2020年全国各地中考数学常考试题(含答案)
- 格式:doc
- 大小:2.04 MB
- 文档页数:47
河南省中考数学试卷(满分120 分,考试时间100 分钟)一、选择题:1. 下列运算正确的是()A . 3 ﹣ 1 = ﹣ 3B .= ± 3C .( 2 2 ) 3 =64D . 5 6 ÷ 5 ³=252 、已知平面直角坐标系内一点A(2 ,3) ,把点 A 沿x 轴向左平移3 个单位长度,再以O 点为旋转中心旋转180 °,然后以y 轴为对称轴得到点A' ,这A' 点的坐标为()A .(-2 ,-3)B .(-1 ,-3)C .(-3 ,1)D .(-2 ,3)3 、环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5 检测指标,“ PM2.5 ”是指大气中危害健康的直径小于或等于 2.5 微米的颗粒物, 2.5 微米即0.0000025 米.用科学记数法表示0.0000025 为()A . 2.5 × 10 ﹣ 5B . 2.5 × 10 5C 2.5 × 10 ﹣ 6D . 2.5 × 10 64 .如图,把三角板的直角顶点放在直尺的一边上,若∠1=30 °,则∠ 2 的度数为()A .60 °B .50 °C .40 °D .30 °5 、某通讯公司提供了两种移动电话收费方式:方式 1 ,收月基本费20 元,再以每分钟0.1 元的价格按通话时间计费;方式 2 ,收月基本费20 元,送80 分钟通话时间,超过80 分钟的部分,以每分钟0.15 元的价格计费.下列结论:①如图描述的是方式 1 的收费方法;②若月通话时间少于240 分钟,选择方式 2 省钱;③若月通讯费为50 元,则方式 1 比方式 2 的通话时间多;④若方式 1 比方式 2 的通讯费多10 元,则方式 1 比方式 2 的通话时间多100 分钟.其中正确的是()A .只有①②B .只有③④C .只有①②③D .①②③④6 .如图所示的图形是由7 个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是()A .B .C .D .7 .为了大力宣传节约用电,某小区随机抽查了10 户家庭的月用电量情况,统计如下表.关于这10 户家庭的月用电量说法正确的是()月用电量(度)25 30 40 50 60户数 1 4 2 2 1A .平均数是38.5B .众数是 4C .中位数是40D .极差是 38. 如图,在第 1 个△ A 1 BC 中,∠ B =30 °,A 1B = CB ;在边 A 1 B 上任取一点 D ,延长CA 1 到 A 2 ,使 A 1 A 2 = A1 D ,得到第2 个△ A 1 A 2 D ;在边 A 2 D 上任取一点 E ,延长 A 1 A 2到 A 3 ,使 A 2 A 3 = A 2 E ,得到第 3 个△ A 2 A 3 E ,…按此做法继续下去,则第n 个三角形中以 A n 为顶点的内角度数是()A .()n • 75 °B .()n ﹣ 1 • 65 °C .()n ﹣1 • 75 ° D .()n • 85 °二、填空题:9 .如图,在△ ABC 中,AB = AC ,AD ⊥ BC 于点 D ,若AB =6 ,CD =4 ,则△ ABC 的周长是.10 .已知圆锥的母线长为 6 cm ,底面圆的半径为 3 cm ,则此圆锥侧面展开图的圆心角是。
2020中考数学试卷一、填空题(每题3分,满分30分)1.(3分)2018年1月18日,国家统计局对外公布,我国经济总量首次站上80万亿的历史新台阶,将80万亿用科学记数法表示亿元.2.(3分)在函数y=中,自变量x的取值范围是.3.(3分)如图,在平行四边形ABCD中,添加一个条件,使平行四边形ABCD是矩形.4.(3分)在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是.5.(3分)不等式组有3个整数解,则a的取值范围是.6.(3分)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=.7.(3分)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.8.(3分)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为.9.(3分)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是.10.(3分)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…….记△B1CB2面积为S1,△B2C1B3面积为S2,△B3C2B4面积为S3,则S n=.二、选择题(每题3分,满分30分)11.(3分)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a212.(3分)如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.13.(3分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.614.(3分)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是2015.(3分)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.716.(3分)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠217.(3分)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A.π﹣6 B.πC.π﹣3 D.+π18.(3分)如图,∠AOB=90°,且OA、OB分别与反比例函数y=(x>0)、y=﹣(x<0)的图象交于A、B两点,则tan∠OAB的值是()A .B .C .1D .19.(3分)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A .4种B .3种C .2种D .1种20.(3分)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD ,分别交BC 、BD 于点E 、P ,连接OE ,∠ADC=60°,AB=BC=1,则下列结论: ①∠CAD=30°②BD=③S 平行四边形ABCD =AB•AC ④OE=AD ⑤S △APO =,正确的个数是( )A .2B .3C .4D .5三、解答题(满分60分)21.(5分)先化简,再求值:(a ﹣)÷,其中a=,b=1.22.(6分)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC 的三个顶点坐标分别为A (1,4),B (1,1),C (3,1).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1.(2)画出△ABC 绕点O 逆时针旋转90°后得到的△A 2B 2C 2.(3)在(2)的条件下,求点A 所经过的路径长(结果保留π).23.(6分)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.24.(7分)为弘扬中华优秀传统文化,某校开展了“经典雅韵”诵读比赛活动,现随机抽取部分同学的成绩进行统计,并绘制如下两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?.25.(8分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为件,图中d值为.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?26.(8分)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.(1)当点E在线段BD上移动时,如图(1)所示,求证:AE=EF;(2)当点E在直线BD上移动时,如图(2)、图(3)所示,线段AE与EF又有怎样的数量关系?请直接写出你的猜想,不需证明.27.(10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?28.(10分)如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B 坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO=,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.中考数学试卷参考答案与试题解析一、填空题(每题3分,满分30分)1.(3分)2018年1月18日,国家统计局对外公布,我国经济总量首次站上80万亿的历史新台阶,将80万亿用科学记数法表示8×105亿元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将80万亿用科学记数法表示为:8×105亿.故答案为:8×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)在函数y=中,自变量x的取值范围是x≥0且x≠1.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0,解得:x≥0且x≠1.故答案为:x≥0且x≠1.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)如图,在平行四边形ABCD中,添加一个条件AC=BD或∠ABC=90°,使平行四边形ABCD是矩形.【分析】根据矩形的判定方法即可解决问题;【解答】解:若使▱ABCD变为矩形,可添加的条件是:AC=BD;(对角线相等的平行四边形是矩形),∠ABC=90°等(有一个角是直角的平行四边形是矩形),故答案为:任意写出一个正确答案即可,如:AC=BD或∠ABC=90°.故答案为AC=BD或∠ABC=90°【点评】本题主要考查了平行四边形的性质与矩形的判定,熟练掌握矩形是特殊的平行四边形是解题关键.4.(3分)在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是.【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,用白球的个数除以总个数,求出恰好摸到白球的概率是多少即可.【解答】解:∵袋子中共有10个球,其中白球有3个,∴任意摸出一球,摸到白球的概率是,故答案为:.【点评】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.5.(3分)不等式组有3个整数解,则a的取值范围是﹣2≤a<﹣1.【分析】先解x的不等式组,然后根据整数解的个数确定a的取值范围.【解答】解:解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、0、1,则﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.【点评】本题考查了一元一次不等式组的整数解,难度适中,关键是根据整数解确定关于a的不等式组.6.(3分)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=60°.【分析】连接DC,得出∠BDC的度数,进而得出∠A的度数,利用互余解答即可.【解答】解:连接DC,∵AC为⊙O的直径,OD⊥AC,∴∠DOC=90°,∠ABC=90°,∵OD=OC,∴∠ODC=45°,∵∠BDO=15°,∴∠BDC=30°,∴∠A=30°,∴∠ACB=60°,故答案为:60°.【点评】此题考查圆周角定理,关键是根据直径和垂直得出∠BDC的度数.7.(3分)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.【分析】设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后求出r后利用勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,所以此圆锥的高==.故答案为.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8.(3分)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为2.【分析】作DC关于AB的对称点D′C′,以BC中的O为圆心作半圆O,连D′O分别交AB及半圆O于P、G.将PD+PG转化为D′G找到最小值.【解答】解:如图:取点D关于直线AB的对称点D′.以BC中点O为圆心,OB为半径画半圆.连接OD′交AB于点P,交半圆O于点G,连BG.连CG并延长交AB于点E.由以上作图可知,BG⊥EC于G.PD+PG=PD′+PG=D′G由两点之间线段最短可知,此时PD+PG最小.∵D′C=4,OC′=6∴D′O=∴D′G=2∴PD+PG的最小值为2故答案为:2【点评】本题考查线段和的最小值问题,通常思想是将线段之和转化为固定两点之间的线段和最短.9.(3分)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是 3.6或4.32或4.8.=6,找出所有可【分析】在Rt△ABC中,通过解直角三角形可得出AC=5、S△ABC能的剪法,并求出剪出的等腰三角形的面积即可.【解答】解:在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴AC==5,S=AB•BC=6.△ABC沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=S△ABC=×6=3.6;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD===2.4,∴AD=DP==1.8,∴AP=2AD=3.6,∴S等腰△ABP =S△ABC=×6=4.32;④当CB=CP=4时,如图3所示,S等腰△BCP=S△ABC=×6=4.8.综上所述:等腰三角形的面积可能为3.6或4.32或4.8.故答案为3.6或4.32或4.8.【点评】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的剪法,并求出剪出的等腰三角形的面积是解题的关键.10.(3分)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…….记△B1CB2面积为S1,△B2C1B3面积为S2,△B3C2B4面积为S3,则S n=•()n﹣1.【分析】先计算出S1=,再根据阴影三角形都相似,后面的三角形面积是前面面积的.【解答】解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=B1C=1,∠ACB=60°,∴B1B2=B1C=,B2C=,∴S1=××=依题意得,图中阴影部分的三角形都是相似图形,且相似比为,故S n=•()n﹣1.故答案为:•()n﹣1.【点评】此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.二、选择题(每题3分,满分30分)11.(3分)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a9,不符合题意;B、原式=27a6,不符合题意;C、原式=a2﹣2ab+b2,不符合题意;D、原式=6a2,符合题意.故选:D.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.12.(3分)如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,是中心对称图形,不合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、不是轴对称图形,也不是中心对称图形,不合题意.故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.(3分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.6【分析】左视图底面有2个小正方体,主视图与左视图相同,则可以判断出该几何体底面最少有2个小正方体,最多有4个.根据这个思路可判断出该几何体有多少个小立方块.【解答】解:左视图与主视图相同,可判断出底面最少有2个,最多有4个小正方体.而第二层则只有1个小正方体.则这个几何体的小立方块可能有3或4或5个.故选:D.【点评】本题考查了由三视图判断几何体,难度不大,主要考查了考生的空间想象能力以及三视图的相关知识.14.(3分)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是20【分析】直接利用平均数、中位数、众数以及极差的定义分别分析得出答案.【解答】解:A、平均分为:(94+98+90+94+74)=90(分),故此选项错误;B、五名同学成绩按大小顺序排序为:74,90,94,94,98,故中位数是94分,故此选项错误;C、94分、98分、90分、94分、74分中,众数是94分.故此选项正确;D、极差是98﹣74=24,故此选项错误.故选:C.【点评】此题主要考查了平均数、中位数、众数以及极差的定义,正确把握相关定义是解题关键.15.(3分)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.7【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排15场比赛即可列出方程求解.【解答】解:设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.【点评】此题考查了一元二次方程的应用,关键是准确找到描述语,根据等量关系准确的列出方程.此题还要判断所求的解是否符合题意,舍去不合题意的解.16.(3分)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠2【分析】直接解方程得出分式的分母为零,再利用x≠﹣1求出答案.【解答】解:=1解得:x=m﹣3,∵关于x的分式方程=1的解是负数,∴m﹣3<0,解得:m<3,当x=m﹣3=﹣1时,方程无解,则m≠2,故m的取值范围是:m<3且m≠2.故选:D.【点评】此题主要考查了分式方程的解,正确得出分母不为零是解题关键.17.(3分)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A.π﹣6 B.πC.π﹣3 D.+π【分析】根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB 的面积,根据扇形面积公式计算即可.【解答】解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED的面积=△ABC的面积,由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积﹣△ABC的面积,∴阴影部分的面积=扇形ADB的面积==π,故选:B.【点评】本题考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键.18.(3分)如图,∠AOB=90°,且OA、OB分别与反比例函数y=(x>0)、y=﹣(x<0)的图象交于A、B两点,则tan∠OAB的值是()A.B.C.1 D.【分析】首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A在反比例函数y=的图象上,点B在反比例函数y=﹣的图象上,即可得S△AOC =2,S△OBD=,然后根据相似三角形面积的比等于相似比的平方,即可得=,然后由正切函数的定义求得答案.【解答】解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,∴∠ACO=∠ODB=90°,∴∠OBD+∠BOD=90°,∵∠AOB=90°,∴∠BOD +∠AOC=90°,∴∠OBD=∠AOC ,∴△OBD ∽△AOC , ∴=()2,∵点A 在反比例函数y=的图象上,点B 在反比例函数y=﹣的图象上, ∴S △OBD =,S △AOC =2, ∴=,∴tan ∠OAB==. 故选:A .【点评】此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.注意掌握数形结合思想的应用,注意掌握辅助线的作法.19.(3分)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A .4种B .3种C .2种D .1种【分析】设购买篮球x 个,排球y 个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x 、y 的方程,由x 、y 均为正整数即可得.【解答】解:设购买篮球x 个,排球y 个,根据题意可得120x +90y=1200,则y=,∵x 、y 均为正整数,∴x=1、y=12;x=4、y=8;x=7、y=4;所以购买资金恰好用尽的情况下,购买方案有3种,故选:B .【点评】本题主要考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.20.(3分)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD ,分别交BC 、BD 于点E 、P ,连接OE ,∠ADC=60°,AB=BC=1,则下列结论: ①∠CAD=30°②BD=③S 平行四边形ABCD =AB•AC ④OE=AD ⑤S △APO =,正确的个数是( )A .2B .3C .4D .5【分析】①先根据角平分线和平行得:∠BAE=∠BEA ,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE 是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;②先根据三角形中位线定理得:OE=AB=,OE ∥AB ,根据勾股定理计算OC==和OD 的长,可得BD 的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;⑤根据同高三角形面积的比等于对应底边的比可得:S △AOE =S △EOC =OE•OC=,=,代入可得结论.【解答】解:①∵AE 平分∠BAD ,∴∠BAE=∠DAE ,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC==,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD==,∴BD=2OD=,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,∴OE=AB,∵AB=BC,∴OE=BC=AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=,∴S△AOE =S△EOC=OE•OC==,∵OE∥AB,∴,∴=,∴S△AOP===;故⑤正确;本题正确的有:①②③④⑤,5个,故选:D.【点评】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.三、解答题(满分60分)21.(5分)先化简,再求值:(a﹣)÷,其中a=,b=1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【解答】解:(a﹣)÷===a﹣b,当a=,b=1时,原式==﹣.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.(6分)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1.(2)画出△ABC绕点O逆时针旋转90°后得到的△A2B2C2.(3)在(2)的条件下,求点A所经过的路径长(结果保留π).【分析】(1)直接利用关于x轴对称的性质得出对应点位置进而得出答案;(2)利用旋转的性质得出对应点位置进而得出答案;(3)直接利用弧长公式计算得出答案.【解答】解:(1)如图:△A1B1C1,即为所求;(2)如图:△A2B2C2,即为所求;(3)r==,A经过的路径长:×2×π×=π.【点评】此题主要考查了旋转变换以及轴对称变换和弧长公式应用,正确得出对应点位置是解题关键.23.(6分)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.【分析】(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.【解答】解:(1)由题意得:x=﹣=﹣=﹣2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=﹣2,BC=6,∴B横坐标为﹣5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(﹣5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=﹣1,即y=﹣x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴=,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=﹣2代入直线AB解析式得:y=4,此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);当QH=3时,把x=﹣3代入直线AB解析式得:y=5,此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P (﹣13,0),综上,P的坐标为(﹣6,0)或(﹣13,0).【点评】此题考查了待定系数法求二次函数解析式,二次函数性质,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.24.(7分)为弘扬中华优秀传统文化,某校开展了“经典雅韵”诵读比赛活动,现随机抽取部分同学的成绩进行统计,并绘制如下两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=30,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?.【分析】(1)先根据E等级人数及其占总人数的比例可得总人数,再用D等级人数除以总人数可得a的值,用总人数减去其他各等级人数求得C等级人数可补全图形;(2)用360°乘以A等级人数所占比例可得;(3)用总人数乘以样本中E等级人数所占比例.【解答】解:(1)∵被调查的总人数为10÷=50(人),∴D等级人数所占百分比a%=×100%=30%,即a=30,C等级人数为50﹣(5+7+15+10)=13人,补全图形如下:故答案为:30;(2)扇形B的圆心角度数为360°×=50.4°;(3)估计获得优秀奖的学生有2000×=400人.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(8分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为80件,图中d值为770.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?【分析】(1)由图象的信息解答即可;(2)利用待定系数法确定解析式即可;(3)根据题意列出方程解答即可.【解答】解:(1)由图象甲车间每小时加工零件个数为720÷9=80个,d=770,故答案为:80,770(2)b=80×2﹣40=120,a=(200﹣40)÷80+2=4,∴B(4,120),C(9,770)设y BC=kx+b,过B、C,∴,解得,∴y=130x﹣400(4≤x≤9)(3)由题意得:80x+130x﹣400=1000,解得:x=答:甲车间加工天时,两车间加工零件总数为1000件【点评】本题为一次函数实际应用问题,关键是根据一次函数图象的实际意义和根据图象确定一次函数关系式解答.26.(8分)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点。
2020年安徽省中考数学试卷(含答案)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A, B, C, D四个选项,其中只有一个是符合题目要求的.1.(4分)下列各数中,比-2小的数是()A. -3B. -1C. 0D. 2【解答】解:根据两个负数,绝对值大的反而小可知-3<-2.故选:A.2.(4分)计算的结果是()A. 一〈JB.〜C. crD. cr【解答】解:原式故选:C3.(4分)下面四个几何体中,主视图为三角形的是()【解答】解:A、主视图是圆,故A不符合题意:B、主视图是三角形,故笈符合题意:C、主视图是矩形,故C不符合题意:D、主视图是正方形,故。
不符合题意:故选:B.4.(4分)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A. 5.47xlO8B. 0.547x10sC. 547xIO5D. 5.47xlO7【解答】解:54700000用科学记数法表示为:5.47 xlO7.故选:Q.5. (4分)下列方程中,有两个相等实数根的是()A. x2+\ = 2xB. x2+l=0C. x2-2x = 3D. x2-2x = 0【解答】解:A、△ = (-2)2-4xlxl = 0,有两个相等实数根;B、△ = ()-4 = -4<0,没有实数根:C、△ = (-2)2-4xlx(-3) = 16>0,有两个不相等实数根:D、△ = (-2)2-4xlx0 = 4>0,有两个不相等实数根.故选:A.6. (4分)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10, 11, 13, 11, 13, 15.关于这组数据,冉冉得出如下结果,其中错误的是( )A.众数是11B.平均数是12C.方差是孩D.中位数是13【解答】解:数据11,10,11, 13, 11, 13, 15中,11出现的次数最多是3次,因此众数是11,于是A选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是。
