第二章 原子结构与原子光谱
- 格式:ppt
- 大小:1.77 MB
- 文档页数:89
原子结构与光谱:原子光谱与谱线原子光谱是研究原子结构和性质的重要方法之一。
通过观察原子在光谱仪中经过光激发后产生的谱线,科学家们深入探索了原子的内部构造和粒子行为,为人类认识宇宙提供了重要的线索。
本文将介绍原子结构与光谱的关系,解析原子光谱的特点以及谱线的含义。
一、原子结构与光谱理解原子光谱首先需要了解原子的基本结构。
根据波尔模型,原子由一个中心核和围绕核运动的电子构成。
核内的质子和中子决定了原子的质量,而电子则决定了原子的化学性质。
原子的电子以能级的形式存在,每个能级可以容纳一定数量的电子。
当原子受到外部能量的激发时,电子会从低能级跃迁到高能级。
当电子回到低能级时,会释放出一定的能量,形成光的辐射。
这种辐射所形成的光谱称为原子光谱。
原子光谱可以通过光谱仪进行分析,并确定所观察到的谱线。
二、原子光谱的特点1. 具有特定的波长和颜色:不同元素的原子具有不同的能级结构,因此其光谱也具有独特的波长和颜色。
这使得原子光谱成为元素鉴定和分析的重要手段。
2. 具有离散的谱线:原子的能级是离散的,因此原子光谱呈现出离散的、间隔均匀的谱线。
每个谱线对应着电子跃迁的能级差和能量释放的特定波长。
3. 具有良好的分辨能力:原子光谱仪具有很高的分辨能力,可以准确测量光谱中谱线的波长和强度。
这为科学家们进行精确的光谱分析提供了有力工具。
三、谱线的含义原子光谱中的谱线代表着电子跃迁时产生的辐射能量。
通过观察和分析谱线的特征,可以得出以下信息:1. 波长:谱线的波长可以确定电子跃迁的能级差,从而推测原子的能级结构和电子分布。
2. 强度:谱线的强度反映了电子跃迁的概率,即从高能级到低能级的跃迁概率。
强度较强的谱线对应的跃迁概率较高。
3. 形态:谱线的形态(如单峰、多峰等)可以提供关于原子的电子状态和相应能级的信息。
4. 分裂:有些原子光谱呈现出多条非常接近且微弱的谱线,这是由于原子的内部结构和外界环境的影响导致原子能级的分裂现象。
第二章原子结构与原子光谱赖才英070601319 何雪萍070601319 陈小娟070601319陈杉杉070601316 肖丽霞070601318 王水金0706013471.n、l、m三个量子数的取值范围、相互关系与物理意义。
取值范围及相互关系:n=1、2、3……共n个l=0、1、2……n-1共n个m=0、±1、±2……±l共2l+1个物理意义:主量子数n决定体系能量的高低、对单电子原子:En=-μe2/8ε2h2*Z2/n2=-13.6Z2/n2(eV)角量子数l决定电子的轨道角动量绝对值|M|=l*(l+1) *h/2π磁量子数m决定电子的轨道角动量在磁量子数方向上的分量Mz:Mz=m*h/2π2.为什么P+1与P-1不是分别对应Px与Py?答:决定复波函数的三个量子数都是确定的,可以用两种方式表示。
实波函数Ψnl| m|的磁量子数仅对应| m|,波函数中既有+| m|的成分又有-| m|的成分。
说明仅在m=0时,复波函数和实波函数是一致的,在m≠0时,是一组复波函数对应于一组实波函数,而不是一一对应的关系。
3.如何由氢原子空间波函数确定轨道的名称,求出En、|M|与Mz等力学量的确定值或平均值。
氢原子空间波函数为:ψ1、0、0=1/π*(Z/a)3/2*e-zr/a=1/π*(1/a)3/2*e-r/a∵n=1、l=0、m=0∴轨道名称应是:1S 此时En=-13.6*Z2/n2(eV)=-13.6ev∵|M|=l*(l+1) *h/2π=0Mz= m*h/2π=04.研究多电子原子结构碰到什么困难?作了那些近似?用了什么模型?答:困难:多电子原子中存在着复杂的电子间瞬时相互作用,其薛定谔方程无法进行变数分离,不能精确求解;多电子原子中存在能级倒臵,一般用屏蔽效应和钻穿效应解释,但是由于这两个效应都是定性的效应,相互又是关联的,所以,定量地解释能级倒臵的原因较为困难;用SCF法似乎解决了问题,但实际上方程仍无法求解,因为解方程需知ψj,而ψi也是未知的.近似:完全忽略电子间的排斥势能即零级近似;体系近似波函数;体系近似总能量;中心势场是近似的球对称势场;在SCF法中,每个电子的运动与其他电子的瞬时坐标无关,即在多电子原子中,每个电子均在各自的原子轨道上,彼此”独立”地运动.模型:中心势场模型是将原子中其他电子对第i个电子的排斥作用看成是球对称的,只与径向有关的力场。
原子结构和原子光谱【学习目标】1.了解汤姆孙发现电子的研究方法;2.知道粒子散射实验;3.明确原子核式结构模型的主要内容;4.理解原子核式结构提出的主要思想;5.知道光谱、发射光谱、吸收光谱、光谱分析等概念;6.明确光谱产生的原理及光谱分析的特点;7.知道氢原子光谱的实验规律;8.了解玻尔原子模型及能级的概念;9.理解原子发射和吸收光子的频率与能级差的关系;10.知道玻尔对氢光谱的解释以及玻尔理论的局限性;7.了解激光产生的原理和激光的特性及激光在日常生活中的应用。
知识1--原子结构1.阴极射线(1)气体的导电特点:通常情况下,气体是不导电的,但在强电场中,气体能够被电离而导电.平时我们在空气中看到的放电火花,就是气体电离导电的结果.在研究气体放电时一般都用玻璃管中的稀薄气体,导电时可以看到辉光放电现象.(2)1858年德国物理学家普里克发现了阴极射线.①产生:在研究气体导电的玻璃管内有阴、阳两极.当两极间加一定电压时,阴极便发出一种射线,这种射线为阴极射线.②阴极射线的特点:碰到荧光物质能使其发光.(2)测定阴极射线粒子的比荷.4.密立根实验美国物理学家密立根在1910年通过著名的“油滴实验”简练精确地测定了电子的电量密立根实验更重要的发现是:电荷是量子化的,即任何电荷只能是元电荷的整数倍.5.电子发现的意义以前人们认为物质由分子组成,分子由原子组成,原子是不可再分的最小微粒.现在人们发现了各种物质里都有电子,而且电子的质量比最轻的氢原子质量小得多,这说明电子是原子的组成部分.电子是带负电,而原子是电中性的,可见原子内还有带正电的物质,这些带正电的物质和带负电的电子如何构成原子呢?电子的发现大大激发了人们研究原子内部结构的热情,拉开了人们研究原子结构的序幕.6.19世纪末物理学的三大发现对阴极射线的研究,引发了19世纪末物理学的三大发现:(1)1895年伦琴发现了X射线;(2)1896年贝克勒尔发现了天然放射性;(3)1897年汤姆孙发现了电子e.知识3--氢原子光谱1.光谱用光栅或棱镜可以把光按波长展开,获得光的波长(频率)成分和强度分布的记录,即光谱.用摄谱仪可以得到光谱的照片.物质的光谱按其产生方式不同可分为两大类:(1)发射光谱——物体直接发出的光通过分光后产生的光谱.它又可分为连续光谱和明线光谱(线状光谱).①连续光谱一一由连续分布的一切波长的光(一切单色光)组成的光谱。