)3.3.3 稳压器安全阀组件 (18)3.4控制通道的说明 (18)3.4.1 压力定值 (18)3.4.2 调节器结构 (18)3.4.3 第3组和第4组电加热器的控制 (19)3.4.4 第1组、第2组、第5组和第6组各组电加热器的控制 (19)3.4.5 喷雾阀极化控制 (19)3.4.6 喷雾阀RCP001和002VP的控制 (20)3.5报警和逻辑动作 (20)3.5.1 调节器驱动的报警 (21)3.5.2 其它逻辑动作 (21)第四章稳压器水位控制系统 (22)4.1稳压器水位控制系统的功能 (22)4.2用于稳压器水位控制的测量 (23)4.2.1 水位 (23)4.2.2 反应堆冷却剂温度 (23)4.2.3 上充和下泄流量 (23)4.2.4 调节稳压器水位的执行机构 (23)4.3稳压器水位控制的说明 (23)4.3.1 控制系统的结构 (23)4.3.2 水位整定值 (25)4.3.3 限值 (25)4.4逻辑动作和报警 (25)4.4.1 逻辑动作 (25)4.4.2 报警 (26)第五章蒸汽发生器水位控制系统 (27)5.1蒸汽发生器水位控制的功能 (27)5.2一般原理 (27)5.3用于蒸汽发生器水位控制的测量 (27)5.3.1 水位 (27)5.3.2 蒸汽流量 (28)5.3.3 给水流量 (28)5.3.4 汽机负荷 (28)5.3.5 蒸汽总量 (28)5.3.6 给水温度 (29)5.4调节阀 (29)5.5控制通道简述 (29)5.5.1 概述 (29)5.5.2 水位调节器 (30)5.5.3 高负荷下的给水流量控制 (30)5.5.4 低负荷下的给水流量控制 (31)5.5.5 “跟踪”系统 (32)5.6与反应堆紧急停堆有关的逻辑 (33)5.7与蒸汽发生器水位控制有关的逻辑动作 (34)5.7.1 程序水位和测量水位的偏差 (34)5.7.2 SG水位高高 (34)5.7.3 SG水位低 (34)5.7.4 SG水位低低 (34)5.7.5 ATWT(预计瞬态不停堆)信号 (35)第六章蒸汽排放控制系统 (36)6.1蒸汽排放系统功能 (36)6.1.1蒸汽向冷凝器排放: (36)6.1.2蒸汽向大气排放系统(GCT-A) (37)6.2测量参数 (37)6.2.1反应堆冷却剂平均温度 (37)6.2.2 蒸汽母管压力 (37)6.2.3 蒸汽发生器压力 (37)6.2.4 汽机入口压力 (37)6.3执行机构 (38)6.3.1蒸汽冷凝器排放阀 (38)6.3.2 大气释放阀 (39)6.4控制通道的说明 (39)6.4.1蒸汽向冷凝器排放 (39)6.4.2 蒸汽向大气排放的压力控制 (42)6.5与蒸汽向冷凝器排放有关的逻辑回路 (42)6.5.1 与蒸汽向冷凝器排放相关逻辑的功能 (42)6.5.2 C9联锁 (42)6.5.3 P12允许信号 (43)6.5.4 C7联锁 (43)6.5.5 P4联锁 (43)6.5.6 “电网故障”处理 (43)6.5.7 ATWT(不停堆的预期瞬态)联锁 (44)6.5.8 温度控制模式下的阀门开启 (44)6.5.9 压力控制模式下的阀门开启 (44)第一章概述一.反应堆控制系统的功能反应堆控制系统的主要功能如下:1.在稳态运行时,维持主要运行参数尽可能接近核电厂设计所要求达到的最优值,使核电厂的输出功率维持在所要求的范围内。
压水堆控制概述压水堆核电站控制概述§1.1压水堆核电站及流程图压水堆核电站主要是由反应堆、一回路系统、二回路系统及其它辅助系统和设备组成。
由于压水堆核电站中具有放射性的一回路与不带放射性的二回路系统是相分开的,所以通常又把压水堆核电站分为核岛和常规岛两大部分,如图1-1所示。
核岛是指核的系统和设备部分;常规岛是指那些和常规火电厂相似的系统和设备部分。
压水堆结构如图1-2所示,堆芯由157个燃料组件组成,燃料在4Z r合金制成的包壳内,燃料用低浓缩235U制成,形状是小圆柱体,由氧化铀烧结而成。
使用普通水作冷却剂和慢化剂,压力约为15.5MPa,核反应是通过移动插入在堆内的53个控制棒束组件以及调节慢化剂中的硼酸浓度来控制的。
图1-1 压水堆核电站的组成压水堆核电站工艺流程如图1-3所示。
一回路冷却剂水在三个冷却回路中循环,将堆芯的热量带到三个蒸汽发生器。
冷却剂的循环靠冷却剂泵(主泵)来完成。
一台稳压器使一回路的压力维持恒定。
在蒸汽发生器中,热量是通过蒸汽发生器管壁从一回路传到二回路,使进入蒸汽发生器的水在5.8MPa压力下汽化,产生的蒸汽送到汽轮机,汽轮机带动发电机组发电,最终把核能转化为电能。
再通过26kv/400kv(香港)或26kv/500kv(广东)变压器变电压送到枢纽变电站进入电网。