西藏2020年中考数学试卷一、选择题(共12题;共24分)1.20+(﹣20)的结果是()A. ﹣40B. 0C. 20D. 40【答案】B【考点】有理数的加法【解析】【解答】解:20+(﹣20)=0.故答案为:B.【分析】根据互为相反数的两个数的和为0即可得出答案.2.如图,一个由圆柱和长方体组成的几何体水平放置,它的俯视图是()A. B. C. D.【答案】C【考点】简单组合体的三视图【解析】【解答】解:从上面看,是一个矩形,矩形的中间是一个圆.故答案为:C.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.3.今年以来,西藏自治区劳动就业服务局积极落实失业保险稳岗返还政策,在相关部门的配合与大力帮助下,兑现稳岗返还资金16000000元,将16000000用科学记数法表示为()A. 16×106B. 1.6×107C. 1.6×108D. 0.16×108【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:16000000=1.6×107.故答案为:B.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.4.下列分解因式正确的一项是()A. x2﹣9=(x+3)(x﹣3)B. 2xy+4x=2(xy+2x)C. x2﹣2x﹣1=(x﹣1)2D. x2+y2=(x+y)2【答案】A【考点】提公因式法因式分解,因式分解﹣运用公式法【解析】【解答】解:A、原式=(x+3)(x﹣3),符合题意;B、原式=2x(y+2),不符合题意;C、原式不能分解,不符合题意;D、原式不能分解,不符合题意.故答案为:A.【分析】将一个多项式化为几个整式的乘积形式的恒等变形就是因式分解,因式分解必须分解到每一个因式都不能再分解为止,从而即可一一判断得出答案.5.一个多边形的内角和是外角和的4倍,则这个多边形的边数是()A. 8B. 9C. 10D. 11【答案】C【考点】多边形内角与外角【解析】【解答】解:设这个多边形的边数是n,则有(n-2)×180°=360°×4,所有n=10.故答案为:C.【分析】利用多边形的内角和公式得该多边形的内角度数为(n-2)×180°,而任何多边形的外角和都为360°,从而利用“ 多边形的内角和是外角和的4倍”列方程即可解决问题.6.下列运算正确的是()A. 2a•5a=10aB. (-a3)2+(-a2)3=a5C. (-2a)3=-6a3D. a6÷a2=a4(a≠0)【答案】 D【考点】同底数幂的除法,单项式乘单项式,整式的混合运算,积的乘方【解析】【解答】解:A、2a•5a=10a2≠10a,本选项计算错误;B、(-a3)2+(-a2)3=a6-a6=0≠a5,本选项计算错误;C、(-2a)3=-8a3≠-6a3,本选项计算错误;D、a6÷a2=a4(a≠0),本选项计算正确.故答案为:D.【分析】根据单项式乘单项式、积的乘方与幂的乘方、同底数幂的除法法则依次计算,判断即可.7.如图,下列四个条件中,能判定平行四边形ABCD为菱形的是()A. ∠ADB=90°B. OA=OBC. OA=OCD. AB=BC【答案】 D【考点】菱形的判定【解析】【解答】解:A、平行四边形ABCD中,∠ADB=90°,不能判定四边形ABCD为菱形,故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴AC=BD,∴平行四边形ABCD是矩形,不能判定四边形ABCD为菱形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,∴OA=OC,不能判定四边形ABCD为菱形,故选项C不符合题意;D、∵四边形ABCD是平行四边形,AB=BC,∴平行四边形ABCD是菱形;故选项D符合题意.故答案为:D.【分析】根据菱形的判定定理和矩形的判定定理分别对各个选项进行推理判断即可.8.格桑同学一周的体温监测结果如下表:分析上表中的数据,众数、中位数、平均数分别是()A. 35.9,36.2,36.3B. 35.9,36.3,36.6C. 36.5,36.3,36.3D. 36.5,36.2,36.6【答案】C【考点】分析数据的集中趋势【解析】【解答】解:这组数据中36.5出现了2次,次数最多,所以众数是36.5;将数据按照从小到大(或从大到小)的顺序排列为35.9,36.1,36.2,36.3,36.5,36.5,36.6,处于中间的数据是36.3,所以中位数是36.3;×(36.3+35.9+36.5+36.3+36.1+36.5+36.3)=36.3.平均数是17故答案为:C.【分析】众数是指一组数据中出现次数最多的数;中位数是指一组数据按序排列后①偶数个数据时,中间两个数的平均数就是这组数据的中位数;②奇数个数据时,中间的数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.根据定义即可求解.9.如图,一个弹簧不挂重物时长6cm,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数图象如图所示,则图中a的值是()A. 3B. 4C. 5D. 6【答案】 A【考点】一次函数的实际应用【解析】【解答】解:设y 与x 的函数关系式为y =kx+b ,{b =69k +b =10.5, 解得, {k =0.5b=6 , 即y 与x 的函数关系式是y =0.5x+6,当y =7.5时,7.5=0.5x+6,得x =3,即a 的值为3,故答案为:A.【分析】根据题目中的函数图象,可以求得y 与x 的函数关系式,然后令y =7.5,求出x 的值,即此时x 的值就是a 的值,本题得以解决.10.如图,AB 为半圆O 的直径,C 为半圆上的一点,OD ⊥AC ,垂足为D ,延长OD 与半圆O 交于点E.若AB =8,∠CAB =30°,则图中阴影部分的面积为( )A. 43π−√3B. 43π−2√3C. 83π−√3D. 83π−2√3【答案】 D【考点】垂径定理,扇形面积的计算【解析】【解答】解:∵OD ⊥AC ,∴∠ADO =90°, AE⌢ = CE ⌢ ,AD =CD , ∵∠CAB =30°,OA =4,∴OD = 12 OA =2,AD = √32 OA =2 √3 , ∴图中阴影部分的面积=S 扇形AOE ﹣S △ADO =60⋅π×42360 ﹣ 12×2√3 ×2= 8π3 ﹣2 √3 ,故答案为:D. 【分析】根据垂径定理得到 AE ⌢ = CE ⌢ ,AD =CD ,解直角三角形得到OD = 12 OA =2,AD = √32OA =2 √3 ,根据扇形和三角形的面积公式即可得到结论.11.如图,在平面直角坐标系中,直线y =x 与反比例函数y = 4x (x >0)的图象交于点A ,将直线y =x 沿y 轴向上平移b 个单位长度,交y 轴于点B ,交反比例函数图象于点C.若OA =2BC ,则b 的值为( )A. 1B. 2C. 3D. 4【答案】C【考点】一次函数图象与几何变换,反比例函数与一次函数的交点问题,相似三角形的判定与性质【解析】【解答】解:∵直线y=x与反比例函数y=4x(x>0)的图象交于点A,∴解x=4x求得x=±2,∴A的横坐标为2,如图,过C点、A点作y轴垂线,∵OA//BC,∴∠CBG=∠AOH,∴△OHA∼△BGC,∵OA=2BC,∴OABC =AHGC=2,∴2BCBC =2GC,解得GC=1,∴C的横坐标为1,把x=1代入y=4x得,y=4,∴C(1,4),∵将直线y=x沿y轴向上平移b个单位长度,得到直线y=x+b,∴把C的坐标代入得4=1+b,求得b=3,故答案为:C.【分析】解析式联立,解方程求得A的横坐标,根据定义求得C的横坐标,把横坐标代入反比例函数的解析式求得C的坐标,代入y=x+b即可求得b的值.12.观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n个相同的数是103,则n等于()A. 18 B. 19 C. 20 D. 21【答案】A【考点】探索数与式的规律【解析】【解答】解:第1个相同的数是1=0×6+1,第2个相同的数是7=1×6+1,第3个相同的数是13=2×6+1,第4个相同的数是19=3×6+1,…,第n个相同的数是6(n−1)+1=6n−5,所以6n−5=103,解得n=18.答:第n个相同的数是103,则n等于18.故答案为:A.【分析】根据探究发现:第1个相同的数是1,第2个相同的数是7,…,第n个相同的数是6(n−1)+ 1=6n−5,进而可得n的值.二、填空题(共6题;共6分)13.若√x+3在实数范围内有意义,则实数x的取值范围是________.【答案】x≥-3【考点】二次根式有意义的条件【解析】【解答】解:∵√x+3在实数范围内有意义∴x+3≥0∴x≥−3故答案为:x≥−3.【分析】根据二次根式有意义的条件,二次根号下的数非负的性质,列出不等式,解不等式即可得出本题答案.14.分式方程2x−1=3x+1的解为________.【答案】x=5【考点】解分式方程【解析】【解答】解:方程两边同时乘以(x-1)(x+1),得:2x+2=3x﹣3,解得:x=5,检验:当x=5时(x-1)(x+1)≠0,所以x=5是分式方程的解,故答案为:x=5.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.15.计算:(π﹣1)0+|﹣2|+ √12=________.【答案】3+2 √3【考点】实数的运算【解析】【解答】解:(π﹣1)0+|﹣2|+ √12=1+2+2 √3=3+2 √3.故答案为:3+2 √3.【分析】首先根据0指数的意义、绝对值的意义、二次根式的性质分别化简,然后从左向右依次计算,求出算式的值是多少即可.16.如图,已知平行四边形ABCD,以点A为圆心,适当长为半径画弧分别交AB,AD于点E,F,再分别以EF的长为半径画弧,两弧在∠DAB的内部相交于点G,画射线AG交DC于H.若点E,F为圆心,大于12∠B=140°,则∠DHA=________.【答案】20°【考点】平行线的性质,平行四边形的性质【解析】【解答】解:∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,∴∠BAD=180°﹣140°=40°,由作法得AH平分∠BAD,∴∠BAH=∠DAH,∴∠BAD=1∠BAD=20°,2∵AB∥CD,∴∠DHA=∠BAH=20°.故答案为:20°.【分析】先利用平行四边形的性质得到AB∥CD,AD∥BC,则利用平行线的性质可计算出∠BAD=40°,再∠BAD=20°,然后根据平行线的性质得到∠DHA的度数.由作法得AH平分∠BAD,所以∠BAD=1217.当﹣1≤x≤3时,二次函数y=x2﹣4x+5有最大值m,则m=________.【答案】10【考点】二次函数的最值,二次函数y=ax^2+bx+c的性质【解析】【解答】解:∵二次函数y=x2﹣4x+5=(x﹣2)2+1,∴该函数开口向上,对称轴为x=2,∵当﹣1≤x≤3时,二次函数y=x2﹣4x+5有最大值m,∴当x=﹣1时,该函数取得最大值,此时m=(﹣1﹣2)2+1=10.故答案为:10.【分析】首先将二次函数的解析式配成顶点式,根据该函数的开口向上,故图象上的点离对称轴的水平距离越大,函数值就越大,从而即可解决问题.18.如图,在矩形ABCD中,E为AB的中点,P为BC边上的任意一点,把△PBE沿PE折叠,得到△PBE,连接CF.若AB=10,BC=12,则CF的最小值为________.【答案】8【考点】矩形的性质,翻折变换(折叠问题)【解析】【解答】解:如图所示,点F在以E为圆心EA为半径的圆上运动,当E、F、C共线时时,此时CF的值最小,根据折叠的性质,△EBP≌△EFP,∴EF⊥PF,EB=EF,∵E是AB边的中点,AB=10,∴AE=EF=5,∵AD=BC=12,∴CE=√BE2+BC2=√52+122=13,∴CF=CE﹣EF=13﹣5=8.故答案为:8.【分析】点F在以E为圆心、EA为半径的圆上运动,当E、F、C共线时时,此时FC的值最小,根据勾股定理求出CE,再根据折叠的性质得到BE=EF=5即可.三、解答题(共7题;共50分)19.解不等式组:{x+1<22(1−x)⩽6并把解集在数轴上表示出来.【答案】解:解不等式x+1<2,得:x<1,解不等式2(1﹣x)≤6,得:x≥﹣2,则不等式组的解集为﹣2≤x<1,将不等式组的解集表示在数轴上如下:【考点】在数轴上表示不等式组的解集,解一元一次不等式组【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,然后根据数轴上表示不等式组的解集的方法“大向右,小向左,实心等于,空心不等”在数轴上表示出来即可.20.如图,△ABC中,D为BC边上的一点,AD=AC,以线段AD为边作△ADE,使得AE=AB,∠BAE =∠CAD.求证:DE=CB.【答案】证明:∵∠BAE=∠CAD,∴∠BAE+∠BAD=∠CAD+∠BAD,即∠DAE=∠CAB,在△ADE和△ACB中,{AD=AC∠DAE=∠CABAE=AB,∴△ADE≌△ACB(SAS),∴DE=CB.【考点】三角形全等及其性质,三角形全等的判定(SAS)【解析】【分析】先由角的和差性质证得∠DAE=∠CAB,再根据SAS定理证明△ADE≌△ACB,最后根据全等三角形的对应边相等得出DE=CB.21.某校组织开展运动会,小明和扎西两名同学准备从100米短跑(记为项目A),800米中长跑(记为项目B),跳远(记为项目C),跳高(记为项目D),即从A,B,C,D四个项目中,分别选择一个项目参加比赛.请用画树状图或列表法求两名同学选到相同项目的概率.【答案】解:画树状图得:∵共有16种等可能的结果,两名同学选到相同项目的为4种情况,∴P(两名同学选到相同项目)=416=14【考点】列表法与树状图法【解析】【分析】先根据题意画出树状图,由图可知:共有16种等可能的结果,两名同学选到相同项目的为4种情况,从而根据概率公式即可算出答案.22.如图所示,某建筑物楼顶有信号塔EF,卓玛同学为了探究信号塔EF的高度,从建筑物一层A点沿直线AD出发,到达C点时刚好能看到信号塔的最高点F,测得仰角∠ACF=60°,AC长7米.接着卓玛再从C点出发,继续沿AD方向走了8米后到达B点,此时刚好能看到信号塔的最低点E,测得仰角∠B=30°.(不计卓玛同学的身高)求信号塔EF的高度(结果保留根号).【答案】解:在Rt△ACF中,∵∠ACF=60°,AC=7米,∴AF=AC•tan60°=7 √3米,∵BC=8米,∴AB=15米,在Rt△ABE中,∵∠B=30°,∴AE=AB•tan30°=15× √3=5 √3米,3∴EF=AF﹣AE=7 √3﹣5 √3=2 √3(米),答:信号塔EF的高度为2 √3米.【考点】解直角三角形的应用﹣仰角俯角问题【解析】【分析】在Rt△ACF中,根据正切函数的定义由AF=AC•tan60°算出AF的长,在Rt△ABE中,根据正切函数的定义由AE=AB•tan30° 得到AE的长,进而根据EF=AF﹣AE 得到结论.23.列方程(组)解应用题:某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600m2的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m,另外三面用69m长的篱笆围成,其中一边开有一扇1m宽的门(不包括篱笆).求这个茶园的长和宽.【答案】解:设茶园垂直于墙的一边长为xm,则另一边的长度为(69+1﹣2x)m,根据题意,得x(69+1﹣2x)=600,整理,得x2﹣35x+300=0,解得x1=15,x2=20,当x=15时,70﹣2x=40>35,不符合题意舍去;当x=20时,70﹣2x=30,符合题意.答:这个茶园的长和宽分别为30m、20m.【考点】一元二次方程的实际应用-几何问题【解析】【分析】设当茶园垂直于墙的一边长为xm时,则另一边的长度为(69+1﹣2x)m,根据茶园的面积为600m2,列出方程并解答.24.如图所示,AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,CD与⊙O有公共点E,且AD=DE.(1)求证:CD是⊙O的切线;(2)若AB=12,BC=4,求AD的长.【答案】(1)证明:连接OD,OE,∵AD切⊙O于A点,AB是⊙O的直径,∴∠DAB=90°,∵AD=DE,OA=OE,OD=OD,∵△ADO≌△EDO(SSS),∴∠OED=∠OAD=90°,∴CD是⊙O的切线(2)解:过C作CH⊥AD于H,∵AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,∴∠DAB=∠ABC=∠CHA=90°,∴四边形ABCH是矩形,∴CH=AB=12,AH=BC=4,∵CD是⊙O的切线,∴AD=DE,CE=BC,∴DH=AD﹣BC=AD﹣4,CD=AD+4,∵CH2+DH2=CD2,∴122+(AD﹣4)2=(AD+4)2,∴AD=8.【考点】圆周角定理,切线的判定与性质(1)连接OD,OE,根据切线的性质得到∠DAB=90°,从而利用SSS判断出△ADO≌△EDO,【解析】【分析】根据全等三角形的对应角相等得到∠OED=∠OAD=90°,于是得到CD是⊙O的切线;(2)过C作CH⊥AD于H,根据已知条件推出四边形ABCH是矩形,求得CH=AB=12,AH=BC=4,根据切线的性质得到AD=DE,CE=BC,求得DH=AD﹣BC=AD﹣4,CD=AD+4,根据勾股定理即可得到结论.25.在平面直角坐标系中,二次函数y=12x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图甲,连接AC,PA,PC,若S△PAC=152,求点P的坐标;(3)如图乙,过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.【答案】(1)解:∵二次函数y=12x2+bx+c的图象与x轴交于A(−2,0),B(4,0)两点,∴二次函数的解析式为y=12(x+2)(x−4),即y=12x2−x−4.(2)解:如图甲中,连接OP.设P(m,12m2−m−4).由题意,A(−2,0),C(0,−4),∵SΔPAC=SΔAOC+SΔOPC−SΔAOP,∴152=12×2×4+12×4×m−12×2×(−12m2+m+4),整理得,m2+2m−15=0,解得m=3或−5(舍弃),∴P(3,−52).(3)解:结论:点P在运动过程中线段DE的长是定值,DE=2.理由:如图乙中,连接AM,PM,EM,设M(1,t),P[m,12(m+2)(m−4)],E(m,n).由题意A(−2,0),AM=PM,∴32+t2=(m−1)2+[12(m+2)(m−4)−t]2,解得t=1+14(m+2)(m−4),∵ME=PM,PE⊥AB,∴t=n+12(m+2)(m−4)2,∴n=2t−12(m+2)(m−4)=2[1+12(m+2)(m−4)]−12(m+2)(m−4)=2,∴DE=2,∴点P在运动过程中线段DE的长是定值,DE=2.【考点】二次函数-动态几何问题【解析】【分析】(1)由二次函数y=12x2+bx+c的图象与x轴交于A(−2,0),B(4,0)两点,可得二次函数的解析式为y=12(x+2)(x−4),由此即可解决问题;(2)根据SΔPAC=SΔAOC+SΔOPC−SΔAOP,构建方程即可解决问题;(3)结论:点P在运动过程中线段DE的长是定值,DE=2.根据AM=MP,根据方程求出t,再利用中点坐标公式,求出点E的纵坐标即可解决问题.。
2020年全国中考数学试题分类(11)——圆一.圆心角、弧、弦的关系(共1小题)1.(2020•广安)如图,点A,B,C,D四点均在⊙O上,∠AOD=68°,AO∥DC,则∠B的度数为()A.40°B.60°C.56°D.68°二.圆周角定理(共9小题)2.(2020•巴中)如图,在⊙O中,点A、B、C在圆上,∠ACB=45°,AB=2√2,则⊙O的半径OA的长是()A.√2B.2 C.2√2D.33.(2020•贵港)如图,点A,B,C均在⊙O上,若∠ACB=130°,则∠α的度数为()A.100°B.110°C.120°D.130°̂上任意一4.(2020•临沂)如图,在⊙O中,AB为直径,∠AOC=80°.点D为弦AC的中点,点E为BB 点.则∠CED的大小可能是()A.10°B.20°C.30°D.40°5.(2020•陕西)如图,点A、B、C在⊙O上,BC∥OA,连接BO并延长,交⊙O于点D,连接AC,DC.若∠A=25°,则∠D的大小为()A.25°B.30°C.40°D.50°6.(2020•兰州)如图,AB是⊙O的直径,若∠BAC=20°,则∠ADC=()A .40°B .60°C .70°D .80°7.(2020•阜新)如图,AB 为⊙O 的直径,C ,D 是圆周上的两点,若∠ABC =38°,则锐角∠BDC 的度数为( )A .57°B .52°C .38°D .26°8.(2020•赤峰)如图,⊙A 经过平面直角坐标系的原点O ,交x 轴于点B (﹣4,0),交y 轴于点C (0,3),点D 为第二象限内圆上一点.则∠CDO 的正弦值是( )A .35B .−34C .34D .45 9.(2020•眉山)如图,四边形ABCD 的外接圆为⊙O ,BC =CD ,∠DAC =35°,∠ACD =45°,则∠ADB的度数为( )A .55°B .60°C .65°D .70°10.(2020•河池)如图,AB 是⊙O 的直径,点C ,D ,E 都在⊙O 上,∠1=55°,则∠2= °.三.圆内接四边形的性质(共2小题)11.(2020•广西)如图,已知四边形ABCD 为⊙O 的内接四边形,BD 平分∠ABC ,DH ⊥AB 于点H ,DH =√3,∠ABC=120°,则AB+BC的值为()A.√2B.√3C.2 D.√512.(2020•雅安)如图,四边形ABCD内接于圆,∠ABC=60°,对角线BD平分∠ADC.(1)求证:△ABC是等边三角形;(2)过点B作BE∥CD交DA的延长线于点E,若AD=2,DC=3,求△BDE的面积.四.点与圆的位置关系(共1小题)13.(2020•广东)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.五.三角形的外接圆与外心(共3小题)14.(2020•赤峰)如图,△ABC中,AB=AC,AD是∠BAC的平分线,EF是AC的垂直平分线,交AD于点O.若OA=3,则△ABC外接圆的面积为()A.3πB.4πC.6πD.9π̂的长为.15.(2020•锦州)如图,⊙O是△ABC的外接圆,∠ABC=30°,AC=6,则BB16.(2020•黄石)如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,̂的长等于.作△ABC的外接圆,则BB六.直线与圆的位置关系(共1小题)17.(2020•泰州)如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点,若以1cm为半径的⊙O与直线a相切,则OP的长为.七.切线的性质(共4小题)18.(2020•桂林)如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC 的度数是()A.60°B.65°C.70°D.75°19.(2020•眉山)如图,点P为⊙O外一点,过点P作⊙O的切线P A、PB,点A、B为切点,连接AO并延长交PB的延长线于点C,过点C作CD⊥PO,交PO的延长线于点D.已知P A=6,AC=8,则CD的长为.20.(2020•呼和浩特)已知AB为⊙O的直径且长为2r,C为⊙O上异于A,B的点,若AD与过点C的⊙O的切线互相垂直,垂足为D.①若等腰三角形AOC的顶角为120度,则CD=12r,②若△AOC为正三角形,则CD=√32r,③若等腰三角形AOC的对称轴经过点D,则CD=r,④无论点C在何处,将△ADC沿AC折叠,点D一定落在直径AB上,其中正确结论的序号为.21.(2020•济南)如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O相切于点C,过点A作AD⊥DC,连接AC,BC.(1)求证:AC是∠DAB的角平分线;(2)若AD=2,AB=3,求AC的长.八.切线的判定与性质(共9小题)22.(2020•兰州)如图,在Rt△AOB中,∠AOB=90°,OA=OB,点C是AB的中点,以OC为半径作⊙O.(1)求证:AB是⊙O的切线;(2)若OC=2,求OA的长.23.(2020•西藏)如图所示,AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,CD与⊙O有公共点E,且AD=DE.(1)求证:CD是⊙O的切线;(2)若AB=12,BC=4,求AD的长.24.(2020•葫芦岛)如图,四边形ABCD内接于⊙O,AC是直径,AB=BC,连接BD,过点D的直线与CA的延长线相交于点E,且∠EDA=∠ACD.(1)求证:直线DE是⊙O的切线;(2)若AD=6,CD=8,求BD的长.25.(2020•镇江)如图,▱ABCD 中,∠ABC 的平分线BO 交边AD 于点O ,OD =4,以点O 为圆心,OD 长为半径作⊙O ,分别交边DA 、DC 于点M 、N .点E 在边BC 上,OE 交⊙O 于点G ,G 为BB̂的中点. (1)求证:四边形ABEO 为菱形;(2)已知cos ∠ABC =13,连接AE ,当AE 与⊙O 相切时,求AB 的长. 26.(2020•宁夏)如图,在△ABC 中,∠B =90°,点D 为AC 上一点,以CD 为直径的⊙O 交AB 于点E ,连接CE ,且CE 平分∠ACB .(1)求证:AE 是⊙O 的切线;(2)连接DE ,若∠A =30°,求BB BB .27.(2020•烟台)如图,在▱ABCD 中,∠D =60°,对角线AC ⊥BC ,⊙O 经过点A ,B ,与AC 交于点M ,连接AO 并延长与⊙O 交于点F ,与CB 的延长线交于点E ,AB =EB .(1)求证:EC 是⊙O 的切线;(2)若AD =2√3,求BB ̂的长(结果保留π).28.(2020•广东)如图1,在四边形ABCD 中,AD ∥BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧BB̂上一点,AD =1,BC =2.求tan ∠APE 的值.29.(2020•株洲)AB是⊙O的直径,点C是⊙O上一点,连接AC、BC,直线MN过点C,满足∠BCM=∠BAC=α.(1)如图①,求证:直线MN是⊙O的切线;(2)如图②,点D在线段BC上,过点D作DH⊥MN于点H,直线DH交⊙O于点E、F,连接AF并延长交直线MN于点G,连接CE,且CE=53,若⊙O的半径为1,cosα=34,求AG•ED的值.30.(2020•潍坊)如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧BB̂的中点,过点C作CE ⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.九.三角形的内切圆与内心(共1小题)31.(2020•随州)设边长为a的等边三角形的高、内切圆的半径、外接圆的半径分别为h、r、R,则下列结论不正确的是()A.h=R+r B.R=2r C.r=√34a D.R=√3 3a一十.正多边形和圆(共7小题)32.(2020•济南)如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为.33.(2020•黄石)匈牙利著名数学家爱尔特希(P.Erdos,1913﹣1996)曾提出:在平面内有n个点,其中每三个点都能构成等腰三角形,人们将具有这样性质的n个点构成的点集称为爱尔特希点集.如图,是由五个点A、B、C、D、O构成的爱尔特希点集(它们为正五边形的任意四个顶点及正五边形的中心构成),则∠ADO的度数是.34.(2020•株洲)据《汉书律历志》记载:“量者,龠(yuè)、合、升、斗、斛(hú)也”斛是中国古代的一种量器,“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆”,如图所示.问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的周长为尺.(结果用最简根式表示)35.(2020•南京)如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为cm2.̂上一点(点P与点D,点E不重合),连36.(2020•绥化)如图,正五边形ABCDE内接于⊙O,点P为BB接PC、PD,DG⊥PC,垂足为G,∠PDG等于度.37.(2020•成都)如图,六边形ABCDEF是正六边形,曲线F A1B1C1D1E1F1…叫做“正六边形的渐开线”,BB 1̂,B 1B 1̂,B 1B 1̂,B 1B 1̂,B 1B 1̂,B 1B 1̂,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线F A 1B 1C 1D 1E 1F 1的长度是 .38.(2020•通辽)中心为O 的正六边形ABCDEF 的半径为6cm ,点P ,Q 同时分别从A ,D 两点出发,以1cm /s 的速度沿AF ,DC 向终点F ,C 运动,连接PB ,PE ,QB ,QE ,设运动时间为t (s ).(1)求证:四边形PBQE 为平行四边形;(2)求矩形PBQE 的面积与正六边形ABCDEF 的面积之比.一十一.弧长的计算(共4小题)39.(2020•盘锦)如图,在△ABC 中,AB =BC ,∠ABC =90°,以AB 为直径的⊙O 交AC 于点D ,点E 为线段OB 上的一点,OE :EB =1:√3,连接DE 并延长交CB 的延长线于点F ,连接OF 交⊙O 于点G ,若BF =2√3,则BB̂的长是( ) A .B 3 B .B 2 C .2B 3 D .3B 440.(2020•沈阳)如图,在矩形ABCD 中,AB =√3,BC =2,以点A 为圆心,AD 长为半径画弧交边BC 于点E ,连接AE ,则BB̂的长为( ) A .4B 3 B .π C .2B 3 D .B 3 41.(2020•潍坊)如图,四边形ABCD 是正方形,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的.其中:BB 1̂的圆心为点A ,半径为AD ;B 1B 1̂的圆心为点B ,半径为BA 1;B 1B 1̂的圆心为点C ,半径为CB 1;B 1B 1̂的圆心为点D ,半径为DC 1;⋯BB 1̂,B 1B 1̂,B 1B 1̂,B 1B 1̂,…的圆心依次按点A ,B ,C ,D 循环.若正方形ABCD 的边长为1,则B 2020B 2020̂的长是 .42.(2020•河南)如图,在扇形BOC 中,∠BOC =60°,OD 平分∠BOC 交BB̂于点D ,点E 为半径OB 上一动点.若OB =2,则阴影部分周长的最小值为 .一十二.扇形面积的计算(共6小题)43.(2020•山西)中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到AC =BD =12cm ,C ,D 两点之间的距离为4cm ,圆心角为60°,则图中摆盘的面积是( )A .80πcm 2B .40πcm 2C .24πcm 2D .2πcm 244.(2020•日照)如图,AB 是⊙O 的直径,CD 为⊙O 的弦,AB ⊥CD 于点E ,若CD =6√3,AE =9,则阴影部分的面积为( ) A .6π−92√3 B .12π﹣9√3C .3π−94√3D .9√3 45.(2020•西藏)如图,AB 为半圆O 的直径,C 为半圆上的一点,OD ⊥AC ,垂足为D ,延长OD 与半圆O 交于点E .若AB =8,∠CAB =30°,则图中阴影部分的面积为( )A .43π−√3B .43π﹣2√3C .83π−√3D .83π﹣2√3 46.(2020•呼伦贝尔)若一个扇形的弧长是2πcm ,面积是6πcm 2,则扇形的圆心角是 度.47.(2020•鄂尔多斯)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠BCD =30°,CD =2√3,则阴影部分面积S 阴影= .48.(2020•福建)一个扇形的圆心角是90°,半径为4,则这个扇形的面积为 .(结果保留π)一十三.圆锥的计算(共1小题)49.(2020•广东)如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为 m .一十四.圆的综合题(共1小题)50.(2020•呼和浩特)某同学在学习了正多边形和圆之后,对正五边形的边及相关线段进行研究,发现多处出现著名的黄金分割比√5−12≈0.618.如图,圆内接正五边形ABCDE ,圆心为O ,OA 与BE 交于点H ,AC 、AD 与BE 分别交于点M 、N .根据圆与正五边形的对称性,只对部分图形进行研究.(其它可同理得出)(1)求证:△ABM 是等腰三角形且底角等于36°,并直接说出△BAN 的形状;(2)求证:BB BB =BB BB ,且其比值k =√5−12;(3)由对称性知AO ⊥BE ,由(1)(2)可知BB BB 也是一个黄金分割数,据此求sin18°的值.2020年全国中考数学试题分类(11)——圆参考答案与试题解析一.圆心角、弧、弦的关系(共1小题)1.【解答】解:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=68°,∵OD=OC,∴∠ODC=∠OCD=68°,∴∠COD=44°,∴∠AOC=112°,∴∠B=12∠AOC=56°.故选:C.二.圆周角定理(共9小题)2.【解答】解:根据圆周角定理得:∠AOB=2∠ACB,∵∠ACB=45°,∴∠AOB=90°,∵AB=2√2,OA=OB,∴2OA2=AB2,∴OA=OB=2,故选:B.3.【解答】解:在优弧AB上任意找一点D,连接AD,BD.∵∠D=180°﹣∠ACB=50°,∴∠AOB=2∠D=100°,故选:A.4.【解答】解:连接OD、OE,∵OC=OA,∴△OAC是等腰三角形,∵点D为弦AC的中点,∴∠DOC=40°,∠BOC=100°,设∠BOE =x ,则∠COE =100°﹣x ,∠DOE =100°﹣x +40°, ∵OC =OE ,∠COE =100°﹣x ,∴∠OEC =∠OCE =40°+12x ,∵OD <OE ,∠DOE =100°﹣x +40°=140°﹣x ,∴∠OED <20°+12x , ∴∠CED =∠OEC ﹣∠OED >(40°+12x )﹣(20°+12x )=20°,∵∠CED <∠ABC =40°,∴20°<∠CED <40°故选:C .5.【解答】解:∵BC ∥OA ,∴∠ACB =∠A =25°,∠B =∠AOB =2∠ACB =50°,∵BD 是⊙O 的直径,∴∠BCD =90°,∴∠D =90°﹣∠B =90°﹣50°=40°,故选:C .6.【解答】解:∵AB 是直径,∴∠ACB =90°,∵∠BAC =20°,∴∠ABC =90°﹣20°=70°,∴∠ADC =∠ABC =70°,故选:C .7.【解答】解:连接AC ,∵AB 是⊙O 的直径,∴∠ACB =90°,∵∠ABC =38°,∴∠BAC =90°﹣∠ABC =52°,∴∠BDC =∠BAC =52°.故选:B .8.【解答】解:连接BC ,如图,∵B (﹣4,0),C (0,3),∴OB =4,OC =3,∴BC =√32+42=5,∴sin ∠OBC =BB BB =35, ∵∠ODC =∠OBC ,∴sin ∠CDO =sin ∠OBC =35.故选:A .9.【解答】解:∵BC =CD , ∴BB̂=BB ̂, ∵∠ABD 和∠ACD 所对的弧都是BB̂, ∴∠BAC =∠DAC =35°,∵∠ABD =∠ACD =45°,∴∠ADB =180°﹣∠BAD ﹣∠ABD =180°﹣70°﹣45°=65°. 故选:C .10.【解答】解:如图,连接AD .∵AB 是直径,∴∠ADB =90°,∵∠1=∠ADE ,∴∠1+∠2=90°,∵∠1=55°,∴∠2=35°,故答案为35.三.圆内接四边形的性质(共2小题)11.【解答】解:延长BA 到E ,使AE =BC ,连接DE ,如图,∵BD 平分∠ABC ,∴∠ABD =∠CBD =12∠ABC =12×120°=60°,∵∠DAC =∠DBC =60°,∠DCA =∠DBA =60°,∴△DAC 为等边三角形,∴DA =DC ,在△ADE 和△BCD 中,{BB =BB BBBB =BBBB BB =BB ,∴△ADE ≌△BCD (SAS ),∴∠E =∠DBC =60°,而∠DBA =60°,∴△DBE 为等边三角形,∵DH ⊥AB ,∴BH =EH ,在Rt △BDH 中,BH =√33DH =√33×√3=1,∴BE =2BH =2,∴AB +BC =2.故选:C .12.【解答】(1)证明:∵四边形ABCD 内接于圆.∴∠ABC +∠ADC =180°,∵∠ABC =60°,∴∠ADC =120°,∵DB 平分∠ADC ,∴∠ADB =∠CDB =60°,∴∠ACB =∠ADB =60°,∠BAC =∠CDB =60°,∴∠ABC =∠BCA =∠BAC ,∴△ABC 是等边三角形.(2)过点A 作AM ⊥CD ,垂足为点M ,过点B 作BN ⊥AC ,垂足为点N . ∴∠AMD =90°,∵∠ADC =120°,∴∠ADM =60°,∴∠DAM =30°,∴DM =12AD =1,AM =√BB 2−BB 2=√22−12=√3,∵CD =3,∴CM =CD +DM =1+3=4,∴S △ACD =12CD •AM =12×3×√3=3√32,Rt △AMC 中,∠AMD =90°,∴AC =√BB 2+BB 2=√3+16=√19,∵△ABC 是等边三角形,∴AB =BC =AC =√19,∴BN =√32BC =√572,∴S △ABC =12×√19×√572=19√34, ∴四边形ABCD 的面积=19√34+3√32=25√34, ∵BE ∥CD ,∴∠E +∠ADC =180°,∵∠ADC =120°,∴∠E =60°,∴∠E =∠BDC ,∵四边形ABCD 内接于⊙O ,∴∠EAB =∠BCD ,在△EAB 和△DCB 中,{∠B =∠BBBBBBB =BBBB BB =BB,∴△EAB ≌△DCB (AAS ),∴△BDE 的面积=四边形ABCD 的面积=25√34. 四.点与圆的位置关系(共1小题)13.【解答】解:如图,连接BE ,BD .由题意BD =√22+42=2√5,∵∠MBN =90°,MN =4,EM =NE ,∴BE =12MN =2,∴点E 的运动轨迹是以B 为圆心,2为半径的弧, ∴当点E 落在线段BD 上时,DE 的值最小,∴DE 的最小值为2√5−2.(也可以用DE ≥BD ﹣BE ,即DE ≥2√5−2确定最小值) 故答案为2√5−2.五.三角形的外接圆与外心(共3小题)14.【解答】解:∵AB =AC ,AD 是∠BAC 的平分线, ∴BD =CD ,AD ⊥BC ,∵EF 是AC 的垂直平分线,∴点O 是△ABC 外接圆的圆心,∵OA =3,∴△ABC 外接圆的面积=πr 2=π×32=9π.故选:D .15.【解答】解:连接OC ,OA .∵∠AOC =2∠ABC ,∠ABC =30°,∴∠AOC =60°,∵OA =OC ,∴△AOC 是等边三角形,∴OA =OC =AC =6,∴BB ̂的长=60⋅B ⋅6180=2π, 故答案为2π.16.【解答】解:∵每个小方格都是边长为1的正方形, ∴AB =2√5,AC =√10,BC =√10,∴AC 2+BC 2=AB 2,∴△ACB 为等腰直角三角形,∴∠A =∠B =45°,∴连接OC ,则∠COB =90°,∵OB =√5,∴BB̂的长为:90⋅B ×√5180=√52π, 故答案为:√52π. 六.直线与圆的位置关系(共1小题)17.【解答】解:∵直线a ⊥b ,O 为直线b 上一动点, ∴⊙O 与直线a 相切时,切点为H ,∴OH =1cm ,当点O 在点H 的左侧,⊙O 与直线a 相切时,如图1所示:OP =PH ﹣OH =4﹣1=3(cm );当点O 在点H 的右侧,⊙O 与直线a 相切时,如图2所示:OP =PH +OH =4+1=5(cm );∴⊙O 与直线a 相切,OP 的长为3cm 或5cm ,故答案为:3cm 或5cm .七.切线的性质(共4小题)18.【解答】解:∵AC 与⊙O 相切于点A ,∴AC ⊥OA ,∴∠OAC =90°,∵OA =OB ,∴∠OAB =∠OBA .∵∠O =130°,∴∠OAB=180°−BB2=25°,∴∠BAC=∠OAC﹣∠OAB=90°﹣25°=65°.故选:B.19.【解答】解:连接OB,如图,∵P A、PB为⊙O的切线,∴PB=P A=6,OB⊥PC,OA⊥P A,∴∠CAP=∠CBO=90°,在Rt△APC中,PC=√BB2+BB2=√62+82=10,∴BC=PC﹣PB=4,设⊙O的半径为r,则OA=OB=r,OC=8﹣r,在Rt△BCO中,42+r2=(8﹣r)2,解得r=3,∴OA=3,OC=5,在Rt△OP A中,OP=√BB2+BB2=√32+62=3√5,∵CD⊥PO,∴∠CDO=90°,∵∠COD=∠POA,∠CDO=∠P AO,∴△COD∽△POA,∴CD:P A=OC:OP,即CD:6=5:3√5,∴CD=2√5.故答案为2√5.20.【解答】解:①如图1,∵∠AOC=120°,∴∠CAO=∠ACO=30°,∵CD和圆O相切,AD⊥CD,∴∠OCD=90°,AD∥CO,∴∠ACD=60°,∠CAD=30°,∴CD=12AC,∵C为⊙O上异于A,B的点,∴AC<AB,∴CD≠12r,故①错误;②如图2,过点A作AE⊥OC,垂足为E,若△AOC为正三角形,∠AOC=∠OAC=60°,AC=OC=OA=r,∴∠OAE=30°,∴OE=12AO,AE=√32AO=√32r,∵四边形AECD为矩形,∴CD=AE=√32r,故②正确;③若等腰三角形AOC的对称轴经过点D,如图3,∴AD=CD,而∠ADC=90°,∴∠DAC=∠DCA=45°,又∠OCD=90°,∴∠ACO=∠CAO=45°∴∠DAO=90°,∴四边形AOCD为矩形,∴CD=AO=r,故③正确;④如图4,过点C作CE⊥AO,垂足为E,连接DE,∵OC⊥CD,AD⊥CD,∴OC∥AD,∴∠CAD=∠ACO,∵OC=OA,∴∠ACO=∠CAO,∴∠CAD=∠CAO,∴CD=CE,在△ADC和△AEC中,∠ADC=∠AEC=90°,CD=CE,AC=AC,∴△ADC≌△AEC(HL),∴AD=AE,∴AC垂直平分DE,则点D和点E关于AC对称,即点D一定落在直径上,故④正确.故正确的序号为:②③④,故答案为:②③④.21.【解答】解:(1)证明:连接OC,如图,∵CD与⊙O相切于点C,∴∠OCD =90°,∴∠ACD +∠ACO =90°,∵AD ⊥DC ,∴∠ADC =90°,∴∠ACD +∠DAC =90°,∴∠ACO =∠DAC ,∵OA =OC ,∴∠OAC =∠OCA ,∴∠DAC =∠OAC ,∴AC 是∠DAB 的角平分线;(2)∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠D =∠ACB =90°,∵∠DAC =∠BAC ,∴Rt △ADC ∽Rt △ACB ,∴BB BB =BB BB ,∴AC 2=AD •AB =2×3=6,∴AC =√6.八.切线的判定与性质(共9小题)22.【解答】(1)证明:∵OA =OB ,点C 是AB 的中点,∴OC ⊥AB ,∵OC 为⊙O 的半径,∴AB 是⊙O 的切线;(2)∵△AOB 是等腰直角三角形,点C 是AB 的中点,∴OC ⊥AB ,AB =2OC =4,∵12OA 2=12BB ⋅BB , ∴OA =√2×4=2√2.23.【解答】(1)证明:连接OD ,OE ,∵AD 切⊙O 于A 点,AB 是⊙O 的直径,∴∠DAB =90°,∵AD =DE ,OA =OE ,OD =OD ,∴△ADO ≌△EDO (SSS ),∴∠OED =∠OAD =90°,∴CD 是⊙O 的切线;(2)解:过C 作CH ⊥AD 于H ,∵AB 是⊙O 的直径,AD 和BC 分别切⊙O 于A ,B 两点,∴∠DAB =∠ABC =∠CHA =90°,∴四边形ABCH 是矩形,∴CH =AB =12,AH =BC =4,∵CD 是⊙O 的切线,∴AD =DE ,CE =BC ,∴DH =AD ﹣BC =AD ﹣4,CD =AD +4,∵CH 2+DH 2=CD 2,∴122+(AD ﹣4)2=(AD +4)2,∴AD =9.24.【解答】(1)证明:连接OD,∵OC=OD,∴∠OCD=∠ODC,∵AC是直径,∴∠ADC=90°,∵∠EDA=∠ACD,∴∠ADO+∠ODC=∠EDA+∠ADO=90°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∵OD是半径,∴直线DE是⊙O的切线.(2)解法一:过点A作AF⊥BD于点F,则∠AFB=∠AFD=90°,∵AC是直径,∴∠ABC=∠ADC=90°,∵在Rt△ACD中,AD=6,CD=8,∴AC2=AD2+CD2=62+82=100,∴AC=10,∵在Rt△ABC中,AB=BC,∴∠BAC=∠ACB=45°,∵BBB∠BBB=BB BB,∴BB=BBB45°⋅BB=5√2,∵∠ADB=∠ACB=45°,∵在Rt△ADF中,AD=6,∵BBB∠BBB=BB BB,∴BB=BBB45°⋅BB=3√2,∴BB=BB=3√2,在Rt△ABF中,BB2=BB2−BB2=(5√2)2−(3√2)2=32,∴BB=4√2,∴BB=BB+BB=7√2.解法二:过点B作BH⊥BD交DC延长线于点H.∴∠DBH=90°,∵AC是直径,∴∠ABC=90°,∵∠ABD=90°﹣∠DBC,∠CBH=90°﹣∠DBC,∴∠ABD=∠CBH,∵四边形ABCD内接于⊙O,∴∠BAD+∠BCD=180°,∵∠BCD+∠BCH=180°,∴∠BAD=∠BCH,∵AB=CB,∴△ABD≌△CBH(ASA),∴AD =CH ,BD =BH ,∵AD =6,CD =8,∴DH =CD +CH =14,在Rt △BDH 中,∵BD 2=DH 2﹣BH 2,BD =BH ,则BD 2=98.∴BB =7√2.25.【解答】解:(1)证明:∵G 为BB̂的中点, ∴∠MOG =∠MDN .∵四边形ABCD 是平行四边形.∴AO ∥BE ,∠MDN +∠A =180°,∴∠MOG +∠A =180°,∴AB ∥OE ,∴四边形ABEO 是平行四边形.∵BO 平分∠ABE ,∴∠ABO =∠OBE ,又∵∠OBE =∠AOB ,∴∠ABO =∠AOB ,∴AB =AO ,∴四边形ABEO 为菱形;(2)如图,过点O 作OP ⊥BA ,交BA 的延长线于点P ,过点O 作OQ ⊥BC 于点Q ,设AE 交OB 于点F ,则∠P AO =∠ABC ,设AB =AO =OE =x ,则∵cos ∠ABC =13,∴cos ∠P AO =13,∴BB BB =13,∴P A =13x , ∴OP =OQ =2√23x当AE 与⊙O 相切时,由菱形的对角线互相垂直,可知F 为切点,∴在Rt △OBQ 中,由勾股定理得:(43B )2+(2√23B )2=82, 解得:x =2√6(舍负).∴AB 的长为2√6.26.【解答】(1)证明:连接OE ,如图1所示:∵CE 平分∠ACB ,∴∠ACE =∠BCE ,又∵OE =OC ,∴∠ACE =∠OEC ,∴∠BCE =∠OEC ,∴OE ∥BC ,∴∠AEO =∠B ,又∵∠B =90°,∴∠AEO =90°,即OE ⊥AE ,∵OE 为⊙O 的半径,∴AE 是⊙O 的切线;(2)解:连接DE ,如图2所示:∵CD 是⊙O 的直径,∴∠DEC =90°,∴∠DEC =∠B ,又∵∠DCE =∠ECB ,∴△DCE ∽△ECB ,∴BB BB =BB BB ,∵∠A =30°,∠B =90°,∴∠ACB =60°,∴∠DCE =12∠ACB =12×60°=30°,∴BB BB =cos ∠DCE =cos30°=√32,∴BB BB =√32.27.【解答】(1)证明:连接OB ,连接OM ,∵四边形ABCD 是平行四边形,∴∠ABC =∠D =60°,∵AC ⊥BC ,∴∠ACB =90°,∵BE =AB ,∴∠E =∠BAE ,∵∠ABC =∠E +∠BAE =60°,∴∠E =∠BAE =30°,∵OA =OB ,∴∠ABO =∠OAB =30°,∴∠OBC =30°+60°=90°,∴OB ⊥CE ,∴EC 是⊙O 的切线;(2)解:∵四边形ABCD 是平行四边形,∴BC =AD =2√3,过O 作OH ⊥AM 于H ,则四边形OBCH 是矩形,∴OH =BC =2√3,∴OA =BB BBB60°=4,∠AOM =2∠AOH =60°,∴BB ̂的长度=60⋅B ×4180=4B 3. 28.【解答】(1)证明:作OE ⊥CD 于E ,如图1所示:则∠OEC =90°,∵AD ∥BC ,∠DAB =90°,∴∠OBC =180°﹣∠DAB =90°,∴∠OEC =∠OBC ,∵CO 平分∠BCD ,∴∠OCE =∠OCB ,在△OCE 和△OCB 中,{∠BBB =∠BBBBBBB =BBBB BB =BB,∴△OCE ≌△OCB (AAS ),∴OE =OB ,又∵OE ⊥CD ,∴直线CD 与⊙O 相切;(2)解:作DF ⊥BC 于F ,连接BE ,如图2所示:则四边形ABFD 是矩形,∴AB =DF ,BF =AD =1,∴CF =BC ﹣BF =2﹣1=1,∵AD ∥BC ,∠DAB =90°,∴AD ⊥AB ,BC ⊥AB ,∴AD 、BC 是⊙O 的切线,由(1)得:CD 是⊙O 的切线,∴ED =AD =1,EC =BC =2,∴CD =ED +EC =3,∴DF =√BB 2−BB 2=√32−12=2√2,∴OB=√2,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH=BBBB=√22.29.【解答】(1)证明:连接OC,如图①,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠B=90°,∵OC=OB,∴∠B=∠OCB,∵∠BCM=∠A,∴∠OCB+∠BCM=90°,即OC⊥MN,∴MN是⊙O的切线;(2)解:如图②,∵AB是⊙O的直径,⊙O的半径为1,∴AB=2,∵cos∠BAC=BBBB=BBBB=34,即BB2=34,∴BB=3 2,∵∠AFE=∠ACE,∠GFH=∠AFE,∴∠GFH=∠ACE,∵DH⊥MN,∴∠GFH+∠AGC=90°,∵∠ACE+∠ECD=90°,∴∠ECD=∠AGC,又∵∠DEC=∠CAG,∴△EDC∽△ACG,∴BB BB =BB BB ,∴BB ⋅BB =BB ⋅BB =32×53=52.30.【解答】解:(1)连接BF ,OC ,∵AB 是⊙O 的直径,∴∠AFB =90°,即BF ⊥AD ,∵CE ⊥AD ,∴BF ∥CE ,连接OC ,∵点C 为劣弧BB ̂的中点,∴OC ⊥BF ,∵BF ∥CE ,∴OC ⊥CE ,∵OC 是⊙O 的半径,∴CE 是⊙O 的切线;(2)连接OF ,CF ,∵OA =OC ,∠BAC =30°,∴∠BOC =60°,∵点C 为劣弧BB ̂的中点,∴BB ̂=BB ̂,∴∠FOC =∠BOC =60°,∵OF =OC ,∴∠OCF =∠COB ,∴CF ∥AB ,∴S △ACF =S △COF ,∴阴影部分的面积=S 扇形COF ,∵AB =4,∴FO =OC =OB =2,∴S 扇形FOC =60⋅B ×22360=23B , 即阴影部分的面积为:23B . 九.三角形的内切圆与内心(共1小题)31.【解答】解:如图,∵△ABC 是等边三角形,∴△ABC 的内切圆和外接圆是同心圆,圆心为O ,设OE =r ,AO =R ,AD =h ,∴h =R +r ,故A 正确;∵AD ⊥BC ,∴∠DAC =12∠BAC =12×60°=30°,在Rt △AOE 中,∴R =2r ,故B 正确;∵OD =OE =r ,∵AB =AC =BC =a ,∴AE =12AC =12a ,∴(12a )2+r 2=(2r )2,(12a )2+(12R )2=R 2, ∴r =√3B 6,R =√33a ,故C 错误,D 正确;故选:C .一十.正多边形和圆(共7小题)32.【解答】解:∵正六边形的内角是120度,阴影部分的面积为24π,设正六边形的边长为r ,∴120B ×B 2360×2=24π,解得r =6.则正六边形的边长为6.33.【解答】解:由题意知点A 、B 、C 、D 为正五边形任意四个顶点,且O 为正五边形中心, ∴∠AOB =∠BOC =∠COD =360°5=72°,∴∠AOD =360°﹣3∠AOB =144°,又∵OA =OD ,∴∠ADO =180°−BBBB 2=180°−144°2=18°, 故答案为:18°.34.【解答】解:如图,∵四边形CDEF为正方形,∴∠D=90°,CD=DE,∴CE为直径,∠ECD=45°,由题意得AB=2.5,∴CE=2.5﹣0.25×2=2,∴CD=CE⋅BBB∠BBB=2×√22=√2,∴正方形CDEF周长为4√2尺.故答案为:4√2.35.【解答】解:连接BF,BE,过点A作AT⊥BF于T∵ABCDEF是正六边形,∴CB∥EF,AB=AF,∠BAF=120°,∴S△PEF=S△BEF,∵AT⊥BF,AB=AF,∴BT=FT,∠BAT=∠F AT=60°,∴BT=FT=AB•sin60°=√3,∴BF=2BT=2√3,∵∠AFE=120°,∠AFB=∠ABF=30°,∴∠BFE=90°,∴S△PEF=S△BEF=12•EF•BF=12×2×2√3=2√3,故答案为2√3.36.【解答】解:连接OC、OD,如图所示:∵ABCDE是正五边形,∴∠COD=360°5=72°,∴∠CPD=12∠COD=36°,∵DG⊥PC,∴∠PGD=90°,∴∠PDG=90°﹣∠CPD=90°﹣36°=54°,故答案为:54.37.【解答】解:BB 1̂的长=60⋅B ⋅1180=B 3,B 1B 1̂的长=60⋅B ⋅2180=2B 3, B 1B 1̂的长=60⋅B ⋅3180=3B 3,B 1B 1̂的长=60⋅B ⋅4180=4B 3,B 1B 1̂的长=60⋅B ⋅5180=5B 3, B 1B 1̂的长=60⋅B ⋅6180=6B 3,∴曲线F A 1B 1C 1D 1E 1F 1的长度=B 3+2B 3+⋯+6B 3=21B 3=7π, 故答案为7π.38.【解答】(1)证明:∵六边形ABCDEF 是正六边形,∴AB =BC =CD =DE =EF =F A ,∠A =∠ABC =∠C =∠D =∠DEF =∠F ,∵点P ,Q 同时分别从A ,D 两点出发,以1cm /s 速度沿AF ,DC 向终点F ,C 运动, ∴AP =DQ =t ,PF =QC =6﹣t ,在△ABP 和△DEQ 中,{BB =BBBB =BB BB =BB ,∴△ABP ≌△DEQ (SAS ),∴BP =EQ ,同理可证PE =QB ,∴四边形PEQB 为平行四边形.(2)解:连接BE 、OA ,则∠AOB =360°6=60°,∵OA =OB ,∴△AOB 是等边三角形,∴AB =OA =6,BE =2OB =12,当t =0时,点P 与A 重合,Q 与D 重合,四边形PBQE 即为四边形ABDE ,如图1所示: 则∠EAF =∠AEF =30°,∴∠BAE =120°﹣30°=90°,∴此时四边形ABDE 是矩形,即四边形PBQE 是矩形.当t =6时,点P 与F 重合,Q 与C 重合,四边形PBQE 即为四边形FBCE ,如图2所示: 同法可知∠BFE =90°,此时四边形PBQE 是矩形.综上所述,t =0s 或6s 时,四边形PBQE 是矩形,∴AE =√122−62=6√3,∴矩形PBQE 的面积=矩形ABDE 的面积=AB ×AE =6×6√3=36√3;∵正六边形ABCDEF 的面积=6△AOB 的面积=6×14矩形ABDE 的面积=6×14×36√3=54√3, ∴矩形PBQE 的面积与正六边形ABCDEF 的面积之比=23.一十一.弧长的计算(共4小题)39.【解答】解:连接OD 、BD ,∵在△ABC 中,AB =BC ,∠ABC =90°,∴∠A =∠C =45°,∵AB 是直径,∴∠ADB =90°,∵OA =OB ,∴OD ⊥AB ,∴∠AOD =90°,∴∠AOD =∠ABC ,∴OD ∥FC ,∴△DOE ∽△FBE ,∴BB BB =BB BB ,∵OB =OD ,OE :EB =1:√3,∴tan ∠BOF =BB BB =√3, ∴∠BOF =60°,∴BF =2√3,∴OB =2,∴BB̂的长=60B ×2180=23π, 故选:C .40.【解答】解:∵四边形ABCD 是矩形,∴AD =BC =2,∠B =90°,∴AE =AD =2,∵AB =√3,∴cos ∠BAE =BB BB =√32, ∴∠BAE =30°,∴∠EAD =60°,∴BB̂的长=60⋅B ×2180=2B 3, 故选:C .41.【解答】解:由图可知,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,AD =AA 1=1,BA 1=BB 1=2,……,AD n ﹣1=AA n =4(n ﹣1)+1,BA n =BB n =4(n ﹣1)+2,故B 2020B 2020̂的半径为BA 2020=BB 2020=4(2020﹣1)+2=8078,B 2020B 2020̂的弧长=90180×8078B =4039B . 故答案为:4039π.42.【解答】解:如图,作点D 关于OB 的对称点D ′,连接D ′C 交OB 于点E ′,连接E ′D 、OD ′, 此时E ′C +E ′D 最小,即:E ′C +E ′D =CD ′,由题意得,∠COD =∠DOB =∠BOD ′=30°,∴∠COD ′=90°,∴CD ′=√BB 2+BB′2=√22+22=2√2,BB ̂的长l =30B ×2180=B 3, ∴阴影部分周长的最小值为2√2+B 3=6√2+B 3. 故答案为:6√2+B 3.一十二.扇形面积的计算(共6小题)43.【解答】解:如图,连接CD .∵OC =OD ,∠O =60°,∴△COD 是等边三角形,∴OC =OD =CD =4cm ,∴S 阴=S 扇形OAB ﹣S 扇形OCD =60⋅B ⋅162360−60⋅B ⋅42360=40π(cm 2), 故选:B .44.【解答】 解:∵AB 是⊙O 的直径,CD 为⊙O 的弦,AB ⊥CD 于点E , ∴CE =DE =12BB =3√3. 设⊙O 的半径为r ,在直角△OED 中,OD 2=OE 2+DE 2,即B 2=(9−B )2+(3√3)2, 解得,r =6,∴OE =3,∴cos ∠BOD =BB BB =36=12,∴∠EOD =60°,∴B 扇形BBB =16B ×36=6B ,B BB △BBB =12×3×3√3=92√3,∴B 阴影=6B −92√3,故选:A .45.【解答】解:∵OD ⊥AC , ∴∠ADO =90°,BB̂=BB ̂,AD =CD , ∵∠CAB =30°,OA =4,∴OD =12OA =2,AD =√32OA =2√3, ∴图中阴影部分的面积=S 扇形AOE ﹣S △ADO =60⋅B ×42360−12×2√3×2=8B 3−2√3,故选:D .46.【解答】解:设圆心角都度数为n 度,扇形的面积=12BB =6π,解得:r =6,又∵B =BB ×6180=2π, ∴n =60.故答案为:60.47.【解答】解:连接OC .∵AB ⊥CD ,∴BB̂=BB ̂,CE =DE =√3, ∴∠COB =∠BOD ,∵∠BOD =2∠BCD =60°,∴∠COB =60°,∵OC =OB =OD ,∴△OBC ,△OBD 都是等边三角形,∴OC =BC =BD =OD ,∴四边形OCBD 是菱形,∴OC ∥BD ,∴S △BDC =S △BOD ,∴S 阴=S 扇形OBD ,∵OD =BB BBB60°=2,∴S 阴=60⋅B ⋅22360=2B 3,故答案为2B 3. 48.【解答】解:S 扇形=90⋅B ⋅42360=4π, 故答案为:4π.一十三.圆锥的计算(共1小题)49.【解答】解:如图,连接OB ,OC ,OA ,∵OB =OA ,OA =OC ,AB =AC ,∴△ABO ≌△ACO (SSS ),∴∠BAO =∠CAO =60°,∵AO =BO ,∴△ABO 是等边三角形,∴AB =AO =1,由题意得,阴影扇形的半径为1m ,圆心角的度数为120°, 则扇形的弧长为:120B ×1180, 而扇形的弧长相当于围成圆锥的底面周长,因此有: 2πr =120B ×1180, 解得,r =13,故答案为:13. 一十四.圆的综合题(共1小题)50.【解答】解:(1)连接圆心O 与正五边形各顶点, 在正五边形中,∠AOE =360°÷5=72°,∴∠ABE =12∠AOE =36°,同理∠BAC =12×72°=36°,∴AM =BM ,∴△ABM 是等腰三角形且底角等于36°,∵∠BOD =∠BOC +∠COD =72°+72°=144°,∴∠BAD =12∠BOD =72°, ∴∠BNA =180°﹣∠BAD ﹣∠ABE =72°,∴AB =NB ,即△ABN 为等腰三角形;(2)∵∠ABM =∠ABE ,∠AEB =12∠AOB =36°=∠BAM , ∴△BAM ∽△BEA ,∴BB BB =BB BB ,而AB =BN , ∴BB BB =BB BB ,设BM =y ,AB =x ,则AM =AN =y ,AB =AE =BN =x ,∵∠AMN =∠MAB +∠MBA =72°=∠BAN ,∠ANM =∠ANB , ∴△AMN ∽△BAN ,∴BB BB =BB BB ,即B B =B −B B ,则y 2=x 2﹣xy ,两边同时除以x 2,得:(B B )2=1−B B ,设B B=t , 则t 2+t ﹣1=0,解得:t =√5−12或−1−√52(舍), ∴BB BB =BB BB =B B =√5−12; (3)∵∠MAN =36°,根据对称性可知:∠MAH =∠NAH =12∠MAN =18°, 而AO ⊥BE ,∴sin18°=sin ∠MAH =BB BB =12BB BB =12(B −B )B =B −B 2B =12×B B −12=12×√5−1−12=√5−14.。
2020年中考数学试卷一、选择题(本题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项符合题目要求请用2b铅笔把答题卡上对应题目的答案标号涂黑、涂满)1.(3.00分)(2018•遵义)如果电梯上升5层记为+5.那么电梯下降2层应记为()A.+2 B.﹣2 C.+5 D.﹣52.(3.00分)(2018•遵义)观察下列几何图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3.00分)(2018•遵义)2018年第二季度,遵义市全市生产总值约为532亿元,将数532亿用科学记数法表示为()A.532×108B.5.32×102C.5.32×106D.5.32×10104.(3.00分)(2018•遵义)下列运算正确的是()A.(﹣a2)3=﹣a5B.a3•a5=a15C.(﹣a2b3)2=a4b6D.3a2﹣2a2=1 5.(3.00分)(2018•遵义)已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为()A.35°B.55°C.56°D.65°6.(3.00分)(2018•遵义)贵州省第十届运动会将于2018年8月8日在遵义市奥体中心开幕,某校有2名射击队员在比赛中的平均成绩均为9环,如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的()A.方差B.中位数C.众数D.最高环数7.(3.00分)(2018•遵义)如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A.x>2 B.x<2 C.x≥2 D.x≤28.(3.00分)(2018•遵义)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为()A.60πB.65πC.78πD.120π9.(3.00分)(2018•遵义)已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4 B.﹣4 C.3 D.﹣310.(3.00分)(2018•遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.1811.(3.00分)(2018•遵义)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=12.(3.00分)(2018•遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A.5 B.4 C.3 D.2二、填空题(本大题共6小题,每小题4分,共24分.答题请用黑色曼水笔或黑色签字笔直接谷在答题卡的相应位量上)13.(4.00分)(2018•遵义)计算﹣1的结果是.14.(4.00分)(2018•遵义)如图,△ABC中.点D在BC边上,BD=AD=AC,E 为CD的中点.若∠CAE=16°,则∠B为度.15.(4.00分)(2018•遵义)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金两.16.(4.00分)(2018•遵义)每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为.17.(4.00分)(2018•遵义)如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y 轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为.18.(4.00分)(2018•遵义)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为.三、解答题(本题共9小题,共90分,答题时请用黑色签字笔成者水笔书写在答题卡相应的位置上,解答时应写出必要的文字说明,证明过程与演算步骤)19.(6.00分)(2018•遵义)2﹣1+|1﹣|+(﹣2)0﹣cos60°20.(8.00分)(2018•遵义)化简分式(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.21.(8.00分)(2018•遵义)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)22.(10.00分)(2018•遵义)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学签赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:(1)本次调查的总人数为人,扇形统计图中A部分的圆心角是度.(2)请补全条形统计图.(3)根据本次调查,该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为多少?23.(10.00分)(2018•遵义)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.24.(10.00分)(2018•遵义)如图,正方形ABCD的对角线交于点O,点E、F 分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.25.(12.00分)(2018•遵义)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?26.(12.00分)(2018•遵义)如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.(1)求AD的长.(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF为等腰三角形时,求AP的长.27.(14.00分)(2018•遵义)在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项符合题目要求请用2b铅笔把答题卡上对应题目的答案标号涂黑、涂满)1.(3.00分)(2018•遵义)如果电梯上升5层记为+5.那么电梯下降2层应记为()A.+2 B.﹣2 C.+5 D.﹣5【分析】直接利用电梯上升5层记为+5,则电梯下降记为负数,进而得出答案.【解答】解:∵电梯上升5层记为+5,∴电梯下降2层应记为:﹣2.故选:B.【点评】此题主要考查了正数和负数,正确理解正负数的意义是解题关键.2.(3.00分)(2018•遵义)观察下列几何图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据等腰三角形,平行四边形、矩形、圆的性质即可判断;【解答】解:∵等腰三角形是轴对称图形,平行四边形是中心对称图形,半圆是轴对称图形,矩形既是轴对称图形又是中心对称图形;故选:C.