由汽轮机排出的蒸汽经过冷凝器后,由给水泵打入给水加热器加热,最后回到蒸汽发生器二次侧再被一次侧冷却剂加热完成一次循环。
1图1-2 压水堆本体结构图2图1-3 压水堆核电站工艺流程图§1.2压水堆核电站控制系统压水堆核电站控制系统如图1-4所示,主要包括:·反应堆冷却剂平均温度(R棒组)控制系统;·反应堆功率(N1、N2、G1、G2棒组)控制系统;·硼酸浓度控制系统(属反应堆辅助系统—化学与容积控制系统);·稳压器压力和水位控制系统;·蒸汽发生器水位控制系统;·大气蒸汽排放控制系统;·汽机调节(负荷控制)系统;·冷凝器蒸汽排放控制系统;·给水流量控制系统;·汽动泵速度控制系统;·电动泵速度控制系统;·发电机电压控制系统等。
压水堆一回路系统及重要设备概述1. 引言压水堆(Pressurized Water Reactor, PWR)是一种常见的核能发电装置,其一回路系统是保证核能转换和发电的关键部分。
本文档将对压水堆一回路系统及其重要设备进行概述。
2. 压水堆一回路系统简介压水堆一回路系统由以下几个主要部分组成:2.1. 核反应堆核反应堆是压水堆一回路系统的核心组件,用于产生核反应并释放能量。
核反应堆中的燃料棒在核反应过程中会释放出热量,这种热量将被用于产生蒸汽,进而驱动涡轮发电机组。
2.2. 主循环系统主循环系统承载着燃料棒所释放的热量,并通过循环泵将热交换介质(水)送往蒸汽发生器。
2.3. 蒸汽发生器蒸汽发生器是压水堆一回路系统中重要的设备之一,其工作原理是通过将冷却剂(水)与次级循环系统中的次级循环介质(一般为轻水)进行热交换来产生蒸汽。
蒸汽发生器中的蒸汽将被送至涡轮发电机组进行发电。
2.4. 涡轮发电机组涡轮发电机组是压水堆一回路系统中最终将核能转换为电能的设备。
蒸汽通过传输管道进入涡轮发电机组,使涡轮叶片旋转,进而驱动发电机转子产生电能。
3. 压水堆一回路系统中的重要设备3.1. 循环泵循环泵是主循环系统中的核心设备之一。
其主要任务是将主循环介质(冷却剂)从蒸汽发生器中抽取出来,并通过一系列的管道再次注入到蒸汽发生器中,以保持核反应堆的正常工作温度。
3.2. 蒸汽发生器蒸汽发生器是将核能转换为电能的重要设备之一。
其工作原理已在第2.3节中进行了介绍。
3.3. 涡轮发电机组涡轮发电机组是将核能转换为电能的核心设备。
其工作原理已在第2.4节中进行了介绍。
3.4. 安全系统安全系统是压水堆一回路系统中必不可少的设备。
其主要任务是确保核反应堆在各种异常情况下的安全运行,并及时采取必要的措施,以防止事故发生。
常见的安全系统包括冷却剂循环中的紧急注入系统、燃料棒控制系统等。
3.5. 辅助系统压水堆一回路系统还包括一些辅助设备,用于支持主要设备的正常运行。
压水堆一回路系统及重要设备概述核反应堆是核反应堆系统的核心部件,它负责维持并控制核裂变过程。
核燃料在反应堆中受到中子轰击发生裂变,产生大量热能。
目前常见的核反应堆设计包括压水堆、沸水堆、重水堆等。
蒸汽发生器是用于将反应堆中的热量传递到发电机的装置。
在压水堆系统中,蒸汽发生器的作用是将反应堆中加热的水与非加热的水进行热交换,使其产生蒸汽,然后将蒸汽送到涡轮发电机中以产生动力。
涡轮发电机是核反应堆系统中的动力转换装置,它将由蒸汽发生器产生的高温高压蒸汽转化为机械能,最终产生电能。
冷却系统是核反应堆系统的关键组成部分,它负责维持反应堆和其他设备的正常工作温度。
冷却系统通常包括冷却水循环系统、冷却塔、冷却泵等设备,以保证核反应堆系统的安全和稳定运行。
总的来说,压水堆一回路系统及其重要设备是核能发电的重要组成部分,它们的正常运行和安全性对于保障电力供应和保护环境都至关重要。
在设计和运行过程中,需要严格遵守相关安全标准和规定,确保系统的可靠性和安全性。
压水堆一回路系统及其重要设备在核能发电领域中起着至关重要的作用。
它的良好设计和运行能力对于安全性和可靠性都至关重要。
核反应堆作为系统的核心部件,必须具备完善的冷却系统来确保其热量从核反应堆中传递出去,并且必须要保证蒸汽发生器、涡轮发电机等核心设备的正常工作。
在此基础上,我们将对压水堆一回路系统及其重要设备的运行原理、特点和一些相关技术进行更深入的探讨。
首先,压水堆一回路系统具有较高的热效率和可靠性。
在压水堆核反应堆中,燃料棒中的核裂变过程会产生大量的热量。
这种高温高压的热量需要有效地传递出反应堆,通过蒸汽发生器加热自由升华能进行发电。
整个过程中要保持核反应堆和相关设备的温度在可控的范围内,确保系统安全运行。
此外,压水堆一回路系统在设计上便于控制和维护,较为安全稳定。
其次,蒸汽发生器是压水堆一回路系统的核心设备之一。
在这个设备中,蒸汽发生器会将反应堆中加热的水与非加热的水进行热交换,并将其转化为蒸汽。