【点评】本题考查中心对称图形、轴对称图形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.(3.00分)(2018•遵义)2018年第二季度,遵义市全市生产总值约为532亿元,将数532亿用科学记数法表示为()A.532×108B.5.32×102C.5.32×106D.5.32×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将数532亿用科学记数法表示为5.32×1010.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)(2018•遵义)下列运算正确的是()A.(﹣a2)3=﹣a5B.a3•a5=a15C.(﹣a2b3)2=a4b6D.3a2﹣2a2=1【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、(﹣a2)3=﹣a6,故此选项错误;B、a3•a5=a8,故此选项错误;C、(﹣a2b3)2=a4b6,正确;D、3a2﹣2a2=a2,故此选项错误;故选:C.【点评】此题主要考查了积的乘方运算以及同底数幂的乘除运算、合并同类项,正确掌握相关运算法则是解题关键.5.(3.00分)(2018•遵义)已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为()A.35°B.55°C.56°D.65°【分析】利用两直线平行同位角相等得到一对角相等,再由对顶角相等及直角三角形两锐角互余求出所求角度数即可.【解答】解:∵a∥b,∴∠3=∠4,∵∠3=∠1,∴∠1=∠4,∵∠5+∠4=90°,且∠5=∠2,∴∠1+∠2=90°,∵∠1=35°,∴∠2=55°,故选:B.【点评】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.6.(3.00分)(2018•遵义)贵州省第十届运动会将于2018年8月8日在遵义市奥体中心开幕,某校有2名射击队员在比赛中的平均成绩均为9环,如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的()A.方差B.中位数C.众数D.最高环数【分析】根据方差的意义得出即可.【解答】解:如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的方差,故选:A.【点评】本题考查了方差、中位数、众数等知识点,能理解方差、中位数、众数的定义是解此题的关键.7.(3.00分)(2018•遵义)如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A.x>2 B.x<2 C.x≥2 D.x≤2【分析】先根据一次函数图象上点的坐标特征得到2k+3=0,解得k=﹣1.5,然后解不等式﹣1.5x+3>0即可.【解答】解:∵直线y=kx+3经过点P(2,0)∴2k+3=0,解得k=﹣1.5,∴直线解析式为y=﹣1.5x+3,解不等式﹣1.5x+3>0,得x<2,即关于x的不等式kx+3>0的解集为x<2,故选:B.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.8.(3.00分)(2018•遵义)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为()A.60πB.65πC.78πD.120π【分析】直接得出圆锥的母线长,再利用圆锥侧面及求法得出答案.【解答】解:由题意可得:圆锥的底面半径为5,母线长为:=13,该圆锥的侧面积为:π×5×13=65π.故选:B.【点评】此题主要考查了圆锥的计算,正确记忆圆锥侧面求法是解题关键.9.(3.00分)(2018•遵义)已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4 B.﹣4 C.3 D.﹣3【分析】直接利用根与系数的关系得出x1+x2=﹣b,x1x2=﹣3,进而求出答案.【解答】解:∵x1,x2是关于x的方程x2+bx﹣3=0的两根,∴x1+x2=﹣b,x1x2=﹣3,则x1+x2﹣3x1x2=5,﹣b﹣3×(﹣3)=5,解得:b=4.故选:A.【点评】此题主要考查了根与系数的关系,正确得出x1+x2=﹣b,x1x2=﹣3是解题关键.10.(3.00分)(2018•遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.18【分析】想办法证明S=S△PFD解答即可.△PEB【解答】解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△ADC=S△PBE=×2×8=8,∴S△DFP=8+8=16,∴S阴故选:C.=S 【点评】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB.△PFD11.(3.00分)(2018•遵义)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=【分析】直接利用相似三角形的判定与性质得出=,进而得出S=2,△AOD即可得出答案.【解答】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∴=tan30°=,∴=,∵×AD×DO=xy=3,=×BC×CO=S△AOD=1,∴S△BCO=2,∴S△AOD∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣.故选:C.【点评】此题主要考查了相似三角形的判定与性质以及反比例函数数的性质,正=2是解题关键.确得出S△AOD12.(3.00分)(2018•遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A.5 B.4 C.3 D.2【分析】先求出AC,进而判断出△ADF∽△CAB,即可设DF=x,AD=x,利用勾股定理求出BD,再判断出△DEF∽△DBA,得出比例式建立方程即可得出结论.【解答】解:如图,在Rt△ABC中,AB=5,BC=10,∴AC=5过点D作DF⊥AC于F,∴∠AFD=∠CBA,∵AD∥BC,∴∠DAF=∠ACB,∴△ADF∽△CAB,∴,∴,设DF=x,则AD=x,在Rt△ABD中,BD==,∵∠DEF=∠DBA,∠DFE=∠DAB=90°,∴△DEF∽△DBA,∴,∴,∴x=2,∴AD=x=2,故选:D.【点评】此题主要考查了勾股定理,相似三角形的判定和性质,平行线的性质,正确作出辅助线是解本题的关键.二、填空题(本大题共6小题,每小题4分,共24分.答题请用黑色曼水笔或黑色签字笔直接谷在答题卡的相应位量上)13.(4.00分)(2018•遵义)计算﹣1的结果是2.【分析】首先计算9的算术平方根,再算减法即可.【解答】解:原式=3﹣1=2,故答案为:2.【点评】此题主要考查了二次根式的加减,关键是掌握算术平方的定义.14.(4.00分)(2018•遵义)如图,△ABC中.点D在BC边上,BD=AD=AC,E 为CD的中点.若∠CAE=16°,则∠B为37度.【分析】先判断出∠AEC=90°,进而求出∠ADC=∠C=74°,最后用等腰三角形的外角等于底角的2倍即可得出结论.【解答】解:∵AD=AC,点E是CD中点,∴AE⊥CD,∴∠AEC=90°,∴∠C=90°﹣∠CAE=74°,∵AD=AC,∴∠ADC=∠C=74°,∵AD=BD,∴2∠B=∠ADC=74°,∴∠B=37°,故答案为37°.【点评】此题主要考查了等腰三角形的性质,直角三角形的性质,三角形外角的性质,求出∠AC=74°是解本题的关键.15.(4.00分)(2018•遵义)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金二两.【分析】设一牛值金x两,一羊值金y两,根据“牛五羊二值金八两;牛二羊五值金六两”,即可得出关于x、y的二元一次方程组,两方程相加除以7,即可求出一牛一羊的价值.【解答】解:设一牛值金x两,一羊值金y两,根据题意得:,(①+②)÷7,得:x+y=2.故答案为:二.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.16.(4.00分)(2018•遵义)每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为4035.【分析】根据题意和图形可以发现随着层数的变化三角形个数的变化规律,从而可以解答本题.【解答】解:由图可得,第1层三角形的个数为:1,第2层三角形的个数为:3,第3层三角形的个数为:5,第4层三角形的个数为:7,第5层三角形的个数为:9,……第n层的三角形的个数为:2n﹣1,∴当n=2018时,三角形的个数为:2×2018﹣1=4035,故答案为:4035.【点评】本题考查规律型:图形的变化类,解答本题的关键是明确题意,发现题目中三角形个数的变化规律,利用数形结合的思想解答.17.(4.00分)(2018•遵义)如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y 轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为.【分析】直接利用轴对称求最短路线的方法得出P点位置,再求出AO,CO的长,进而利用勾股定理得出答案.【解答】解:连接AC,交对称轴于点P,则此时PC+PB最小,∵点D、E、F分别是BC、BP、PC的中点,∴DE=PC,DF=PB,∵抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,∴0=x2+2x﹣3解得:x1=﹣3,x2=1,x=0时,y=3,故CO=3,则AO=3,可得:AC=PB+PC=3,故DE+DF的最小值为:.故答案为:.【点评】此题主要考查了抛物线与x轴的交点以及利用轴对称求最短路线,正确得出P点位置是解题关键.18.(4.00分)(2018•遵义)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为 2.8.【分析】作EH⊥BD于H,根据折叠的性质得到EG=EA,根据菱形的性质、等边三角形的判定定理得到△ABD为等边三角形,得到AB=BD,根据勾股定理列出方程,解方程即可.【解答】解:作EH⊥BD于H,由折叠的性质可知,EG=EA,由题意得,BD=DG+BG=8,∵四边形ABCD是菱形,∴AD=AB,∠ABD=∠CBD=∠ABC=60°,∴△ABD为等边三角形,∴AB=BD=8,设BE=x,则EG=AE=8﹣x,在Rt△EHB中,BH=x,EH=x,在Rt△EHG中,EG2=EH2+GH2,即(8﹣x)2=(x)2+(6﹣x)2,解得,x=2.8,即BE=2.8,故答案为:2.8.【点评】本题考查的是翻转变换的性质、菱形的性质、勾股定理、解直角三角形,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.三、解答题(本题共9小题,共90分,答题时请用黑色签字笔成者水笔书写在答题卡相应的位置上,解答时应写出必要的文字说明,证明过程与演算步骤)19.(6.00分)(2018•遵义)2﹣1+|1﹣|+(﹣2)0﹣cos60°【分析】直接利用负指数幂的性质以及零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【解答】解:原式=+2﹣1+1﹣=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(8.00分)(2018•遵义)化简分式(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.【分析】先根据分式混合运算顺序和运算法则化简原式,再选取是分式有意义的a的值代入计算可得.【解答】解:原式=[﹣]÷=(﹣)•=•=a+3,∵a≠﹣3、2、3,∴a=4或a=5,则a=4时,原式=7.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则及分式有意义的条件.21.(8.00分)(2018•遵义)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为11.4m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)【分析】(1)根据直角三角形的性质和三角函数解答即可;(2)过点D作DH⊥地面于H,利用直角三角形的性质和三角函数解答即可.【解答】解:(1)在Rt△ABC中,∵∠BAC=64°,AC=5m,∴AB=(m);故答案为:11.4;(2)过点D作DH⊥地面于H,交水平线于点E,在Rt△ADE中,∵AD=20m,∠DAE=64°,EH=1.5m,∴DE=sin64°×AD≈20×0.9≈18(m),即DH=DE+EH=18+1.5=19.5(m),答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m.【点评】本题考查解直角三角形、锐角三角函数等知识,解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.22.(10.00分)(2018•遵义)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学签赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:(1)本次调查的总人数为160人,扇形统计图中A部分的圆心角是54度.(2)请补全条形统计图.(3)根据本次调查,该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为多少?【分析】(1)根据:该项所占的百分比=,圆心角=该项的百分比×360°.两图给出了D的数据,代入即可算出调查的总人数,然后再算出A 的圆心角;(2)根据条形图中数据和调查总人数,先计算出喜欢“科学探究”的人数,再补全条形图;(3)根据:喜欢某项人数=总人数×该项所占的百分比,计算即得.【解答】解:(1)由条形图、扇形图知:喜欢趣味数学的有48人,占调查总人数的30%.所以调查总人数:48÷30%=160(人)图中A部分的圆心角为:=54°故答案为:160,54(2)喜欢“科学探究”的人数:160﹣24﹣32﹣48=56(人)补全如图所示(3)840×=294(名)答:该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为294名.【点评】本题考查了条形图和扇形图及用样本估计总体等知识,难度不大,综合性较强.注意三个公式:①该项所占的百分比=,②圆心角=该项的百分比×360°,③喜欢某项人数=总人数×该项所占的百分比.23.(10.00分)(2018•遵义)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.【分析】(1)由转动转盘甲共有四种等可能结果,其中指针指向A区域只有1种情况,利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中确定指针指向每个区域的字母相同的结果数,利用概率公式计算可得.【解答】解:(1)若选择方式一,转动转盘甲一次共有四种等可能结果,其中指针指向A区域只有1种情况,∴享受9折优惠的概率为,故答案为:;(2)画树状图如下:由树状图可知共有12种等可能结果,其中指针指向每个区域的字母相同的有2种结果,所以指针指向每个区域的字母相同的概率,即顾客享受8折优惠的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.(10.00分)(2018•遵义)如图,正方形ABCD的对角线交于点O,点E、F 分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2、HM=4,再根据勾股定理得OM=2,由直角三角形性质知MN=OM.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM==2,∴MN=OM=2.【点评】本题主要考查正方形的性质,解题的关键是掌握正方形的四条边都相等,正方形的每条对角线平分一组对角及全等三角形的判定与性质.25.(12.00分)(2018•遵义)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.【点评】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.26.(12.00分)(2018•遵义)如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.(1)求AD的长.(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF为等腰三角形时,求AP的长.【分析】(1)先求出AC,进而求出AE=4,再用勾股定理求出DE即可得出结论;(2)分三种情况,利用相似三角形得出比例式,即可得出结论.【解答】解:(1)如图1,连接OD,∵OA=OD=3,BC=2,∴AC=8,∵DE是AC的垂直平分线,∴AE=AC=4,∴OE=AE﹣OA=1,在Rt△ODE中,DE==2;在Rt△ADE中,AD==2;(2)当DP=DF时,如图2,点P与A重合,F与C重合,则AP=0;当DP=PF时,如图4,∴∠CDP=∠PFD,∵DE是AC的垂直平分线,∠DPF=∠DAC,∴∠DPF=∠C,∵∠PDF=∠CDP,∴△PDF∽△CDP,∴∠DFP=∠DPC,∴∠CDP=∠CPD,∴CP=CD,∴AP=AC﹣CP=AC﹣CD=AC﹣AD=8﹣2;当PF=DF时,如图3,∴∠FDP=∠FPD,∵∠DPF=∠DAC=∠C,∴△DAC∽△PDC,∴,∴,∴AP=5,即:当△DPF是等腰三角形时,AP的长为0或5或8﹣2.【点评】此题主要考查了相似三角形的判定和性质,勾股定理,线段垂直平分线定理,等腰三角形的性质,判断出△PDF∽△CDP和△DAC∽△PDC是解本题的关键.27.(14.00分)(2018•遵义)在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,。
01有理数一、选择题1.(2020湖南湘潭)6-的绝对值是()A.6-B.6 C.16-D.16【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.【解答】解:负数的绝对值等于它的相反数,所以6-的绝对值是6.故选:B.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(2020•泰安)12-的倒数是()A.2-B.12-C.2D.12【分析】根据倒数的定义,直接解答即可.【解答】解:12-的倒数是2-.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.3.(2020•威海)2-的倒数是()A.2-B.12-C.12D.2【分析】根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.【解答】解:12()12-⨯-=.2∴-的倒数是12 -,故选:B.【点评】本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.4.(2020•烟台)4的平方根是()A.2B.2-C.2±D【分析】根据平方根的定义,求数4的平方根即可.【解答】解:4的平方根是2±.【点评】本题考查了平方根的定义.解题的关键是掌握平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.5.(2020湖南湘潭)地摊经济一词最近彻底火了,发展地摊经济,进行室外经营与有序占道经营,能满足民众消费需求,在一定程度上缓解了就业压力,带动了第三产业发展,同时活跃市场,刺激经济发展,一经推出,相关微博话题阅读量就超过了600000000次,这个数据用科学记数法表示为()A.8⨯C.8610⨯B.70.610610⨯⨯D.9610【分析】科学记数法的表示形式为10na<,n为整数.确定n的值a⨯的形式,其中1||10时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值10<时,n是负数.>时,n是正数;当原数的绝对值1【解答】解:8=⨯,600000000610故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为10na⨯的形式,其中a<,n为整数,表示时关键要正确确定a的值以及n的值.1||106.(2020湖南湘西州)下列各数中,比2-小的数是()A.0 B.1-C.3-D.3【分析】利用数轴表示这些数,从而比较大小.【解答】解:将这些数在数轴上表示出来:∴-<-<-<<,32103∴比2-小的数是3-,故选:C.【点评】本题考查数轴表示数,比较有理数的大小,在数轴表示的数右边总比左边的大.7.(2020湖南湘西州)2019年中国与“一带一路”沿线国家货物贸易进出口总额达到92700亿元,用科学记数法表示92700是()A.5⨯C.39.27100.92710⨯B.4⨯92710⨯D.292.710【分析】科学记数法的表示形式为10na<,n为整数.a⨯的形式,其中1||10【解答】解:4=⨯.927009.2710【点评】此题考查科学记数法表示较大的数的方法,把一个大于10的数记成10na⨯的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.8.(2020湖南岳阳)2020-的相反数是()A.2020-B.2020C.12020-D.12020【分析】直接利用相反数的定义得出答案.【解答】解:2020-的相反数是:2020.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.9.(2020湖南岳阳)2019年以来,我国扶贫攻坚取得关键进展,农村贫困人口减少11090000人,数据11090000用科学记数法表示为()A.80.110910⨯B.611.0910⨯C.81.10910⨯D.71.10910⨯【分析】科学记数法的表示形式为10na⨯的形式,其中1||10a<,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:711090000 1.10910=⨯,故选:D.【点评】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.10.(2020湖南张家界)12020的倒数是()A.12020-B.12020C.2020D.2020-【分析】根据倒数之积等于1可得答案.【解答】解:12020的倒数是2020,故选:C.【点评】此题主要考查了倒数,解题的关键是掌握倒数定义.11.(2020•辽阳)2-的倒数是()A.12-B.2-C.12D.2【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:有理数2-的倒数是12 -.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.12.(2020•营口)6-的绝对值是( )A .6B .6-C .16D .16- 【分析】根据负数的绝对值是它的相反数,可得负数的绝对值.【解答】解:|6|6-=,故选:A .【点评】本题考查了绝对值,负数的绝对值是它的相反数.13.(2020安徽)下列各数中,比2-小的数是( )A .3-B .1-C .0D .2【分析】先根据正数都大于0,负数都小于0,可排除C 、D ,再根据两个负数,绝对值大的反而小,可得比2-小的数是3-.【解答】解:根据两个负数,绝对值大的反而小可知32-<-.故选:A .【点评】本题考查了有理数的大小比较,其方法如下:(1)负数0<<正数;(2)两个负数,绝对值大的反而小.14.(2020浙江金华)实数3的相反数是( )A .3-B .3C .13-D .13【分析】直接利用相反数的定义分析得出答案.【解答】解:实数3的相反数是:3-.故选:A .【点评】此题主要考查了实数的性质,正确掌握相反数的定义是解题关键.15.(2020浙江湖州)近几年来,我国经济规模不断扩大,综合国力显著增强.2019年我国国内生产总值约991000亿元,则数991000用科学记数法可表示为( )A .399110⨯B .499.110⨯C .59.9110⨯D .69.9110⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【解答】解:将991000用科学记数法表示为:59.9110⨯.故选:C .【点评】此题考查科学记数法的表示方法,表示时关键要正确确定a 的值以及n 的值.16.(2020浙江嘉兴)2020年3月9日,中国第54颗北斗导航卫星成功发射,其轨道高度约为36000000m .数36000000用科学记数法表示为( )A .80.3610⨯B .73610⨯C .83.610⨯D .73.610⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【解答】解:36 000 7000 3.610=⨯,故选:D .【点评】此题考查科学记数法的表示方法,表示时关键要正确确定a 的值以及n 的值.17.(2020浙江杭州)已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费( )A .17元B .19元C .21元D .23元【分析】根据题意列出算式计算,即可得到结果.【解答】解:根据题意得:13(85)213619+-⨯=+=(元).则需要付费19元.故选:B .【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.(2020湖南衡阳)3-的相反数是( )A .3B .3-C .13D .13- 【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:3-的相反数是3.故选:A .【点评】本题考查了相反数的意义.只有符号不同的数为相反数,0的相反数是0.19.(2020湖南衡阳)2019年12月12日,国务院新闻办公室发布,南水北调工程全面通水5周年来,直接受益人口超过1.2亿人,其中1.2亿用科学记数法表示为( )A .81.210⨯B .71.210⨯C .91.210⨯D .81.210-⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【解答】解:1.2亿8120000000 1.210==⨯.故选:A.【点评】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.20.(2020邵阳)2020的倒数是()A.2020-B.2020 C.12020D.12020-【分析】根据倒数的定义求解即可【解答】解:1 202012020⨯=2020∴的倒数是1 2020,故选:C.【点评】本题考查倒数的定义,熟记倒数的定义是解题的关键.21.(2020湖南怀化)《三国演义》《红楼梦》《水浒传》《西游记》是我国古典长篇小说四大名著.其中2016年光明日报出版社出版的《红楼梦》有350万字,则“350万”用科学记数法表示为()A.3.5×106B.0.35×107C.3.5×102D.350×104【分析】科学记数法的形式是:a×10n,其中1≤|a|<10,n为整数.所以a=3.5,n取决于原数小数点的移动位数与移动方向,n是小数点的移动位数,往左移动,n为正整数,往右移动,n为负整数.本题小数点往左移动到3的后面,所以n=6.【解答】解:350万=350×104=3.5×102×104=3.5×106.故选:A.【点评】本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好a,n的值,同时掌握小数点移动对一个数的影响.22.(2020四川重庆)5的倒数是()A.5 B.15C.5-D.15-【分析】根据倒数的定义,可得答案.【解答】解:5得倒数是15,故选:B.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.23.(2020甘肃武威、金昌)如果盈利100元记作100+元,那么亏损50元记作50-元.【分析】根据盈利为正,亏损为负,可以将亏损50元表示出来,本题得以解决.【解答】解:盈利100元记作100+元,∴亏损50元记作50-元,故答案为:50-.【点评】本题考查正数和负数,解答本题的关键是明确正负数在题目中的实际意义.24.(2020四川重庆)经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人.请把数94000000用科学记数法表示为79.410⨯.【分析】科学记数法的表示形式为10na⨯的形式,其中1||10a<,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值10>时,n是正数;当原数的绝对值1<时,n是负数.【解答】解:7940000009.410=⨯,故答案为:79.410⨯.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10na⨯的形式,其中1||10a<,n为整数,表示时关键要正确确定a的值以及n的值.25.(2020山东淄博)若实数a的相反数是2-,则a等于()A.2 B.2-C.12D.0【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数.即可求出a的值.【解答】解:2的相反数是2-,2a∴=.故选:A.【点评】本题考查了实数的性质、相反数,解决本题的关键是掌握相反数的概念.26.(2020山东枣庄)12-的绝对值是()A.12-B.2-C.12D.2【分析】根据绝对值的定义直接计算即可解答.【解答】解:12-的绝对值为12.故选:C.【点评】本题主要考查绝对值的性质.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.27.(2020山东枣庄)计算21()36---的结果为()A.12-B.12C.56-D.56【分析】根据有理数的减法法则计算即可.【解答】解:21211()36362---=-+=-.故选:A.【点评】本题主要考查了有理数的减法,熟记运算法则是解答本题的关键.减去一个数,等于加上这个数的相反数.28.(2020陕西)﹣18的相反数是()A.18 B.﹣18 C.118D.﹣118【分析】直接利用相反数的定义得出答案.【解答】解:﹣18的相反数是:18.故选:A.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.29.(2020南京)计算3(2)--的结果是()A.5-B.1-C.1 D.5【分析】根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:3(2)325--=+=.故选:D.【点评】本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.30.(2020连云港)3的绝对值是()A.3-B.3C D.1 3【分析】根据绝对值的意义,可得答案.【解答】解:|3|3=,故选:B.【点评】本题考查了实数的性质,利用绝对值的意义是解题关键.31. (2020苏州)某种芯片每个探针单元的面积为20.00000164cm ,0.00000164用科学记数法可表示为( )A .51.6410-⨯B .61.6410-⨯C .716.410-⨯D .50.16410-⨯【分析】根据负指数次幂的意义,将一个较小的数写成10n a ⨯的形式,其中010a <<,n 为整数即可.【解答】解:60.00000164 1.6410-=⨯,故选:B .【点评】本题考查用科学记数法表示较小数的方法,写成10n a ⨯的形式是关键.32. (2020江苏泰州)2-的倒数是( )A .2B .12C .2-D .12- 【分析】根据倒数定义求解即可.【解答】解:2-的倒数是12-. 故选:D .【点评】本题主要考查的是倒数的定义,掌握倒数的定义是解题的关键.33.(2020湖南永州)2020-的相反数为( )A .12020-B .2020C .2020-D .12020【分析】直接利用相反数的定义进而分析得出答案.【解答】解:2020-的相反数为:2020.故选:B .【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.34.(2020湖南永州)永州市现有户籍人口约635.3万人,则“现有户籍人口数”用科学记数法表示正确的是( )A .56.35310⨯人B .563.5310⨯人C .66.35310⨯人D .70.635310⨯人【分析】绝对值大于10的数用科学记数法表示一般形式为10n a ⨯,n 为整数位数减1.【解答】解:635.3万66353000 6.35310==⨯.则“现有户籍人口数”用科学记数法表示为66.35310⨯人.故选:C .【点评】本题考查了科学记数法-表示较大的数,科学记数法中a 的要求和10的指数n 的表示规律为关键,35.(2020吉林长春)如图,数轴上被墨水遮盖的数可能为( )A .1-B . 1.5-C .3-D . 4.2-【分析】由数轴上数的特征可得该数的取值范围,再进行判断即可.【解答】解:由数轴上墨迹的位置可知,该数大于4-,且小于2-,因此备选项中,只有选项C 符合题意,故选:C .【点评】本题考查数轴表示数的意义和方法,确定被墨迹所盖的数的取值范围是正确解答的前提.36. (2020吉林长春)为了增加青少年的校外教育活动场所,长春市将建成面积约为79000平方米的新少年宫,预计2020年12月正式投入使用.79000这个数用科学记数法表示为( )A .37910⨯B .47.910⨯C .50.7910⨯D .57.910⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正数;当原数的绝对值小于1时,n 是负数.【解答】解:79000这个数用科学记数法表示为:47.910⨯.故选:B .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.37.(3分)(2020江苏南通)计算|1|3--,结果正确的是( )A .4-B .3-C .2-D .1-【分析】首先应根据负数的绝对值是它的相反数,求得|1|1-=,再根据有理数的减法法则进行计算.【解答】解:原式132=-=-.故选:C .【点评】本题考查了绝对值的意义和有理数的减法,熟悉有理数的减法法则是关键.38.(3分)(2020江苏南通)今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约268000km.将68000用科学记数法表示为( )A.46.810⨯B.56.810⨯C.50.6810⨯D.60.6810⨯【分析】科学记数法的表示形式为10na⨯的形式,其中1||10a<,n为整数.确定n的值是易错点,由于68000有5位,所以可以确定514n=-=.【解答】解:468000 6.810=⨯.故选:A.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.39.(2020山东东营)6-的倒数是()A.6-B.6C.16-D.16【分析】根据倒数的定义,a的倒数是1(0)aa≠,据此即可求解.【解答】解:6-的倒数是:16 -.故选:C.【点评】本题考查了倒数的定义,理解定义是关键.40.(2020湖南长沙)(﹣2)3的值等于()A.﹣6 B.6 C.8 D.﹣8.【分析】根据有理数的乘方的运算法则即可得到结果.【解答】解:(﹣2)3=﹣8,故选:D.【点评】此题考查了有理数的乘方,熟练掌握有理数的乘方的运算法则是解本题的关键.41.(2020湖南株洲)a的相反数为﹣3,则a等于()A.﹣3 B.3 C.±3 D.1 3【分析】根据相反数的定义解答即可.【解答】解:因为3的相反数是﹣3,所以a=3.故选:B.【点评】本题考查了相反数的定义,熟知概念是关键.42.(2020江苏常州)2的相反数是()A.2-B.12-C.12D.2【分析】利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:2的相反数是2-.故选:A.【点评】此题主要考查了相反数的概念,正确把握定义是解题关键.43.(2020江苏淮安)2的相反数是()A.2B.2-C.12D.12-【分析】根据相反数的定义求解即可.【解答】解:2的相反数为:2-.故选:B.【点评】本题考查了相反数的知识,属于基础题,掌握相反数的定义是解题的关键.44.(2020湖南长沙)为了将“新冠”疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展.据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632400000000元,其中数字632400000000用科学记数法表示为()A.6.324×1011B.6.324×1010C.632.4×109D.0.6324×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:632 400 000 000=6.324×1011,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.45.(2020广州)广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.5152.3310⨯B.615.23310⨯C.71.523310⨯D.80.1523310⨯【分析】科学记数法的表示形式为10na⨯的形式,其中1||10a<,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:715233000 1.523310=⨯,故选:C .【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.46.(2020贵州毕节)3的倒数是( )A .3-B .13C .13-D .3【分析】根据乘积是1的两个数互为倒数计算即可得解.【解答】解:1313⨯=, 3∴的倒数是13. 故选:B .【点评】本题考查了倒数的定义,是基础题,熟记概念是解题的关键.47.(2020贵州毕节)中国的陆地面积约为9600000平方公里,9600000用科学记数法表示为( )A .70.9610⨯B .79.610⨯C .69.610⨯D .596.010⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.【解答】解:将9600000用科学记数法表示为:69.610⨯.故选:C .【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.48.(2020湖南株洲)一实验室检测A 、B 、C 、D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A .B .C .D .. 【分析】分别求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.【解答】解:∵1.2|=1.2,|﹣2.3|=2.3,|+0.9|=0.9,|﹣0.8|=0.8,又∵0.8<0.9<1.2<2.3,∴从轻重的角度看,最接近标准的是选项D 中的元件;故选:D .【点评】本题考查了绝对值以及正数和负数的应用,掌握正数和负数的概念和绝对值的性质是解题的关键,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.49.(2020湖南长沙)2020年3月14日,是人类第一个“国际数学日”.这个节日的昵称是“π(Day )”.国际数学日之所以定在3月14日,是因为“3.14”是与圆周率数值最接近的数字.在古代,一个国家所算得的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展水平的一个主要标志.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的科学巨匠,该成果领先世界一千多年.以下对于圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆的大小有关的常数,它等于该圆的周长与半径的比.其中表述正确的序号是( )A .②③B .①③C .①④D .②④【分析】根据实数的分类和π的特点进行解答即可得出答案.【解答】解:因为圆周率是一个无理数,是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,所以表述正确的序号是②③;故选:A .【点评】此题考查了实数,熟练掌握实数的分类和“π”的意义是解题的关键.50.(2020•云南)千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为( )A .61510⨯B .51.510⨯C .61.510⨯D .71.510⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中a ≤1<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:61500000 1.510=⨯,故选:C .【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中,a ≤1<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.。
2020年数学中考试卷(及答案)一、选择题1.如图,菱形ABCD 的一边中点M 到对角线交点O 的距离为5cm ,则菱形ABCD 的周长为( )A .5cmB .10cmC .20cmD .40cm2.已知二次函数y =ax 2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )A .abc >0B .b 2﹣4ac <0C .9a+3b+c >0D .c+8a <0 3.如果一组数据6、7、x 、9、5的平均数是2x ,那么这组数据的方差为( ) A .4B .3C .2D .14.如图,⊙O 的半径为5,AB 为弦,点C 为AB 的中点,若∠ABC=30°,则弦AB 的长为( )A .12B .5C .532D .535.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( ) A .B .C .D .6.若点P 1(x 1,y 1),P 2(x 2,y 2)在反比例函数ky x=(k >0)的图象上,且x 1=﹣x 2,则( ) A .y 1<y 2B .y 1=y 2C .y 1>y 2D .y 1=﹣y 27.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q8.如果,则a 的取值范围是( ) A .B .C .D .9.如图,点A ,B 在反比例函数y =(x >0)的图象上,点C ,D 在反比例函数y =(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1;2,△OAC 与△CBD 的面积之和为,则k 的值为( )A .2B .3C .4D .10.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)ky x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-11.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x-=+ B .606030(125%)x x-=+C .60(125%)6030x x⨯+-=D .6060(125%)30x x⨯+-= 12.cos45°的值等于( )A .2B .1C .32D .22二、填空题13.分解因式:x 3﹣4xy 2=_____. 14.分解因式:2x 3﹣6x 2+4x =__________.15.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2. 16.如图,是将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为 .17.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______. 18.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .19.在一个不透明的口袋中,装有A ,B ,C ,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___.20.若关于x 的一元二次方程kx 2+2(k+1)x+k -1=0有两个实数根,则k 的取值范围是三、解答题21.解方程:x 21x 1x-=-. 22.如图,点D 在以AB 为直径的⊙O 上,AD 平分BAC ∠,DC AC ⊥,过点B 作⊙O 的切线交AD 的延长线于点E . (1)求证:直线CD 是⊙O 的切线. (2)求证:CD BE AD DE ⋅=⋅.23.数学活动课上,张老师引导同学进行如下探究:如图1,将长为的铅笔斜靠在垂直于水平桌面的直尺的边沿上,一端固定在桌面上,图2是示意图.活动一如图3,将铅笔绕端点顺时针旋转,与交于点,当旋转至水平位置时,铅笔的中点与点重合.数学思考(1)设,点到的距离.①用含的代数式表示:的长是_________,的长是________;②与的函数关系式是_____________,自变量的取值范围是____________.活动二(2)①列表:根据(1)中所求函数关系式计算并补全..表格.654 3.53 2.5210.5000.55 1.2 1.58 1.0 2.473 4.29 5.08②描点:根据表中数值,描出①中剩余的两个点.③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.数学思考(3)请你结合函数的图象,写出该函数的两条性质或结论.24.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:232212+=+(),善于思考的小明进行了以下探索: 设()2a b 2m n 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2mn 2+=++.∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题: 当a b m n 、、、均为正整数时,若()2a b 3m n 3+=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( +3)2;(3)若()2433a m n +=+,且ab m n 、、、均为正整数,求a 的值.25.如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC 于点E .(1)试判断DE 与⊙O 的位置关系,并说明理由;(2)过点D 作DF ⊥AB 于点F ,若BE=33,DF=3,求图中阴影部分的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】 【分析】根据菱形的性质得出AB=BC=CD=AD ,AO=OC ,根据三角形的中位线求出BC ,即可得出答案. 【详解】∵四边形ABCD 是菱形, ∴AB=BC=CD=AD ,AO=OC , ∵AM=BM ,∴BC=2MO=2×5cm=10cm , 即AB=BC=CD=AD=10cm , 即菱形ABCD 的周长为40cm , 故选D . 【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC 是解此题的关键.2.D解析:D 【解析】 【分析】 【详解】试题分析:根据图象可知抛物线开口向下,抛物线与y 轴交于正半轴,对称轴是x=1>0,所以a <0,c >0,b >0,所以abc <0,所以A 错误;因为抛物线与x 轴有两个交点,所以24b ac ->0,所以B 错误;又抛物线与x 轴的一个交点为(-1,0),对称轴是x=1,所以另一个交点为(3,0),所以930a b c ++=,所以C 错误;因为当x=-2时,42y a b c =-+<0,又12bx a=-=,所以b=-2a ,所以42y a b c =-+8a c =+<0,所以D 正确,故选D.考点:二次函数的图象及性质.3.A解析:A 【解析】分析:先根据平均数的定义确定出x 的值,再根据方差公式进行计算即可求出答案. 详解:根据题意,得:67955x ++++=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为15[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4, 故选A .点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.4.D解析:D 【解析】 【分析】连接OC 、OA ,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB 即可. 【详解】 连接OC 、OA ,∵∠ABC=30°, ∴∠AOC=60°,∵AB 为弦,点C 为AB 的中点, ∴OC ⊥AB , 在Rt △OAE 中,53∴AB=53, 故选D . 【点睛】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.5.D解析:D 【解析】 【分析】 【详解】解:A 选项中,根据对顶角相等,得1∠与2∠一定相等; B 、C 项中无法确定1∠与2∠是否相等;D 选项中因为∠1=∠ACD ,∠2>∠ACD ,所以∠2>∠1. 故选:D6.D解析:D【解析】 由题意得:1212k ky y x x ==-=- ,故选D. 7.C解析:C 【解析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.8.B解析:B 【解析】试题分析:根据二次根式的性质1可知:,即故答案为B..考点:二次根式的性质.9. C解析:C 【解析】 【分析】由题意,可得A (1,1),C (1,k ),B (2,),D (2,k ),则△OAC 面积=(k-1),△CBD 的面积=×(2-1)×(k-)=(k-1),根据△OAC 与△CBD 的面积之和为,即可得出k 的值. 【详解】∵AC ∥BD ∥y 轴,点A ,B 的横坐标分别为1、2, ∴A (1,1),C (1,k ),B (2,),D (2,k ),∴△OAC 面积=×1×(k-1),△CBD 的面积=×(2-1)×(k-)=(k-1), ∵△OAC 与△CBD 的面积之和为, ∴(k-1)+ (k-1)=, ∴k =4. 故选C . 【点睛】本题考查反比例函数系数k 的几何意义,三角形面积的计算,解题的关键是用k 表示出△OAC 与△CBD 的面积.10.C解析:C 【解析】 【分析】 【详解】 ∵A (﹣3,4),∴, ∵四边形OABC 是菱形,∴AO=CB=OC=AB=5,则点B 的横坐标为﹣3﹣5=﹣8, 故B 的坐标为:(﹣8,4),将点B 的坐标代入k y x=得,4=8k -,解得:k=﹣32.故选C .考点:菱形的性质;反比例函数图象上点的坐标特征.11.C解析:C 【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.12.D解析:D 【解析】 【分析】将特殊角的三角函数值代入求解. 【详解】解:cos45°= 2. 故选D .【点睛】本题考查特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.二、填空题13.x(x+2y)(x﹣2y)【解析】分析:原式提取x再利用平方差公式分解即可详解:原式=x(x2-4y2)=x(x+2y)(x-2y)故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式解析:x(x+2y)(x﹣2y)【解析】分析:原式提取x,再利用平方差公式分解即可.详解:原式=x(x2-4y2)=x(x+2y)(x-2y),故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.2x(x﹣1)(x﹣2)【解析】分析:首先提取公因式2x再利用十字相乘法分解因式得出答案详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2)故答案为2x(x﹣1)(x﹣2)点解析:2x(x﹣1)(x﹣2).【解析】分析:首先提取公因式2x,再利用十字相乘法分解因式得出答案.详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2).故答案为2x(x﹣1)(x﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.15.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S 侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线5=,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.16.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD交于点E 连接DFFMMNDN∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=2解析:12﹣43【解析】【分析】【详解】试题分析:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=3,∴∠AOE=45°,ED=1,∴AE=EO=3,DO=3﹣1,∴S正方形DNMF=2(3﹣1)×2(3﹣1)×12=8﹣43,S△ADF=12×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣43=12﹣43.故答案为12﹣43.考点:1、旋转的性质;2、菱形的性质.17.4×109【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>10时n是正解析:4×109【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109,故答案为4.4×109.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF解析:.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.19.【解析】【分析】【详解】试题分析:画树状图如下:∴P(两次摸到同一个小球)==故答案为考点:列表法与树状图法;概率公式解析:14.【解析】【分析】【详解】试题分析:画树状图如下:∴P(两次摸到同一个小球)=416=14.故答案为14.考点:列表法与树状图法;概率公式.20.k≥-13且k≠0【解析】试题解析:∵a=kb=2(k+1)c=k-1∴△=4(k+1)2-4×k×(k-1)=3k+1≥0解得:k≥-13∵原方程是一元二次方程∴k≠0考点:根的判别式解析:k≥,且k≠0【解析】试题解析:∵a=k,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥0,解得:k≥-,∵原方程是一元二次方程,∴k≠0.考点:根的判别式.三、解答题x=.21.2【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:x2-2x+2=x2-x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)连接OD,由角平分线的定义得到∠CAD=∠BAD,根据等腰三角形的性质得到∠BAD=∠ADO,求得∠CAD=∠ADO,根据平行线的性质得到CD⊥OD,于是得到结论;(2)连接BD,根据切线的性质得到∠ABE=∠BDE=90°,根据相似三角形的性质即可得到结论.【详解】解:证明:(1)连接OD,∠,∵AD平分BAC∠=∠,∴CAD BAD∵OA OD =,∴BAD ADO =∠∠,∴CAD ADO ∠=∠,∴AC OD ∥,∵CD AC ⊥,∴CD OD ⊥,∴直线CD 是⊙O 的切线;(2)连接BD ,∵BE 是⊙O 的切线,AB 为⊙O 的直径,∴90ABE BDE ︒∠=∠=,∵CD AC ⊥,∴90C BDE ︒∠=∠=,∵CAD BAE DBE ∠=∠=∠,∴ACD BDE ∆∆∽, ∴CD AD DE BE=, ∴CD BE AD DE ⋅=⋅. 【点睛】 本题考查了相似三角形的判定和性质,角平分线的定义.圆周角定理,切线的判定和性质,正确的作出辅助线是解题的关键. 23.(1) ),,;(2)见解析;(3)①随着的增大而减小;②图象关于直线对称;③函数的取值范围是. 【解析】【分析】(1)①利用线段的和差定义计算即可.②利用平行线分线段成比例定理解决问题即可.(2)①利用函数关系式计算即可.②描出点,即可.③由平滑的曲线画出该函数的图象即可.(3)根据函数图象写出两个性质即可(答案不唯一).【详解】解:(1)①如图3中,由题意,,,,故答案为:,.②作于.,,,,,,故答案为:,.(2)①当时,,当时,,故答案为2,6.②点,点如图所示.③函数图象如图所示.(3)性质1:函数值的取值范围为.性质2:函数图象在第一象限,随的增大而减小.【点睛】本题属于几何变换综合题,考查了平行线分线段成比例定理,函数的图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.24.(1)22m 3n +,2mn ;(2)4,2,1,1(答案不唯一);(3)a =7或a =13.【解析】【分析】【详解】(1)∵23(3)a b m n +=+,∴223323a b m n mn +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13. 25.(1)DE 与⊙O 相切,理由见解析;(2)阴影部分的面积为2π﹣332. 【解析】【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【详解】(1)DE 与⊙O 相切,理由:连接DO ,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC 的平分线交⊙O 于点D ,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE 与⊙O 相切;(2)∵∠ABC 的平分线交⊙O 于点D ,DE⊥BE,DF⊥AB,∴DE=DF=3,=6, ∵sin∠DBF=31=62, ∴∠DBA=30°,∴∠DOF=60°,∴sin60°=3DF DO DO ==则1322π-= 【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO 的长是解题关键.。
《分式方程应用题》中考常见题型练习1.随着生活水平的提高,人们对饮水品质的需求越来越高某公司根据市场需求代理A,B 两种型号的净水器,每台A型净水器比每台B型净水器进价多300元,用4万元购进A 型净水器与用3.4万元购进B型净水器的数量相等(1)求每台A型、B型净水器的进价各是多少元?(2)该公司计划购进A、B两种型号的净水器共50台进行试销,购买资金不超过9.85万元,其中A型净水器为x台试销时A型净水器每台售价2499元,B型净水器每台售价2099元.公司决定从销售A型净水器的利润中按每台捐献a元(80<a<100)作为公司帮扶贫困村饮水改造资金,设该公司售完50台净水器并捐献扶贫资金后获得的利润为W (元),求W的最大值.2.市政府计划对城区道路进行改造,现安排甲、乙两个工程队共同完成.已知甲队的工作效率是乙队工作效率的1.5倍,甲队改造240米的道路比乙队改造同样长的道路少用2天.(1)甲、乙两个工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天的改造费用为7万元,乙队工作一天的改造费用为5万元,如需改造的道路全长为1800米,改造总费用不超过220万元,至少安排甲队工作多少天?3.某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于2100元,则第二批衬衫每件至少要售多少元?4.在开任公路改建工程中,某工程段将由甲,乙两个工程队共同施工完成,据调查得知,甲,乙两队单独完成这项工程所需天数之比为2:3,若先由甲,乙两队合作30天,剩下的工程再由乙队做15天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)此项工程由两队合作施工,甲队共做了m天,乙队共做了n天完成.已知甲队每天的施工费为15万元,乙队每天的施工费用为8万元,若工程预算的总费用不超过840万元,甲队工作的天数与乙队工作的天数之和不超过80天,请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?5.某书店在图书批发中心选购A、B两种科普书,A种科普书每本进价比B种科普书每本进价多25元,若用2000元购进A种科普书的数量是用750元购进B种科普书数量的2倍.(1)求A、B两种科普书每本进价各是多少元;(2)该书店计划A种科普书每本售价为130元,B种科普书每本售价为95元,购进A 种科普书的数量比购进B种科普书的数量的还少4本,若A、B两种科普书全部售出,使总获利超过1240元,则至少购进B种科普书多少本?6.哈市某段地铁工程由甲、乙两工程队合作30天可完成,若单独施工,甲工程队比乙工程队多用45天.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲工程队施工每天需付施工费1.5万元,乙工程队施工每天需付施工费2.4万元,甲工程队最多要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过127万元?7.某超市准备购进A,B两种品牌台灯,其中A每盏进价比B每盏进价贵30元,A每盏售价120元,B每盏售价80元.已知用1040元购进A的数量与用650元购进B的数量相同.(1)求台灯A、B每盏的进价是多少元;(2)超市打算购进A,B台灯共100盏,要求售出A,B的总利润不少于3400元,问至少需购进A台灯多少台?8.某超市预测某品牌饮料有销售前景,用1200元购进一批该饮料,试销售后果然供不应求,又用5400元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价为多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于5400元,那么销售单价至少为多少元?9.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?10.2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多0.5元.(1)第一批花每束的进价是多少元.(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?11.某修理厂需要购进甲、乙两种配件,经调查,每个甲种配件的价格比每个乙种配件的价格少0.4万元,且用16万元购买的甲种配件的数量与用24万元购买的乙种配件的数量相同.(1)求每个甲种配件、每个乙种配件的价格分别为多少万元;(2)现投入资金80万元,根据维修需要预测,甲种配件要比乙种配件至少要多22件,问乙种配件最多可购买多少件.12.安排甲、乙两队绿化面积为1800m2的区域.已知甲队每天可绿化面积为乙队的一半,且在独立绿化面积为400m2的区域时比乙队多用4天.(1)求甲、乙两队每天可绿化面积;(2)若每天需付甲队0.25万元,乙队0.4万元,要使总费用不超过8万元,至少应安排乙队绿化多少天?13.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?14.为了保护环境,某开发区综合治理指挥部决定购买A ,B 两种型号的污水处理设备共10台.已知用90万元购买A 型号的污水处理设备的台数与用75万元购买B 型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备价格(万元/台)月处理污水量(吨/台)(1)求m 的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过156万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.15.在石家庄地铁3号线的建设中,某路段需要甲乙两个工程队合作完成.已知甲队修600米和乙队修路450米所用的天数相同,且甲队比乙队每天多修50米.(1)求甲队每天修路多少米?(2)地铁3号线全长45千米,若甲队施工的时间不超过120天,则乙队至少需要多少天才能完工?A 型m 220B 型m ﹣318016.小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?17.有一项工程,乙队单独完成所需的时间是甲队单独完成所需时间的2倍,若两队合作4天后,剩下的工作甲单独做还需要6天完成.(1)求甲、乙两队单独完成这项工程各需多少天;(2)若甲队每天的报酬是1万元,乙队每天的报酬是0.3万元,要使完成这项工程时的总报酬不超过9.6万元,甲队最多可以工作多少天?18.时代天街某商场经营的某品牌书包,6月份的销售额为20000元,7月份因为厂家提高了出厂价,商场把该品牌书包售价上涨20%,结果销量减少50个,使得销售额减少了2000元.(1)求6月份该品牌书包的销售单价;(2)若6月份销售该品牌书包获利8000元,8月份商场为迎接中小学开学做促销活动,该书包在6月售价的基础上一律打八折销售,若成本上涨5%,则销量至少为多少个,才能保证8月份的利润比6月份的利润至少增长6.25%?19.荔枝上市后,某水果店的老板用500元购进第一批荔枝,销售完后,又用800元购进第二批荔枝,所购件数是第一批购进件数的2倍,但每件进价比第一批进价少5元.(1)求第一批荔枝每件的进价;(2)若第二批荔枝以30元/件的价格销售,在售出所购件数的50%后,为了尽快售完,决定降价销售,要使第二批荔枝的销售利润不少于300元,剩余的荔枝每件售价至少多少元?20.为落实“美丽城区”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造480米的道路比乙队改造同样长的道路少用4天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用3万元,乙队工作一天需付费用2.4万元,如需改造的道路全长1200米,改造总费用不超过66万元,至少安排甲队工作多少天?参考答案1.解:(1)设每台B型净水器的进价为x元,则每台A型净水器的进价为(x+300)元,依题意,得:解得:x=1700,经检验,x=1700是原方程的解,且符合题意,∴x+300=2000.答:每台A型净水器的进价为2000元,每台B型净水器的进价为1700元.(2)∵购进x台A型净水器,∴购进(50﹣x)台B型净水器,依题意,得:W=(2499﹣2000﹣a)x+(2099﹣1700)(50﹣x)=(100﹣a)x+19950.∵购买资金不超过9.85万元,∴2000x+1700(50﹣x)≤98500,解得:x≤45.∵80<a<100,∴100﹣a>0,∴W随x值的增大而增大,∴当x=45时,W取得最大值,最大值为(24450﹣45a)元.2.解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为1.5x米,根据题意得:解得:x=40,经检验,x=40是所列分式方程的解,且符合题意,∴1.5x=60.答:甲工程队每天能改造道路的长度为60米,乙工程队每天能改造道路的长度为40米.(2)设安排甲队工作m天,则安排乙队工作根据题意得:7m+5×解得:m≥10.≤220,天,﹣=2,=,答:至少安排甲队工作10天.3.解:(1)设第二次购进衬衫x件,则第一次购进衬衫2x件,依题意,得:经检验,x=15,经检验,x=15是所列分式方程的解,且符合题意,∴2x=30.答:第一次购进衬衫30件,第二次购进衬衫15件.(2)由(1)可知,第一次购进衬衫的单价为150元/件,第二次购进衬衫的单价为140元/件,设第二批衬衫的售价为y元/件,依题意,得:(200﹣150)×30+(y﹣140)×15≥2100,解得:y≥180.答:第二批衬衫每件至少要售180元.4.解:(1)设甲工程队单独完成这项工程需要2x天,则乙工程队单独完成这项工程需要3x天,依题意,得:解得:x=30,经检验,x=30是原方程的解,且符合题意,∴2x=60,3x=90.答:甲工程队单独完成这项工程需要60天,乙工程队单独完成这项工程需要90天.(2)由题意,得:∴n=90﹣m.设施工总费用为w万元,则w=15m+8n=15m+8×(90﹣m)=3m+720.∵两队施工的天数之和不超过80天,工程预算的总费用不超过840万元,∴∴20≤m≤40.∵15>0,,+=1,+=1,﹣=10,∴w 值随m 值的增大而增大,∴当m =20时,完成此项工程总费用最少,此时n =90﹣m =60,w =780万元.答:甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.5.解:(1)设B 种科普书每本的进价为x 元,则A 种科普书每本的进价为(x +25)元,根据题意得:解得:x =75,经检验,x =75是所列分式方程的解,∴x +25=100.答:A 种科普书每本的进价为100元,B 种科普书每本的进价为75元.(2)设购进B 种科普书m 本,则购进A 种科普书(m ﹣4)本,根据题意得:(130﹣100)(m ﹣4)+(95﹣75)m >1240,解得:m >45,∵m 为正整数,且m ﹣4为正整数,∴m 为3的倍数,∴m 的最小值为48.答:至少购进B 种科普书48本.6.解:(1)设乙工程队单独完成此项工程需要x 天,则甲工程队单独完成此项工程需要(x +45)天,依题意,得:+=,=2×,整理,得:x 2﹣15x ﹣1350=0,解得:x 1=45,x 2=﹣30,经检验,x 1=45,x 2=﹣30是原方程的解,x 1=45符合题意,x 2=﹣30不符合题意,舍去,∴x =45,x +45=90.答:甲工程队单独完成此项工程需要90天,乙工程队单独完成此项工程需要45天.(2)设甲工程队单独施工m 天后,则甲、乙两工程队需合作施工天才能完成任务,依题意,得:1.5×(m +)+2.4×≤127,解得:m ≤50.答:甲工程队最多要单独施工50天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过127万元.7.解:(1)设B 台灯每盏的进价为x 元,则A 台灯每盏的进价为(x +30)元,依题意,得:解得:x =50,经检验,x =50是原方程的解,且符合题意,∴x +30=80.答:A 台灯每盏的进价为80元,B 台灯每盏的进价为50元.(2)设购进A 台灯m 台,则购进B 台灯(100﹣m )台,依题意,得:(120﹣80)m +(80﹣50)(100﹣m )≥3400,解得:m ≥40.答:至少需购进A 台灯40台.8.解:(1)设第一批饮料进货单价为x 元,则第一批饮料进货单价为(x +2)元,依题意,得:解得:x =4,经检验,x =4是原方程的解,且符合题意.答:第一批饮料进货单价为4元.(2)第一批饮料进货数量为1200÷4=300(瓶),第二批饮料进货数量为5400÷(4+2)=900(瓶).设销售单价为y 元,依题意,得:(300+900)y ﹣(1200+5400)≥5400,解得:y ≥10.=3×,=,答:销售单价至少为10元.9.解:(1)设B 种原料每千克的价格为x 元,则A 种原料每千克的价格为(x +10)元,依题意,得:1.2(x +10)+x ≤34,解得:x ≤10.答:购入的B 种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a 元,则零售价为(a +30)元,依题意,得:解得:a =50,经检验,a =50是原方程的解,且符合题意.答:这种产品的批发价为50元.10.解:(1)设第一批花每束的进价是x 元,则第二批花每束的进价是(x +0.5)元,根据题意得:解得:x =2,经检验:x =2是原方程的解,且符合题意.答:第一批花每束的进价是2元.(2)由(1)可知第二批菊花的进价为2.5元.设第二批菊花的售价为m 元,根据题意得:解得:m ≥3.5.答:第二批花的售价至少为3.5元.11.解:(1)设每个乙种配件的价格为x 万元,则每个甲种配件的价格为(x ﹣0.4)万元,根据题意得:解得:x =1.2,经检验,x =1.2是原分式方程的解,∴x ﹣0.4=1.2﹣0.4=0.8.答:每个甲种配件的价格为0.8万元、每个乙种配件的价格为1.2万元.(2)设购买甲种配件m 件,购买乙种配件n 件,根据题意得:0.8m +1.2n =80,=,×(3﹣2)+×(m ﹣2.5)≥1500,×2=,=,∴m =100﹣1.5n .∵甲种配件要比乙种配件至少要多22件,∴m ﹣n ≥22,即100﹣1.5n ﹣n ≥22,解得:n ≤31.2,∵m ,n 均为非负整数,∴n 的最大值为30.答:乙种配件最多可购买30件.12.解:(1)设甲队每天可绿化面积为xm 2,则乙队每天可绿化面积为2xm 2,根据题意得:解得:x =50,经检验,x =50是所列分式方程的解,∴2x =100.答:甲队每天可绿化面积为50m 2,乙队每天可绿化面积为100m 2.(2)设应安排乙队绿化m 天,则安排甲队绿化根据题意得:0.25×解得:m ≥10.答:至少应安排乙队绿化10天.13.解:(1)设乙工程队每天完成x 米,则甲工程队每天完成2x 米,依题意,得:解得:x =300,经检验,x =300是原方程的解,且符合题意,∴2x =600.答:甲工程队每天完成600米,乙工程队每天完成300米.(2)设甲队先单独工作y 天,则甲乙两工程队还需合作依题意,得:7000(y +解得:y ≥1,∴﹣y ≤﹣=6.﹣y )+5000(﹣y )≤79000,=(﹣y )天,﹣=10,+0.4m ≤8,天,﹣=4,答:两工程队最多可以合作施工6天.14.解:(1)依题意,得:解得:m =18,经检验,m =18是原方程的解,且符合题意.∴m =值为18.(2)设购买A 型污水处理设备x 台,则购买B 型污水处理设备(10﹣x )台,依题意得:18x +15(10﹣x )≤156,解得:x ≤2,∵x 是整数,∴有3种方案.当x =0时,y =10,月处理污水量为180×10=1800吨,当x =1时,y =9,月处理污水量为220+180×9=1840吨,当x =2时,y =8,月处理污水量为220×2+180×8=1880吨,答:有3种购买方案,每月最多处理污水量的吨数为1880吨.15.解:(1)设甲队每天修路x 米,则乙队每天修路(x ﹣50)米,依题意,得:解得:x =200,经检验,x =200是原方程的解,且符合题意.答:甲队每天修路200米.(2)设乙队需要y 天才能完工,依题意,得:45000﹣(200﹣50)y ≥200×120,解得:y ≤140.答:乙队至少需要140天才能完工.16.解:(1)设小本作业本每本x 元,则大本作业本每本(x +0.3)元,依题意,得:解得:x =0.5,经检验,x =0.5是原方程的解,且符合题意,∴x +0.3=0.8.答:大本作业本每本0.8元,小本作业本每本0.5元.=,=,=,(2)设大本作业本购买m本,则小本作业本购买2m本,依题意,得:0.8m+0.5×2m≤15,解得:m≤.∵m为正整数,∴m的最大值为8.答:大本作业本最多能购买8本.17.解:(1)设甲队单独完成这项工程需要x天,则乙队单独完成这项工程需要2x天,+=1,依题意,得:解得:x=12,经检验,x=12是原方程的解,且符合题意,∴2x=24.答:甲队单独完成这项工程需要12天,乙队单独完成这项工程需要24天.(2)设甲队工作m天,则乙队工作天,依题意,得:m+0.3×≤9.6,整理,得:0.4m≤2.4,解得:m≤6.答:甲队最多可以工作6天.18.解:(1)设6月份该品牌书包的销售单价为x元,则7月份该品牌书包的销售单价为(1+20%)x元,﹣=50,依题意,得:解得:x=100,经检验,x=100是原方程的解,且符合题意.答:6月份该品牌书包的销售单价为100元.(2)6月份该品牌书包的销售数量为20000÷100=200(个),6月份该品牌书包的进价为(20000﹣8000)÷200=60(元).设8月份该品牌书包的销售数量为y个,依题意,得:[100×0.8﹣(1+5%)×60]y≥8000×(1+6.25%),解得:y≥500.答:销量至少为500个时,才能保证8月份的利润比6月份的利润至少增长6.25%.19.解:(1)设第一批荔枝每件的进价为x元,则第二批荔枝每件的进价为(x﹣5)元,依题意,得:2×解得:x=25,经检验,x=25是原分式方程的解,且符合题意.答:第一批荔枝每件的进价为25元.(2)第二批购进荔枝的件数为800÷(25﹣5)=40(件).设剩余的荔枝每件售价为y元,依题意,得:[30﹣(25﹣5)]×40×50%+[y﹣(25﹣5)]×40×50%≥300,解得:y≥25.答:剩余的荔枝每件售价至少为25元.20.解:(1)设乙工程队每天能改造道路x米,则甲工程队每天能改造道路x米,=,依题意,得:解得:x=40,﹣=4,经检验,x=40是分式方程的解,且符合题意,∴x=60.答:甲工程队每天能改造道路60米,乙工程队每天能改造道路40米.(2)设安排甲队工作m天,则安排乙队工作依题意,得:3m+2.4×解得:m≥10.答:至少安排甲队工作10天.≤66,天,。
江西省2020年中等学校招生考试数学试题卷一、选择题1. 3-的倒数是( ) A. 3 B.13C. 13-D. 3-【答案】C 【解析】 【分析】由互为倒数的两数之积为1,即可求解. 【详解】∵1313⎛⎫-⨯-= ⎪⎝⎭,∴3-的倒数是13-. 故选C2. 若0a ≠, 则下列运算正确的是( ) A. 32a a a -= B. 326 a a a =C. 325a a a +=D. 32 ÷=a a a【答案】D 【解析】 【分析】根据整式的运算性质分别进行分析即可得出结论. 【详解】3a 与2a 不是同类项,不能合并,故A 错误;322+35 ==a a a a ,故B 错误;3a 与2a 不是同类项,不能合并,故C 错误;323-2 =÷=a a a a ,故D 正确.故选D .【点睛】本题主要考查了整式加减乘除的运算性质,熟练掌握同底数幂的乘除运算是解题的关键. 3. 教育部近日发布了2019年全国教育经费执行情况统计快报,经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%,将50175亿用科学记数法表示为( ) A. 115.017510⨯ B. 125.017510⨯C. 130.5017510⨯D. 140.5017510⨯【答案】B 【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同;当原数的绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将数字50175亿用科学记数法表示为125017500000000 5.017510=⨯故本题选B .【点睛】本题主要考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 与n 的值.4. 如图,1265,335︒∠=∠=∠=︒,则下列结论错误的是( )A. //AB CDB. 30B ∠=︒C. 2C EFC ∠+∠=∠D. CG FG >【答案】C 【解析】 【分析】由12∠=∠可对A 进行判断;根据三角形外角的性质可对B 进行判断;求出∠C ,根据大角对大边,小角对小边可对D 进行判断;求出C EFC ∠∠,可对C 进行判断. 【详解】1265∠=∠︒=,//AB CD ∴,故选项A 正确;335︒∠=, 35EFB ∴∠=︒,又1EFB B ∠=∠+∠,1653530B EFB ∴∠=∠-∠=︒-︒=︒,故选项B 正确; //AB CD ,30C B ∴∠=∠=︒, 3530︒︒>,3C ∴∠>∠CG FG ∴>,故选项D 正确; 335︒∠=,3180EFC ∠+∠=︒118035145EFC ︒-︒∴∠==︒, 而2306595145C ∠+∠=+=≠︒︒︒︒2C EFC ∴∠+∠≠∠,故选项C 错误.故选C .【点睛】此题主要考查了平行线的判定与性质,三角形外角的性质等知识,熟练掌握性质与判定是解答此题的关键.5. 如图所示,正方体的展开图为( )A. B.C. D.【答案】A 【解析】 【分析】根据正方体的展开图的性质判断即可; 【详解】A 中展开图正确;B 中对号面和等号面对面,与题意不符;C 中对号的方向不正确,故不正确;D 中三个符号的方位不相符,故不正确; 故答案选A .【点睛】本题主要考查了正方体的展开图考查,准确判断符号方向是解题的关键.6. 在平面直角坐标系中,点O 为坐标原点,抛物线223y x x =--与y 轴交于点A ,与x 轴正半轴交于点B ,连接AB ,将Rt OAB 向右上方平移,得到Rt O A B '''△,且点O ',A '落在抛物线的对称轴上,点B '落在抛物线上,则直线A B ''的表达式为( ) A. y x = B. 1y x =+C. 12y x =+D. 2y x =+【答案】B 【解析】 【分析】先求出A 、B 两点的坐标和对称轴,先确定三角形向右平移了1个单位长度,求得B′的坐标,再确定三角形向上平移5个单位,求得点A′的坐标,用待定系数法即可求解. 【详解】解:当y=0时,2230x x --=,解得x 1=-1,x 2=3, 当x=0时,y=-3, ∴A (0,-3),B (3,0), 对称轴为直线12bx a=-=, 经过平移,A '落在抛物线的对称轴上,点B '落在抛物线上, ∴三角形Rt OAB 向右平移1个单位,即B′的横坐标为3+1=4, 当x=4时,y=42-2×4-3=5, ∴B′(4,5),三角形Rt OAB 向上平移5个单位, 此时A ′(0+1,-3+5),∴A′(1,2), 设直线A B ''的表达式为y=kx+b , 代入A′(1,2),B′(4,5), 可得254k b k b =+⎧⎨=+⎩解得:11k b =⎧⎨=⎩,故直线A B ''的表达式为1y x =+, 故选:B .【点睛】本题考查二次函数的图象和与坐标轴的交点坐标、图形的平移和待定系数法求一次函数表达式等知识点,解题的关键是熟练掌握二次函数的图形和性质.二、填空题7. 计算:()21x -=_____.【答案】221x x -+ 【解析】 【分析】运用完全平方公式展开,即可完成解答. 【详解】解:()21x -=221x x -+【点睛】本题考查了平方差公式,即()2a b ±=222a ab b ±+;灵活运用该公式是解答本题的关键. 8. 若关于x 的一元二次方程220x kx --=的一个根为1x =,则这个一元二次方程的另一个根为_________. 【答案】-2 【解析】 【分析】由题目已知x =1是方程的根,代入方程后求出k 的值,再利用一元二次方程的求根方法即可答题. 【详解】解:将x =1代入一元二次方程220x kx --=有:120k --=,k =-1, 方程2+20x x -=(2)(1)0x x +-=即方程的另一个根为x =-2 故本题的答案为-2.【点睛】本题主要考查了一元二次方程用已知根求方程未知系数以及利用因式分解法解一元二次方程,其中利用已知根代入方程求出未知系数是解题的关键.9. 公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10,在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位,根据符号记数的方法,右下面符号表示一个两位数,则这个两位数是__________.【答案】25【解析】 【分析】根据所给图形可以看出左边是2个尖头,表示2个10,右边5个钉头表示5个1,由两位数表示法可得结论. 【详解】根据图形可得:两位数十位上数字是2,个位上的数字是5, 因此这个两位数是2×10+5×1=25, 故答案为:25.【点睛】此题考查了有理数的混合运算,弄清题中的数字的表示法是解本题的关键.10. 祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献,胡老师对圆周率的小数点后100位数字进行了如下统计: 数字 0 1 2 3 4 5 6 7 8 9 频数881211108981214那么,圆周率的小数点后100位数字的众数为__________. 【答案】9 【解析】 【分析】众数:众数数样本观测值在频数分布表中频数最多的那一组的组中值,即在一组数据中,出现次数最多的数据,是一组数据中的原数据,而不是相应的次数.【详解】解:由题目的频数分布表可观察到数字9的频数为14,出现次数最多; 故本题答案为9.【点睛】本题主要考查众数的定义,即一组数据中,出现次数最多的数据,是一组数据中的原数据,而不是相应的次数.11. 如图,AC 平分DCB ∠,CB CD =,DA 的延长线交BC 于点E ,若49EAC ∠=,则BAE ∠的度数为__________.【答案】82.︒ 【解析】 【分析】如图,连接BD ,延长CA 与BD 交于点,F 利用等腰三角形的三线合一证明CF 是BD 的垂直平分线,从而得到,AB AD = 再次利用等腰三角形的性质得到:,DAF BAF ∠=∠从而可得答案. 【详解】解:如图,连接BD ,延长CA 与BD 交于点,F AC 平分DCB ∠,CB CD =,,,CF BD DF BF ∴⊥=CF ∴是BD 的垂直平分线,,AB AD ∴=,DAF BAF ∴∠=∠ 49,EAC ∠=︒49,DAF BAF EAC ∴∠=∠=∠=︒ 180494982,BAE ∴∠=︒-︒-︒=︒故答案为:82.︒【点睛】本题考查的是等腰三角形的性质,掌握等腰三角形的三线合一是解题的关键.12. 矩形纸片ABCD ,长8cm AD =,宽4cm AB =,折叠纸片,使折痕经过点B ,交AD 边于点E ,点A 落在点A '处,展平后得到折痕BE ,同时得到线段BA ',EA ',不再添加其它线段,当图中存在30角时,AE 的长为__________厘米.【答案】433或43或843-【解析】【分析】分∠ABE=30°或∠AEB=30°或∠ABA′=30°时三种情况,利用锐角三角函数进行求解即可.【详解】解:当∠ABE=30°时,∵AB=4cm,∠A=90°,∴AE=AB·tan30°=43cm;当∠AEB=30°时,则∠ABE=60°,∵AB=4cm,∠A=90°,∴AE=AB·tan60°=43cm;当∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=23sin603x x EF==︒,∵AF=AE+EF=ABtan30°=433,∴34333xx+=,∴843x=-∴843AE=-cm.故答案为:433或383-【点睛】本题考查了矩形与折叠,以及分类讨论的数学思想,分类讨论是解答本题的关键.三、解答题13. (1)计算:201(1|2|2-⎛⎫--+ ⎪⎝⎭(2)解不等式组:32152x x -≥⎧⎨->⎩【答案】(1)3;(2)1≤x <3. 【解析】 【分析】(1)先根据零次幂、绝对值和负整数次幂化简,然后计算即可; (2)先分别求出各不等式的解集,然后再求不等式组的解集.【详解】解:(1)201(1|2|2-⎛⎫--+ ⎪⎝⎭=124-+ =3; (2)32152x x -≥⎧⎨->⎩①②由①得:x≥1 由②得:x <3所以该不等式组的解集为:1≤x <3.【点睛】本题考查了实数的运算和不等式组的解法,掌握实数的运算法则和解不等式的方法是解答本题的关键.14. 先化简,再求值:221111x x x x x ⎛⎫-÷⎪--+⎝⎭,其中x = 【答案】1x,2【解析】 【分析】先进行分式减法的计算,在进行除法计算,化简之后带值计算即可;【详解】原式=()()()()2111111x x xx x x x x ⎡⎤+-÷⎢⎥-+-++⎢⎥⎣⎦,=()()21111x x xx x x --÷-++,=()()1111x x x x x-+⨯-+=1x,把x 代入上式得,原式2. 【点睛】本题主要考查了分式的化简求值,准确进行分式化简是解题的关键.15. 某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员,小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级,现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为 ;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率. 【答案】(1)14;(2)1.6【解析】 【分析】(1)直接利用概率公式可得答案;(2)分别记小贤、小艺、小志、小晴为,,,A B C D ,画好树状图,利用概率公式计算即可. 【详解】解:(1)由概率公式得:随机抽取一名同学,恰好抽到小艺同学的概率为14, 故答案为:1.4(2)分别记小贤、小艺、小志、小晴为,,,A B C D , 画树状图如下:一共有12种等可能的结果,其中两名同学均来自八年级的有2种可能,所以:两名同学均来自八年级的概率21.126 P==【点睛】本题考查的是简单随机事件的概率,以及利用画树状图求解复杂的随机事件的概率,掌握求概率的基本方法是解题的关键.16. 如图,在正方形网格中,ABC的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作ABC关于点O对称的A B C''';(2)在图2中,作ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的A B C'''.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)分别作出A,B,C三点关于O点对称的点A',B',C',然后顺次连接即可得A B C''';(2)计算得出AB=5AC=5,再根据旋转作图即可.【详解】(1)如图1所示;(2)根据勾股定理可计算出AB=25AC=5,再作图,如图2所示.【点睛】本题考查复杂-应用与设计,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题.17. 放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元,小贤要买3支笔芯,2本笔记本需花19元,小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱,他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.【答案】(1)5元,3元;(2)当两人共同购买笔芯,享受整盒购买的优惠时,能让两人既买到各自的文具又都买到小工艺品.【解析】【分析】(1)根据小贤买3支笔芯,2本笔记本花费19元,可知等量关系:笔芯的单价×3+笔记本单价×2=小贤花费金额,同样可得小艺的等量关系,这两个等量关系可列方程组解答;(2)小贤买3支笔芯,小艺4支笔芯,凑起来即为一盒,由题目已知整盒买比单支买每支可优惠0.5元,可知优惠5元,再加上小贤剩余两元即可让两人既买到各自的文具,又都买到小工艺品.【详解】(1)设单独购买一支笔芯的价格为x元,一本笔记本的价格为y元,有3219726x yx y+=⎧⎨+=⎩,解得35xy=⎧⎨=⎩;故笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)两人共有金额19+26+2=47元,若两人共购买10支笔芯(一盒),3本笔记本,由题目已知整盒买比单支买每支可优惠0.5元,故两人买到各自的文具需要花费10×2.5+3×5=40(元),剩余47-40=7(元),可购买两件单价为3元的小工艺品;故只有当两人一同购买笔芯,享受整盒购买优惠,即可能让他们既买到各自的文具,又都买到小工艺品.【点睛】(1)本题主要考查了二元一次方程组的求解,其中根据题目信息找到等量关系,;列出方程组是解题的关键;(2)本题主要是对题目中关键信息的理解以及应用,其中观察到整盒购买享受优惠是成功让两人既买到各自的文具,又都买到小工艺品的关键.18. 如图,Rt ABC 中,90ACB ∠=,顶点A ,B 都在反比例函数(0)ky x x=>的图象上,直线AC x⊥轴,垂足为D ,连结OA ,OC ,并延长OC 交AB 于点E ,当2AB OA =时,点E 恰为AB 的中点,若45AOD ∠=,22OA =.(1)求反比例函数的解析式; (2)求EOD ∠的度数.【答案】(1)4y x=;(2)15EOD =︒∠ 【解析】 【分析】(1)根据勾股定理求得AD=OD=2,A(2,2),代入函数关系式求解即可;(2)先根据直角三角形斜边的中线等于斜边的一半可得CE=BE ,∠AEC=2∠ECB ,又由OA=AE 可得∠AOE=∠AEO=2∠ECB ,由平行线的性质可知∠ECB=∠EOD ,所以∠EOD=13∠AOD ,代入求解即可. 【详解】(1)∵AD ⊥x 轴,∠AOD=45°,OA=22 ∴AD=OD=2, ∴A(2,2),∵点A 在反比例函数图象上, ∴k=2×2=4, 即反比例函数的解析式为4y x=. (2)∵△ABC 为直角三角形,点E 为AB 的中点, ∴AE=CE=EB ,∠AEC=2∠ECB ,∵AB=2OA , ∴AO=AE ,∴∠AOE=∠AEO=2∠ECB , ∵∠ACB=90°,AD ⊥x 轴, ∴BC//x 轴, ∴∠ECB=∠EOD , ∴∠AOE=2∠EOD , ∵∠AOD=45°, ∴∠EOD=13∠AOD=1453⨯︒=15︒.【点睛】本题考查了反比例函数的解析式、含30度角的直角三角形的性质、平行线的性质和等腰三角形的性质等知识点,根据题意找出角之间的关系是解题的关键.19. 为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学,该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评,根据第一次测试的数学成绩制成频数分布直方图(图1)复学一个月后,根据第二次测试的数学成绩得到如下统计表: 成绩3040x ≤< 4050x ≤< 5060x ≤< 6070x ≤< 7080x ≤< 8090x ≤< 90100x ≤≤人数 133815m6根据以上图表信息,完成下列问题: (1)m = ;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分,这次测试中,分数高于78分的至少有人,至多有人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.【答案】(1)14;(2)折线图见详解,通过第一次和第二次测试情况发现,复学初线上学习的成绩大部分在70以下,复学后线下学习的成绩大部分在70以上,说明线下上课的情况比线上好;(3)20,34;(4)320人【解析】【分析】(1)根据图1求出本次测评的总人数,用总人数减去第二次测评各成绩段的人数可得出m的值;(2)根据第一次和第二次测试的各分数段人数,可在图2中画出折线图,根据折线图可得出线上教学与线下教学的效果对比;(3)由第二次测试的成绩统计表可判断出分数高于78分的至少有多少人,至多有多少人;(4)样本估计总体,样本中数学成绩优秀的人数占测试人数的25,因此估计总体800名的25是成绩优秀的人数.【详解】解:(1)由图1可知总人数为:2+8+10+15+10+4+1=50人,所以m=50-1-3-3-8-15-6=14人;(2)如图:通过第一次和第二次测试情况发现,复学初线上学习的成绩大部分在70分以下,复学后线下学习的成绩大部分在70分以上,说明线下上课的情况比线上好;(3)由统计表可知,至少14+6=20人,至多15+14+6-1=34人;(4)800×14+6=3202+8+10+15+10+4+1(人)答:复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数为320人.【点睛】本题考察了条形统计图,折线统计图与统计表,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.20. 如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图,量得托板长120mm AB =,支撑板长80mm CD =,底座长90mm DE =,托板AB 固定在支撑板顶端点C 处,且40mm CB =,托板AB 可绕点C 转动,支撑板CD 可绕点D 转动.(结果保留小数点后一位) (1)若80DCB ︒∠=,60CDE ︒∠=,求点A 到直线DE 的距离;(2)为了观看舒适,在(1)的情况下,把AB 绕点C 逆时针旋转10后,再将CD 绕点D 顺时针旋转,使点B 落在直线DE 上即可,求CD 旋转的角度.(参考数据:sin 400.643,cos 400.766︒︒≈≈,tan 400.839︒≈,sin 26.60.448≈,cos 26.60.894,tan 26.60.500︒︒≈≈,3 1.732≈)【答案】(1)120.7mm ;(2)33.4︒ 【解析】 【分析】(1)过点A 作AM DE ⊥,CN DE ⊥,CP AM ⊥,根据已知条件分别求出AP 和PM ,再相加即可; (2)根据已知条件可得=90BCD ∠︒,根据三角函数的定义进行判断求解即可得到结论; 详解】(1)如图所示,过点A 作AM DE ⊥,CN DE ⊥,CP AM ⊥, 则90CPM CMD CND ∠=∠=∠=︒,∵120mm AB =,40mm CB =, ∴80mm =AC ,又∵80DCB ︒∠=,60CDE ︒∠=, ∴100ACD ∠=︒,120CDM ∠=︒,∴360909012060PCD ∠=︒-︒-︒-︒=︒, ∴1006040ACP ∠=︒-︒=︒, ∴sin 40800.64351.44mm AP AC =︒=⨯=,又∵60CDN =︒,80mm CD =, ∴3sin 608040369.282CN CD =︒=⨯=≈mm , ∴69.2851.44120.72120.7AM mm =+=≈. ∴点A 到直线DE 的距离是120.7mm . (2)如图所示,根据题意可得90DCE ∠=︒,40mm CB =,80mm CD =, ∴401tan 802BC CDB DC ∠===, ∴26.6CDB ∠=︒,根据(1)可得60CDE ︒∠=,∴CD 旋转的角度=60-26.6=33.4︒︒︒.【点睛】本题主要考查了解直角三角形的应用,准确的构造直角三角形,利用三角函数的定义求解是解题的关键.21. 已知MPN ∠的两边分别与圆O 相切于点A ,B ,圆O 的半径为r .(1)如图1,点C 在点A ,B 之间的优弧上,80MPN ∠=,求ACB ∠的度数;(2)如图2,点C 在圆上运动,当PC 最大时,要使四边形APBC 为菱形,APB ∠的度数应为多少?请说明理由;(3)若PC 交圆O 于点D ,求第(2)问中对应的阴影部分的周长(用含r 的式子表示).【答案】(1)50°;(2)当∠APB=60°时,四边形APBC 为菱形,理由见解析;(3)313r π⎫+⎪⎭. 【解析】 【分析】(1)连接OA 、OB ,根据切线的性质和多边形内角和定理可得∠AOB+∠APB=180°,然后结合已知求得∠AOB ,最后根据圆周角定理即可解答;(2)连接OA 、OB ,先观察发现当∠APB=60°时,四边形APBC 可能为菱形;然后利用∠APB=60°结合(1)的解答过程可得∠ACB=∠APB=60°,再根据点C 运动到PC 距离最大,即PC 经过圆心;再说明四边形APBC 为轴对称图形结合已知条件得到PA =PB=CA =CB ,即可得到四边形APBC 为菱形;(3)由于⊙O 的半径为r ,则OA=r 、OP=2 r ,再根据勾股定理可得3r 、PD=r ,然后根据弧长公式求得AC l 的弧长,最后根据周长公式计算即可. 【详解】解:(1)如图1,连接OA 、OB ∵PA ,PB 为⊙O 的切线 ∴∠PAO=∠PBO=90°∴∠AOB+∠MPN=180° ∵∠MPN=80°∴∠AOB=180°-∠MPN=100° ∴∠AOB=100°=12∠ACB=50°;(2)当∠APB=60°时,四边形APBC为菱形,理由如下:如图2:连接OA、OB由(1)可知∠AOB+∠APB=180°∵∠APB=60°∴∠AOB=120°∴∠ACB=60°=∠APB∵点C运动到PC距离最大∴PC经过圆心∵PA、PB为⊙O的切线∴四边形APBC为轴对称图形∵PA=PB,CA=CB,PC平分∠APB和∠ACB.∴∠APB=∠ACB=60°∴∠APO=∠BPO=∠ACP=∠BCP=30°∴PA =PB=CA =CB ∴四边形APBC为菱形;(3)∵⊙O的半径为r ∴OA=r,OP=2 r ∴3,PD=r ∵∠AOP=60°∴601803AD r l r ππ== ∴C 阴影313D PA PD l r απ⎛⎫=++=++⎪⎝⎭. 【点睛】本题考查了圆的切线的性质、圆周角定理、菱形的判定、弧长公式以及有关圆的最值问题,考查知识点较多,灵活应用所学知识是解答本题的关键.22. 已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a ≠)的自变量x 与函数值y 的部分对应值如下表:x… -2 -1 0 1 2 … y…m 0-3n-3…(1)根据以上信息,可知抛物线开口向 ,对称轴为 ; (2)求抛物线的表达式及,m n 的值;(3)请在图1中画出所求的抛物线,设点P 为抛物线上的动点,OP 的中点为P ',描出相应的点P ',再把相应的点P '用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y m =(2m >-)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为1A ,2A ,3A ,4A ,请根据图象直接写出线段1A 2A ,3A 4A 之间的数量关系 .【答案】(1)上,1x =;(2)223y x x =--,5,4m n ==-;(3)图象见解析,中点P '的轨迹为抛物线;(4)12341A A A A =-. 【解析】 【分析】(1)由表中数据分析即可得到开口方向,及对称轴;(2)代入(1,0),(0,3),(2,3)---,解方程组,即可求得表达式;代入2,1x x =-=即可得到,m n 的值; (3)根据要求画出函数图象,并观察猜想即可;(4)根据题目要求,画出图象,观察得结论即可.【详解】(1)由表可知:1,0x y ==;0,3x y ==-,x=2,y=-3可知抛物线开后方向向上;由表可知:0,3x y ==-;2,3x y ==-,可知抛物线的对称轴为:0212x +== 故答案为:上,1x =(2)由表可知:代入点(1,0),(0,3),(2,3)---得 03423a b c c a b c -+=⎧⎪=-⎨⎪++=-⎩,解得123a b c =⎧⎪=-⎨⎪=-⎩ ∴抛物线的表达式为:223y x x =--当2x =-时,2(2)2(2)35m =--⨯--=当1x =时,212134n =-⨯-=-(3)作图如下:OP 中点P '连接后的图象如图所示:为抛物线(4)如图所示:可得12341A A A A =-【点睛】本题考查了二次函数的探究题,能根据表格求出抛物线的解析式,是解题的关键.23. 某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积1S ,2S ,3S 之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt ABC 中,BC 为斜边,分别以,,AB AC BC 为斜边向外侧作Rt ABD △,Rt ACE △,Rt BCF ,若123∠=∠=∠,则面积1S ,2S ,3S 之间的关系式为 ;推广验证(2)如图3,在Rt ABC 中,BC 为斜边,分别以,,AB AC BC 为边向外侧作任意ABD △,ACE △,BCF △,满足123∠=∠=∠,D E F ∠=∠=∠,则(1)中所得关系式是否仍然成立?若成立,请证明你结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE 中,105A E C ∠=∠=∠=,90ABC ∠=,AB =2DE =,点P 在AE 上,30ABP ∠=,PE =,求五边形ABCDE 的面积.【答案】(1)312S S S =+;(2)结论成立,证明看解析;(3)【解析】【分析】(1)由题目已知△ABD 、△ACE 、△BCF 、△ABC 均为直角三角形,又因为123∠=∠=∠,则有Rt ABD △∽Rt ACE △∽Rt BCF ,利用相似三角形的面积比为边长平方的比,列出等式,找到从而找到面积之间的关系;(2)在△ABD 、△ACE 、△BCF 中,123∠=∠=∠,D E F ∠=∠=∠,可以得到ABD △∽ACE △∽BCF △,利用相似三角形的面积比为边长平方的比,列出等式,从而找到面积之间的关系; (3)将不规则四边形借助辅助线转换为熟悉的三角形,过点A 作AH ⊥BP 于点H ,连接PD ,BD ,由此可知AP =3BP BH PH =+=+,即可计算出ABP S △,根据△ABP ∽△EDP ∽△CBD ,从而有2PED ABP S S =⋅△△,由(2)结论有,BCD ABP EPD S S S =+△△△最后即可计算出四边形ABCD 的面积. 【详解】(1)∵△ABC 是直角三角形,∴222AB AC BC +=, ∵△ABD 、△ACE 、△BCF 均为直角三角形,且123∠=∠=∠,∴Rt ABD △∽Rt ACE △∽Rt BCF ,∴2123S AB S BC =,2223S AC S BC=, ∴22222121222223331S S S S AC AB AC AB BC S S S BC BC BC BC +++==+=== ∴312S S S =+得证.(2)成立,理由如下:∵△ABC 是直角三角形,∴222AB AC BC +=,∵在△ABD 、△ACE 、△BCF 中,123∠=∠=∠,D E F ∠=∠=∠,∴ABD △∽ACE △∽BCF △, ∴2123S AB S BC =,2223S AC S BC =, ∴22222121222223331S S S S AC AB AC AB BC S S S BC BC BC BC+++==+=== ∴312S S S =+得证.(3)过点A 作AH ⊥BP 于点H ,连接PD ,BD ,∵30ABH ∠=,AB =∴AH =,3BH =,60BAH ∠=∵105BAP ∠=,∴45HAP ∠=,∴PH =AH∴AP =3BP BH PH =+=+,∴(33222ABP BP AH S ⋅+===△,∵PE =,ED=2,∴3PE AP ==,3ED AB ==, ∴PE ED AP AB =, ∵105E BAP ∠=∠=,∴△ABP ∽△EDP ,∴45EPD APB ∠=∠=,3PD PE BP AP ==, ∴90BPD ∠=,1PD =+∴23333131()3232PED ABP S S ++=⋅=⋅=△△, (33)(13)32322BPD BP PD S ⋅+⋅+===+△, ∵3tan 3PD PBD BP ∠==, ∴30PBD ∠=∵90ABC ∠=,30ABP ∠=∴30DBC ∠=∵105C ∠=∴△ABP ∽△EDP ∽△CBD∴33313223BCD ABP EPD S S S ++=+=+=+△△△ 33313(223)(323)63722BCD ABP EPD BPD ABCD S S S S S ++=+++=+++++=+△△△△四边形故最后答案为637+.【点睛】(1)(2)主要考查了相似三角形的性质,若两三角形相似,则有面积的比值为边长的平方,根据此性质找到面积与边长的关系即可;(3)主要考查了不规则四边形面积的计算以及(2)的结论,其中合理正确利用前面得出的结论是解题的关键.。
中考数学试卷一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)﹣8的立方根是()A.﹣2 B.±2 C.2D.﹣2.(3分)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180°C.α﹣β=90°D.α+β=90°3.(3分)下列运算正确的是()A.x2•x 3=x6B.x6÷x 5=x C.(﹣x2)4=x6D.x2+x3=x54.(3分)如图所示的几何体的主视图是()A.B.C.D.5.(3分)函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠06.(3分)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.407.(3分)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π8.(3分)已知:在△ABC中,BC=10,BC 边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D 为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B.C.D.二、填空题(共7小题,每小题3分,共21分)9.(3分)计算:|﹣|=_________.10.(3分)分解因式:(2a+1)2﹣a2=_________.11.(3分)计算:﹣=_________.12.(3分)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD=_________度.13.(3分)当x=﹣1时,代数式÷+x的值是_________.14.(3分)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD=_________.15.(3分)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为_________ cm2.三、解答题(本大题共10小题,满分共75分)16.(5分)解不等式组:,并在数轴上表示出不等式组的解集.17.(6分)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?18.(6分)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.19.(6分)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.20.(7分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.21.(7分)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有_________名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?22.(9分)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(_________,_________),B(_________, _________),D(_________,_________).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.23.(7分)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C 正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)24.(9分)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y=_________(用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?25.(13分)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.中考数学试卷参考答案与试题解析一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)﹣8的立方根是()A.﹣2 B.±2 C.2D.﹣考点:立方根.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解答:解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选A.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.(3分)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180°C.α﹣β=90°D.α+β=90°考点:余角和补角.分析:根据互为余角的定义,可以得到答案.解答:解:如果α与β互为余角,则α+β=900.故选:D.点评:此题主要考查了互为余角的性质,正确记忆互为余角的定义是解决问题的关键.3.(3分)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x5考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法和除法法则可以解答本题.解答:解:A.x2•x3=x5,答案错误;B.x6÷x5=x,答案正确;C.(﹣x2)4=x8,答案错误;D.x2+x3不能合并,答案错误.故选:B.点评:主要考查同底数幂相除底数不变指数相减,同底数幂相乘底数不变指数相加,熟记定义是解题的关键.4.(3分)如图所示的几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,可得答案.解答:解:从正面看,象一个大梯形减去一个小梯形,故选:D.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.(3分)函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠0考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,x﹣2≥0且x≠0,∴x≥2.故选B.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.40考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到α+β=﹣2,αβ=﹣6,再利用完全平方公式得到α2+β2=(α+β)2﹣2αβ,然后利用整体代入的方法计算.解答:解:根据题意得α+β=﹣2,αβ=﹣6,所以α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=16.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.7.(3分)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π考点:圆锥的计算.分析:表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.解答:解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2m,∴圆锥的母线长为4cm,∴侧面面积=×4π×4=8π;底面积为=4π,全面积为:8π+4π=12πcm2.故选C.点评:本题利用了圆的周长公式和扇形面积公式求解,牢记公式是解答本题的关键.8.(3分)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D 为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B.C.D.考点:动点问题的函数图象.分析:判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S 与x的关系式,然后得到大致图象选择即可.解答:解:∵EF∥BC,∴△AEF∽△ABC,∴=,∴EF=•10=10﹣2x,∴S=(10﹣2x)•x=﹣x2+5x=﹣(x ﹣)2+,∴S与x的关系式为S=﹣(x ﹣)2+(0<x<10),纵观各选项,只有D选项图象符合.故选D.点评:本题考查了动点问题函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式是解题的关键,也是本题的难点.二、填空题(共7小题,每小题3分,共21分)9.(3分)计算:|﹣|=.考点:绝对值.分析:根据负数的绝对值等于它的相反数,可得答案案.解答:解:|﹣|=,故答案为:.点评:本题考查了绝对值,负数的绝对值是它的相反数.10.(3分)分解因式:(2a+1)2﹣a2=(3a+1)(a+1).考点:因式分解-运用公式法.分析:直接利用平方差公式进行分解即可.解答:解:原式=(2a+1+a)(2a+1﹣a)=(3a+1)(a+1),故答案为:(3a+1)(a+1).点评:此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).11.(3分)计算:﹣=.考点:二次根式的加减法.分析:先进行二次根式的化简,然后合并同类二次根式求解.解答:解:原式=2﹣=.故答案为:.点评:本题考查了二次根式的加减法,关键是掌握二次根式的化简以及同类二次根式的合并.12.(3分)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD=60度.考点:平行线的性质.分析:延长AC交BE于F,根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等可得∠CAD=∠1.解答:解:如图,延长AC交BE于F,∵∠ACB=90°,∠CBE=30°,∴∠1=90°﹣30°=60°,∵AD∥BE,∴∠CAD=∠1=60°.故答案为:60.点评:本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.13.(3分)当x=﹣1时,代数式÷+x的值是3﹣2.考点:分式的化简求值.分析:将除法转化为乘法,因式分解后约分,然后通分相加即可.解答:解:原式=•+x=x(x﹣1)+x=x2﹣x+x=x2,当x=﹣1时,原式=(﹣1)2=2+1﹣2=3﹣2.故答案为3﹣2.点评:本题考查了分式的化简求值,熟悉除法法则和因式分解是解题的关键.14.(3分)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD=4.考点:垂径定理;解直角三角形.专题:计算题.分析:连结OD,设⊙O的半径为R,先根据圆周角定理得到∠BOD=2∠BAD=60°,再根据垂径定理由CD⊥AB得到DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,利用余弦的定义得cos∠EOD=cos60°=,即=,解得R=4,则OE=2,DE=OE=2,所以CD=2DE=4.解答:解:连结OD,如图,设⊙O的半径为R,∵∠BAD=30°,∴∠BOD=2∠BAD=60°,∵CD⊥AB,∴DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,OD=R,∵cos∠EOD=cos60°=,∴=,解得R=4,∴OE=4﹣2=2,∴DE=OE=2,∴CD=2DE=4.故答案为4.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理和解直角三角形.15.(3分)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为,5,10cm2.考点:作图—应用与设计作图.分析:因为等腰三角形腰的位置不明确,所以分(1)腰长在矩形相邻的两边上,(2)一腰在矩形的宽上,(3)一腰在矩形的长上,三种情况讨论.(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解.解答:解:分三种情况计算:(1)当AE=AF=5厘米时,∴S△AEF AE•AF=×5×5=厘米2,(2)当AE=EF=5厘米时,如图BF===2厘米,∴S△AEF=•AE•BF=×5×2=5厘米2,(3)当AE=EF=5厘米时,如图DF===4厘米,∴S△AEF=AE•DF=×5×4=10厘米2.故答案为:,5,10.点评:本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论.三、解答题(本大题共10小题,满分共75分)16.(5分)解不等式组:,并在数轴上表示出不等式组的解集.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解答:解:解①得:x>3,解②得:x≥1.,则不等式组的解集是:x>3.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?考点:二元一次方程组的应用.分析:设购买1块电子白板需要x元,一台投影机需要y元,根据①买2块电子白板的钱﹣买3台投影机的钱=4000元,②购买4块电子白板的费用+3台投影机的费用=44000元,列出方程组,求解即可.解答:解:设购买1块电子白板需要x元,一台投影机需要y元,由题意得:,解得:.答:购买一块电子白板需要8000元,一台投影机需要4000元.点评:此题主要考查了二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.18.(6分)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线定理即可得证.解答:证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.点评:此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键.19.(6分)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.考点:列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.解答:解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(7分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.考点:切线的性质;正方形的性质.分析:(1)连接BD,根据直径所对的圆周角是直角,得到直角三角形ABD和BCD,根据切线的判定定理知BC是圆的切线,结合切线长定理得到BE=DE,再根据等边对等角以及等角的余角相等证明DE=CE;(2)当以点O、D、E、C为顶点的四边形是正方形时,则△DEB是等腰直角三角形,据此即可判断.解答:(1)证明:连接CD,∵AC是直径,∠ACD=90°,∴BC是⊙O的切线,∠BDA=90°.∵DE是⊙O的切线,∴DE=BE(切线长定理).∴∠EBD=∠EDB.又∵∠DCE+∠EBD=∠CDE+∠EDB=90°,∴∠DCE=∠CDE,∴DE=CE,又∵DE=BE,∴DE=BE.(2)解:当以点O、D、E、C为顶点的四边形是正方形时,则∠DEB=90°,又∵DE=BE,∴△DEB是等腰直角三角形,则∠B=45°,∴△ABC是等腰直角三角形.点评:本题考查了切线的性质以及切线长定理、圆周角定理,解题的关键是连接CD构造直角三角形.21.(7分)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?考点:条形统计图;扇形统计图.分析:(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360°,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可.解答:解:(1)10÷5%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)200﹣38﹣62﹣50﹣10=40(名),条形统计图如下:=90°,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90°;(3)1200×()=144(盒),答:草莓味要比原味多送144盒.点评:本题考查的是条形统计图和扇形统计图的综合运用;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(9分)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(﹣2,),B(2,﹣),D(1,﹣1).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.考点:反比例函数综合题.专题:综合题.分析:(1)由C坐标,利用反比例函数的中心对称性确定出D坐标,联立双曲线y=﹣与直线y=﹣x,求出A与B 坐标即可;(2)由反比例函数为中心对称图形,利用中心对称性质得到OA=OB,OC=OD,利用对角线互相平分的四边形为平行四边形即可得证;(3)由A与B坐标,利用两点间的距离公式求出AB的长,联立双曲线y=﹣与直线y=﹣kx,表示出CD的长,根据对角线相等的平行四边形为矩形,得到AB=CD,即可求出此时k的值.解答:解:(1)∵C(﹣1,1),C,D为双曲线y=﹣与直线y=﹣kx的两个交点,且双曲线y=﹣为中心对称图形, ∴D(1,﹣1),联立得:,消去y得:﹣x=﹣,即x2=4,解得:x=2或x=﹣2,当x=2时,y=﹣;当x=﹣2时,y=,∴A(﹣2,),B(2,﹣);故答案为:﹣2,,2,﹣,1,﹣1;(2)∵双曲线y=﹣为中心对称图形,且双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点,∴OA=OB,OC=OD,则以点A、D、B、C为顶点的四边形是平行四边形;(3)若▱ADBC是矩形,可得AB=CD,联立得:,消去y得:﹣=﹣kx,即x2=,解得:x=或x=﹣,当x=时,y=﹣;当x=﹣时,y=,∴C(﹣,),D(,﹣),∴CD==AB==,整理得:(4k﹣1)(k﹣4)=0,解得:k=(不合题意,舍去)或k=4,则当k=4时,▱ADBC是矩形.点评:此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,一次函数与反比例函数的交点,平行四边形,矩形的判定,两点间的距离公式,以及中心图形性质,熟练掌握性质是解本题的关键.23.(7分)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C 正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)考点:解直角三角形的应用-方向角问题.分析:(1)作CE⊥AB,设AE=x海里,则BE=CE=x海里.根据AB=AE+BE=x+x=100(+1),求得x的值后即可求得AC的长;过点D作DF⊥AC于点F,同理求出AD的长;(2)作DF⊥AC于点F,根据AD的长和∠DAF的度数求线段DF的长后与100比较即可得到答案.解答:解:(1)如图,作CE⊥AB,由题意得:∠ABC=45°,∠BAC=60°,设AE=x海里,在Rt△AEC中,CE=AE•tan60°=x;在Rt△BCE中,BE=CE=x.∴AE+BE=x+x=100(+1),解得:x=100.AC=2x=200.在△ACD中,∠DAC=60°,∠ADC=75°,则∠ACD=45°.过点D作DF⊥AC于点F,设AF=y,则DF=CF=y,∴AC=y+y=200,解得:y=100(﹣1),∴AD=2y=200(﹣1).答:A与C之间的距离AC为200海里,A与D之间的距离AD为200(﹣1)海里.(2)由(1)可知,DF=AF=×100(﹣1)≈127∵127>100,所以巡逻船A沿直线AC航线,在去营救的途中没有触暗礁危险.点评:本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系解答.24.(9分)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y=(用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?考点:一次函数的应用;列代数式;二元一次方程组的应用.分析:(1)根据医疗报销的比例,可得答案;(2)根据医疗费用的报销费用,可得方程组,再解方程组,可得答案;(3)根据个人承担部分的费用,可得代数式,可得答案.解答:解:(1)由题意得y=;(2)由A、B、C三人的花销得,解得;(3)由题意得70+(6000﹣500)×40%+(32000﹣6000)×20%=70+2200+5200=7470(元).答:这一年他个人实际承担的医疗费用是7470元.点评:本题考查了一次函数的应用,根据题意列函数解析式是解题关键.25.(13分)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.考点:二次函数综合题.专题:压轴题.分析:(1)设抛物线解析式为y=ax2+bx(a≠0),然后把点A、B的坐标代入求出a、b的值,即可得解,再把函数解析式整理成顶点式形式,然后写出顶点M的坐标;(2)根据点P的速度求出OP,即可得到点P的坐标,再根据点A的坐标求出∠AOC=45°,然后判断出△POQ 是等腰直角三角形,根据等腰直角三角形的性质求出点Q的坐标即可;(3)根据旋转的性质求出点O、Q的坐标,然后分别代入抛物线解析式,求解即可;(4)求出点Q与点A重合时的t=1,点P与点C重合时的t=1.5,t=2时PQ经过点B,然后分①0<t≤1时,重叠部分的面积等于△POQ的面积,②1<t≤1.5时,重叠部分的面积等于两个等腰直角三角形的面积的差,③1.5<t<2时,重叠部分的面积等于梯形的面积减去一个等腰直角三角形的面积分别列式整理即可得解.解答:解:(1)设抛物线解析式为y=ax2+bx(a≠0),把点A(1,﹣1),B(3,﹣1)代入得,,解得,∴抛物线解析式为y=x2﹣x,∵y=x2﹣x=(x﹣2)2﹣,∴顶点M的坐标为(2,﹣);(2)∵点P从点O出发速度是每秒2个单位长度,∴OP=2t,∴点P的坐标为(2t,0),∵A(1,﹣1),∴∠AOC=45°,∴点Q到x轴、y轴的距离都是OP=×2t=t,∴点Q的坐标为(t,﹣t);(3)∵△OPQ绕着点P按逆时针方向旋转90°,∴旋转后点O、Q的对应点的坐标分别为(2t,﹣2t),(3t,﹣t),若顶点O在抛物线上,则×(2t)2﹣×(2t)=﹣2t,解得t=,若顶点Q在抛物线上,则×(3t)2﹣×(3t)=﹣t,解得t=1,综上所述,存在t=或1,使得△OPQ的顶点O或顶点Q在抛物线上;(4)点Q与点A重合时,OP=1×2=2,t=2÷2=1,点P与点C重合时,OP=3,t=3÷2=1.5,t=2时,OP=2×2=4,PC=4﹣3=1,此时PQ经过点B,所以,分三种情况讨论:。
2020年河南省普通高中招生考试数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1. 2的相反数是()A.12- B.12C. 2D. 2-【答案】D【解析】【分析】根据相反数的概念解答即可.【详解】2的相反数是-2,故选D.2.如下摆放的几何体中,主视图与左视图有可能不同的是()A. B.C. D.【答案】D【解析】【分析】分别确定每个几何体的主视图和左视图即可作出判断.【详解】A.圆柱的主视图和左视图都是长方形,故此选项不符合题意;B.圆锥的主视图和左视图都是三角形,故此选项不符合题意;C.球的主视图和左视图都是圆,故此选项不符合题意;D.长方体的主视图是长方形,左视图可能是正方形,故此选项符合题意,故选:D.【点睛】本题考查了简单几何体的三视图,熟练掌握确定三视图的方法是解答的关键.3.要调查下列问题,适合采用全面调查(普查)的是()A. 中央电视台《开学第--课》 的收视率B. 某城市居民6月份人均网上购物的次数C. 即将发射的气象卫星的零部件质量D. 某品牌新能源汽车的最大续航里程【答案】C【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.【详解】A 、中央电视台《开学第--课》 的收视率适合采用抽样调查方式,故不符合题意;B 、某城市居民6月份人均网上购物的次数适合采用抽样调查方式,故不符合题意;C 、即将发射的气象卫星的零部件质量适合采用全面调查方式,故符合题意;D 、某品牌新能源汽车的最大续航里程适合采用抽样调查方式,故不符合题意,故选:C .【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.如图,1234//,//l l l l ,若170∠=︒,则2∠的度数为( )A. 100︒B. 110︒C. 120︒D. 130︒【答案】B【解析】【分析】利用平行线的性质即可求解.【详解】如图,∵34//l l ,∴∠1+∠3=180º,∵∠1=70º,∴∴∠3=180º-70º=110º,∵12l l //,∴∠2=∠3=110º,故选:B .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答的关键.5.电子文件的大小常用, ,,B KB MB GB 等作为单位,其中10101012,12,12GB MB MB KB KB B ===,某视频文件的大小约为1,1GB GB 等于( )A. 302BB. 308BC. 10810B ⨯D. 30210B ⨯ 【答案】A【解析】【分析】根据题意及幂的运算法则即可求解.【详解】依题意得1010101010101222222GB MB KB B ==⨯=⨯⨯=302B故选A .【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的运算法则.6.若点()()()1231,,2,,3,A y B y C y -在反比例函数6y x =-的图像上,则123,,y y y 的大小关系为( ) A. 123y y y >>B. 231y y y >>C. 132y y y >>D. 321y y y >> 【答案】C【解析】【分析】根据点()()()1131,,2,,3,A y B y C y -在反比例函数6y x=-的图象上,可以求得123,,y y y 的值,从而可以比较出123,,y y y 的大小关系.【详解】解:∵点()()()1131,,2,,3,A y B y C y -在反比例函数6y x =-的图象上, ∴1661y =-=-,2632y =-=-,3623y =-=-, ∵326--<<,∴132y y y >>,故选:C .【点睛】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质解答.7.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 只有一个实数根【答案】A【解析】【分析】先根据新定义得出方程,再根据一元二次方程的根的判别式可得答案.【详解】解:根据定义得:2110,x x x =--=☆ 1,1,1,a b c ==-=-()()22414115b ac ∴∆=-=--⨯⨯-=>0, ∴ 原方程有两个不相等的实数根,故选.A【点睛】本题考查了新定义,考查学生的学习与理解能力,同时考查了一元二次方程的根的判别式,掌握以上知识是解题的关键.8.国家统计局统计数据 显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x .则可列方程为( )A. ()5000127500x +=B. ()5000217500x ⨯+=C. ()2500017500x +=D. ()()2500050001500017500x x ++++= 【答案】C【解析】【分析】设我国2017年至2019年快递业务收入的年平均增长率为x ,根据增长率的定义即可列出一元二次方程.【详解】设我国2017年至2019年快递业务收入的年平均增长率为x ,∵2017年至2019年我国快递业务收入由5000亿元增加到7500亿元即2019年我国快递业务收入为7500亿元, ∴可列方程:()2500017500x +=, 故选C .【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系得到方程. 9.如图,在ABC ∆中,90ACB ∠=︒.边BC 在x 轴上,顶点,A B 的坐标分别为()2,6-和()7,0.将正方形OCDE 沿x 轴向右平移当点E 落在AB 边上时,点D 的坐标为( )A. 3,22⎛⎫ ⎪⎝⎭B. ()2,2C. 11,24⎛⎫ ⎪⎝⎭D. ()4,2【答案】B【解析】【分析】 先画出E 落在AB 上的示意图,如图,根据锐角三角函数求解O B '的长度,结合正方形的性质,从而可得答案.【详解】解:由题意知:()2,0,C -四边形COED 为正方形,,CO CD OE ∴== 90,DCO ∠=︒()()2,2,0,2,D E ∴-如图,当E 落在AB 上时,()()2,6,7,0,A B -6,9,AC BC ∴== 由tan ,AC EO ABC BC O B'∠==' 62,9O B∴=' 3,O B '∴=734,2,OO OC ''∴=-==()2,2.D ∴故选.B【点睛】本题考查的是平移的性质的应用,同时考查了正方形的性质,图形与坐标,锐角三角函数,掌握以上知识是解题的关键.10.如图,在ABC ∆中,3,30AB BC BAC ==∠=︒ ,分别以点,A C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接,,DA DC 则四边形ABCD 的面积为( )A. 63B. 9C. 6D. 33【答案】D【解析】【分析】 连接BD 交AC 于O ,由已知得△ACD 为等边三角形且BD 是AC 的垂直平分线,然后解直角三角形解得AC 、BO 、BD 的值,进而代入三角形面积公式即可求解.【详解】连接BD 交AC 于O ,由作图过程知,AD=AC=CD ,∴△ACD 为等边三角形,∴∠DAC=60º,∵AB=BC,AD=CD ,∴BD 垂直平分AC 即:BD ⊥AC ,AO=OC ,在Rt △AOB 中,3,30AB BAC =∠=︒ ∴BO=AB ·sin30º=3, AO=AB ·cos30º=32,AC=2AO=3, 在Rt △AOD 中,AD=AC=3,∠DAC=60º,∴DO=AD ·sin60º=33, ∴ABC ADC ABCD S S S ∆∆=+四边形=131********⨯⨯+⨯⨯=, 故选:D .【点睛】本题考查了作图-基本作图、等边三角形的判定与性质、垂直平分线、解直角三角形、三角形的面积等知识,解题的关键是灵活运用所学知道解决问题,属于中考常考题型.二、填空题:(每题3分,共15分)11.请写出一个大于1且小于2的无理数: .2.【解析】【分析】由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.【详解】大于1且小于2的无理数可以是2,?3,?2π-等,故答案为:2(答案不唯一).考点:1.开放型;2.估算无理数的大小.12.已知关于x 的不等式组x a x b >⎧⎨>⎩,其中,a b 在数轴上的对应点如图所示,则这个不等式组的解集为__________.【答案】x >a .【解析】【分析】先根据数轴确定a ,b 的大小,再根据确定不等式组的解集原则:大大取大,小小取小,大小小大中间找,小小大大找不了(无解)确定解集即可. 【详解】∵由数轴可知,a >b ,∴关于x 的不等式组x a x b>⎧⎨>⎩的解集为x >a , 故答案为:x >a . 【点睛】本题考查的是由数轴确定不等式组的解集,根据“大大取大,小小取小,大小小大中间找,小小大大找不了(无解)”得出不等式组的解集是解答此题的关键.13.如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是__________.【答案】14 【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次颜色相同的情况数,再利用概率公式求解即可求得答案.【详解】画树状图得:∵共有16种等可能的结果,两次颜色相同的有4种情况, ∴两个数字都是正数的概率是41164=, 故答案为:14. 【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.14.如图,在边长为22的正方形ABCD 中,点,E F 分别是边,AB BC 的中点,连接,,EC FD 点,G H 分别是,EC FD 的中点,连接GH ,则GH 的长度为__________.【答案】1【解析】【分析】过E 作EP DC ⊥,过G 作GQ DC ⊥,过H 作HR BC ⊥,HR 与GQ 相交于I ,分别求出HI 和GI 的长,利用勾股定理即可求解.【详解】过E 作EP DC ⊥,过G 作GQ DC ⊥,过H 作HR BC ⊥,垂足分别P ,R ,R ,HR 与GQ相交于I ,如图,∵四边形ABCD 是正方形, ∴22AB AD DC BC ==== 90A ADC ∴∠=∠=︒,∴四边形AEPD 是矩形, ∴22EP AD ==,∵点E ,F 分别是AB ,BC 边的中点, ∴122PC DC ==122FC BC == EP DC ⊥,GQ DC ⊥,GQ EP ∴//∵点G 是EC 的中点,GQ ∴是EPC ∆的中位线, 122GQ EP ∴== 同理可求:2HR =,由作图可知四边形HIQP 是矩形, 又HP=12FC ,HI=12HR=12PC , 而FC=PC ,∴ HI HP =,∴四边形HIQP 是正方形, ∴22IQ HP ==, ∴22222GI GQ IQ HI =-===HIG ∴∆是等腰直角三角形, 21GH HI ∴== 故答案为:1.【点睛】此题主要考查了正方形的判定与性质,三角形的中位线与勾股定理等知识,正确作出辅助线是解答此题的关键.15.如图,在扇形BOC 中,60,BOC OD ∠=︒平分BOC ∠交狐BC 于点D .点E 为半径OB 上一动点若2OB =,则阴影部分周长的最小值为__________.【答案】2.3π【解析】【分析】 如图,先作扇形OCB 关于OB 对称的扇形,OAB 连接AD 交OB 于E ,再分别求解,AD CD 的长即可得到答案.【详解】解:C 阴影=,CE DE CD ++∴ C 阴影最短,则CE DE +最短,如图,作扇形OCB 关于OB 对称的扇形,OAB 连接AD 交OB 于E ,则,CE AE =,CE DE AE DE AD ∴+=+= 此时E 点满足CE DE +最短,60,COB AOB OD ∠=∠=︒平分,CB30,90,DOB DOA ∴∠=︒∠=︒2,OB OA OD ===222222,AD ∴=+=而CD 的长为:302,1803ππ⨯= ∴ C 阴影最短为22.3π+故答案为:22.3π+【点睛】本题考查的是利用轴对称求最短周长,同时考查了圆的基本性质,扇形弧长的计算,勾股定理的应用,掌握以上知识是解题的关键.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:21111a a a ⎛⎫-÷ ⎪+-⎝⎭,其中51a = 【答案】1a -5【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a 值代入计算即可.【详解】原式=(1)(1)1a a a a a+-+=1a -, 当51a =时,原式5115-=【点睛】本题考查的是分式的化简求值,解答的关键是熟练掌握分式的混合运算顺序和运算法则,注意运算结果要化成最简分式或整式.17.为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g ,与之相差大于10g 为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g )如下:甲: 501 497 498 502 513 489 506 490 505 486502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498502 503 501 490 501 502 512 499 499 501[整理数据]整理以上数据,得到每袋质量()x g 的频数分布表.[分析数据]根据以上数据,得到以下统计量.根据以上信息,回答下列问题:()1表格中的a = b =()2综合上表中统计量,判断工厂应选购哪一台分装机,并说明理由. 【答案】(1)501a =,=15%b .(2)选择乙分装机,理由见解析;【解析】【分析】 (1)把乙的数据从小到大进行排序,选出10、11两项,求出他们的平均数即为乙组数据的中位数;由题可得合格产品的范围是490510x ≤≤,根据这个范围,选出不合格的产品,除以样本总量就可得到结果;(2)根据方差的意义判断即可;【详解】(1)把乙组数据从下到大排序为:487 490 491 493 498 499 499 499 499 501 501 501 502 502 502 503 505 505 506 512,可得中位数=501+501=5012; 根据已知条件可得出产品合格的范围是490510x ≤≤,甲生产的产品有3袋不合格,故不合格率为3100%=15%20⨯. 故501a =,=15%b .(2)选择乙分装机;根据平均数相同,中位数乙跟接近标准适质量,方差的意义可知:方差越小,数据越稳定,由于22甲乙=42.01>=31.81S S ,并且乙的不合格率要低于甲,综上则应选取乙分装机.【点睛】本题主要考查了根据图标数据进行中位数的求解,准确理解表中各项数据是解题的关键. 18.位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水 平步道MP 上架设测角仪,先在点M 处测得观星台最高点A 的仰角为22︒,然后沿MP 方向前进16m 到达点N 处,测得点A 的仰角为45︒.测角仪的高度为1.6m ,()1求观星台最高点A 距离地面的高度(结果精确到0.1m .参考数据:220.37,220.93,222 1.41sin cos tan ︒≈︒≈︒≈≈);()2“景点简介”显示,观星台的高度为12.6m ,请计算本次测量结果的误差,并提出一条减小误差的合理化建议.【答案】(1)12.3m ;(2)0.3m ,多次测量,求平均值【解析】【分析】(1)过点A 作AE ⊥MN 交MN 的延长线于点E ,交BC 的延长线于点D ,根据条件证出四边形BMNC 为矩形、四边形CNED 为矩形、三角形ACD 与三角形ABD 均为直角三角形,设AD 的长为xm ,则CD=AD=xm ,BD=BC+CD=(16+x )m ,在Rt △ABD 中,解直角三角形求得AD 的长度,再加上DE 的长度即可; (2)根据(1)中算的数据和实际高度计算误差,建议是多次测量求平均值.【详解】解:(1)如图,过点A 作AE ⊥MN 交MN 的延长线于点E ,交BC 的延长线于点D ,设AD 的长为xm ,∵AE ⊥ME ,BC ∥MN ,∴AD ⊥BD ,∠ADC=90°,∵∠ACD=45°,∴CD=AD=xm ,BD=BC+CD=(16+x )m ,由题易得,四边形BMNC 为矩形,∵AE ⊥ME ,∴四边形CNED 为矩形,∴DE=CN=BM=1.6m ,在Rt △ABD 中,tan ABD=0.4016AD x BD x==+∠, 解得:10.7x ≈,即AD=10.7m ,AE=AD+DE=10.7+1.6=12.3m ,答:观星台最高点A 距离地面的高度为12.3m .(2)本次测量结果的误差为:12.6-12.3=0.3m ,减小误差的合理化建议:多次测量,求平均值.【点睛】本题考查解直角三角形的实际应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键. 19.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠;设某学生暑期健身x (次),按照方案一所需费用为1y ,(元),且11y k x b =+;按照方案二所需费用为2y (元) ,且22.y k x =其函数图象如图所示. ()1求1k 和b 的值,并说明它们的实际意义;()2求打折前的每次健身费用和2k 的值;()3八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.【答案】(1)k 1=15,b=30;k 1=15表示的是每次健身费用按六折优惠是15元,b=30表示购买一张学生暑期专享卡的费用是30元;(2)打折前的每次健身费用为25元,k 2=20;(3)方案一所需费用更少,理由见解析.【解析】【分析】(1)用待定系数法代入(0,30)和(10,180)两点计算即可求得1k 和b 的值,再根据函数表示的实际意义说明即可;(2)设打折前的每次健身费用为a 元,根据(1)中算出的1k 为打六折之后的费用可算得打折前的每次健身费用,再算出打八折之后的费用,即可得到2k 的值;(3)写出两个函数关系式,分别代入x=8计算,并比较大小即可求解.【详解】解:(1)由图象可得:11y k x b =+经过(0,30)和(10,180)两点,代入函数关系式可得:13018010b k b =⎧⎨=+⎩, 解得:13015b k =⎧⎨=⎩, 即k 1=15,b=30,k 1=15表示的是每次健身费用按六折优惠是15元,b=30表示购买一张学生暑期专享卡的费用是30元; (2)设打折前的每次健身费用为a 元,由题意得:0.6a=15,解得:a=25,即打折前的每次健身费用为25元,k 2表示每次健身按八折优惠的费用,故k 2=25×0.8=20;(3)由(1)(2)得:11530y x =+,220y x =,当小华健身8次即x=8时,115830150y =⨯+=,2208160y =⨯=,∵150<160,∴方案一所需费用更少,答:方案一所需费用更少.【点睛】本题考查一次函数的实际应用,用待定系数法求解函数关系式并结合题意计算出原价是解题的关键.20.我们学习过利用用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的,人们根据实际需要,发明了一种简易操作工具--------三分角器.图1是它的示意图,其中AB 与半圆O 的直径BC 在同一直线 上,且AB 的长度与半圆的半径相等;DB 与AC 重直F 点 ,B DB 足够长.使用方法如图2所示,若要把MEN ∠三等分,只需适当放置三分角器,使DB 经过MEN ∠的顶点E ,点A 落在边EM 上,半圆O 与另一边EN 恰好相切,切点为F ,则,EB EO 就把MEN ∠三等分了. 为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点在,,,A B O C 同一直线上,,EB AC ⊥垂足为点B ,求证:【答案】E 在BD 上,ME 过点A ,,AB OB OC == EN 为半圆O 的切线,切点为F ;EB ,EO 为∠MEN 的三等分线.证明见解析.【解析】【分析】如图,连接OF .则∠OFE=90°,只要证明EAB EOB ≌,OBE OFE ≌,即可解决问题;【详解】已知:如图2,点在,,,A B O C 同一直线上,,EB AC ⊥垂足为点B , E 在BD 上,ME 过点A ,,AB OB OC ==EN 为半圆O 的切线,切点为F .求证: EB ,EO 为∠MEN 的三等分线..证明:如图,连接OF .则∠OFE=90°,∵EB ⊥AC ,EB 与半圆相切于点B ,∴∠ABE=∠OBE=90°,∵BA=BO .EB=EB ,EAB EOB ∴≌∴∠AEB=∠BEO ,∵EO=EO .OB=OF ,∠OBE=∠OFE 90=︒,∴OBE OFE ≌,∴∠OEB=∠OEF ,∴∠AEB=∠BEO=∠OEF ,∴EB ,EO 为∠MEN 的三等分线.故答案为:E 在BD 上,ME 过点A ,,AB OB OC ==EN 为半圆O 的切线,切点为F .EB ,EO 为∠MEN 的三等分线.【点睛】本题考查的是全等三角形的判定和性质、切线的性质等知识,解题的关键学会添加常用辅助线,构造全等三角形解决问题.21.如图,抛物线22y x x c =-++与x 轴正半轴,y 轴正半轴分别交于点,A B ,且,OA OB =点G 为抛物线的顶点.()1求抛物线的解析式及点G 的坐标;()2点,M N 为抛物线上两点(点M 在点N 的左侧) ,且到对称轴的距离分别为3个单位长度和5个单位长度,点Q 为抛物线上点,M N 之间(含点,M N )的一个动点,求点Q 的纵坐标Q y 的取值范围.【答案】(1)2y x 2x 3=-++,G (1,4);(2)﹣21≤Q y ≤4.【解析】【分析】 (1)根据,OA OB =用c 表示出点A 的坐标,把A 的坐标代入函数解析式,得到一个关于c 的一元二次方程,解出c 的值,从而求出函数解析式,求出顶点G 的坐标. (2)根据函数解析式求出函数图像对称轴,根据点M,N 到对称轴的距离,判断出M,N 的横坐标,进一步得出M,N 的纵坐标,求出M,N 点的坐标后可确定Q y 的取值范围. 【详解】解:(1)∵抛物线22y xx c =-++与y 轴正半轴分别交于点B , ∴B 点坐标为(c ,0),∵抛物线22y x x c =-++经过点A ,∴﹣c 2+2c+c=0,解得c 1=0(舍去),c 2=3,∴抛物线的解析式为2y x 2x 3=-++∵2y x 2x 3=-++=﹣(x -1)2+4,∴抛物线顶点G 坐标为(1,4).(2)抛物线2y x 2x 3=-++的对称轴为直线x=1,∵点M,N 到对称轴的距离分别为3个单位长度和5个单位长度 ,∴点M 的横坐标为﹣2或4,点N 的横坐标为﹣4或6,点M 的纵坐标为﹣5,点N 的纵坐标为﹣21,又∵点M 在点N 的左侧,∴当M 坐标为(﹣2,﹣5)时,点N 的坐标为(6,﹣21),则﹣21≤Q y ≤4当当M 坐标为(4,﹣5)时,点N 的坐标为(6,﹣21),则﹣21≤Q y ≤﹣5,∴Q y 的取值范围为﹣21≤Q y ≤4.【点睛】本题考查的是二次函数的基本的图像与性质,涉及到的知识点有二次函数与坐标轴交点问题,待定系数法求函数解析式,对称轴性质等,解题关键在于利用数形结合思想正确分析题意,进行计算. 22.小亮在学习中遇到这样一个问题: 如图,点D 是弧BC 上一动点,线段8,BC cm =点A 是线段BC 的中点,过点C 作//CF BD ,交DA 的延长线于点F .当DCF ∆为等腰三角形时,求线段BD 的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:()1根据点D 在弧BC 上的不同位置,画出相应的图形,测量线段,,BD CD FD 的长度,得到下表的几组对应值.操作中发现:①"当点D 为弧BC 的中点时, 5.0BD cm =".则上中a 的值是②"线段CF 的长度无需测量即可得到".请简要说明理由;()2将线段BD 的长度作为自变量x CD ,和FD 的长度都是x 的函数,分别记为CD y 和FD y ,并在平面直角坐标系xOy 中画出了函数FD y 的图象,如图所示.请在同一坐标系中画出函数CD y 的图象;()3继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当DCF ∆为等腰三角形时,线段BD 长度的近似值.(结果保留一位小数).【答案】(1)①5.0;②见解析;(2)图象见解析;(3)图象见解析;3.5cm 或5.0cm 或6.3cm ;【解析】【分析】(1)①点D 为弧BC 的中点时,△ABD ≌△ACD ,即可得到CD=BD ;②由题意得△ACF ≌△ABD ,即可得到CF=BD ;(2)根据表格数据运用描点法即可画出函数图象;(3)画出CF y 的图象,当DCF ∆为等腰三角形时,分情况讨论,任意两边分别相等时,即任意两个函数图象相交时的交点横坐标即为BD 的近似值.【详解】解:(1)①点D 为弧BC 的中点时,由圆的性质可得:AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD ,∴CD=BD=5.0,∴ 5.0a =;②∵//CF BD ,∴BDA CFA ∠=∠,∵BDA CFA BAD CAF AD AF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△ABD ,∴CF=BD ,∴线段CF 的长度无需测量即可得到;(2)函数CD y 的图象如图所示:(3)由(1)知=CF BD x =,画出CF y 的图象,如上图所示,当DCF ∆为等腰三角形时,①CF CD =,BD 为CF y 与CD y 函数图象的交点横坐标,即BD=5.0cm ;②CF DF =,BD 为CF y 与DF y 函数图象交点横坐标,即BD=6.3cm ;③CD DF =,BD 为CD y 与DF y 函数图象的交点横坐标,即BD=3.5cm ;综上:当DCF ∆为等腰三角形时,线段BD 长度的近似值为3.5cm 或5.0cm 或6.3cm .【点睛】本题考查一次函数结合几何的应用,学会用描点法画出函数图象,熟练掌握一次函数的性质以及三角形全等的判定及性质是解题的关键.23.将正方形ABCD 的边AB 绕点A 逆时针旋转至AB ' ,记旋转角为α.连接BB ',过点D 作DE 垂直于直线BB ',垂足为点E ,连接,DB CE ',()1如图1,当60α=︒时,DEB '∆的形状为 ,连接BD ,可求出BB CE'的值为 ;()2当0360α︒<<︒且90α≠︒时,①()1中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由; ②当以点,,,B E C D '为顶点的四边形是平行四边形时,请直接写出'BE B E的值.【答案】(12(2)①结论不变,理由见解析;②3或1.【解析】【分析】(1)根据题意,证明ABB '是等边三角形,得60AB B '∠=,计算出45DB E ︒'∠=,根据DE BB '⊥,可得DEB '∆为等腰直角三角形;证明BDB CDE '△△,可得BB CE'的值; (2)①连接BD ,通过正方形性质及旋转,表示出45EB D AB D AB B ︒'''∠=∠-∠=,结合DE BB '⊥,可得DEB '∆为等腰直角三角形;证明B DB EDC '△△,可得BB CE'的值; ②分为以CD 为边和CD 为对角线两种情况进行讨论即可. 【详解】(1)由题知60BAB '∠=°,90BAD ∠=°,AB AD AB '==∴30B AD '∠=°,且ABB '为等边三角形∴60AB B '∠=°,1(18030)752AB D ︒︒︒'∠=-= ∴180607545DB E ︒︒︒︒'∠=--=∵DE BB '⊥∴90DEB '∠=°∴45B DE '∠=°∴DEB '△为等腰直角三角形连接BD ,如图所示∵45BDC B DE '∠=∠=°∴BDC B DC B DE B DC '''∠-∠=∠-∠即BDB CDE '∠=∠∵22CD DE BD DB =='∴BDB CDE '△△∴=22BB BD CE CD '=2(2)①两个结论仍然成立连接BD ,如图所示:∵AB AB '=,BAB α'∠= ∴902ABB α︒'∠=-∵90,B AD AD AB α︒''∠=-= ∴1352AB D α︒'∠=-∴45EB D AB D AB B ︒'''∠=∠-∠=∵DE BB '⊥∴45EDB EB D ︒''∠=∠=∴DEB '△是等腰直角三角形 ∴2DB DE'=∵四边形ABCD 为正方形 ∴2,45BD BDC CD︒=∠= ∴BD DB CD DE '= ∵EDB BDC '∠=∠∴B DB EDC '∠=∠∴B DB EDC '△△ ∴2BB BD CE CD'==∴结论不变,依然成立②若以点,,,B E C D '为顶点的四边形是平行四边形时,分两种情况讨论第一种:以CD 为边时,则//CD B E ',此时点B '在线段BA 的延长线上,如图所示:此时点E 与点A 重合,∴BE CE B E '==,得1BE B E='; ②当以CD 为对角线时,如图所示:此时点F 为CD 中点,∵DE BB '⊥∴CB BB ''⊥∵90BCD ︒∠=∴BCF CB F BB C ''△△△∴2BC CB BB CF B F CB ''===''∴4BB B F ''=∴6,2BE B F B E B F '''==∴3BE B E=' 综上:BE B E '的值为3或1. 【点睛】本题考查了正方形与旋转综合性问题,能准确的确定相似三角形,是解决本题的关键.考试小提示:同学们,天道酬勤,十年寒窗十年苦,大巧若拙勤为路。
2020年中考数学试题(及答案)一、选择题1.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ). A .7710⨯﹣ B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣ 2.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯3.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ) A .众数B .方差C .平均数D .中位数4.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是( ) A .19B .16C .13D .235.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( ) A .(0,﹣2)B .(0,﹣4)C .(4,0)D .(2,0)6.如图,直线l 1∥l 2,将一直角三角尺按如图所示放置,使得直角顶点在直线l 1上,两直角边分别与直线l 1、l 2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为( )A .25°B .75°C .65°D .55°7.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为() A .()11362x x -= B .()11362x x += C .()136x x -= D .()136x x +=8.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( ) A .甲 B .乙C .丙D .一样9.下列计算错误的是( )A .a 2÷a 0•a 2=a 4 B .a 2÷(a 0•a 2)=1 C .(﹣1.5)8÷(﹣1.5)7=﹣1.5D .﹣1.58÷(﹣1.5)7=﹣1.510.下列长度的三根小木棒能构成三角形的是( )A .2cm ,3cm ,5cmB .7cm ,4cm ,2cmC .3cm ,4cm ,8cmD .3cm ,3cm ,4cm 11.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy ++=在同一坐标系内的图象大致为( )A .B .C .D .12.an30°的值为( ) A .B .C .D .二、填空题13.已知关于x 的方程3x n22x 1+=+的解是负数,则n 的取值范围为 . 14.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =k x的图象上,则k 的值为________.15.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____.16.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.17.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .18.如图,一张三角形纸片ABC ,∠C=90°,AC=8cm ,BC=6cm .现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .19.3x +在实数范围内有意义,则x 的取值范围是_____. 32x-2三、解答题21.如图,某地修建高速公路,要从A地向B地修一座隧道(A、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升100米到达C处,在C处观察A地的俯角为39°,求A、B两地之间的距离.(结果精确到1米)(参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81)22.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.23.如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.24.解不等式组3415122x xxx≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来25.距离中考体育考试时间越来越近,某校想了解初三年级1500名学生跳绳情况,从中随机抽查了20名男生和20名女生的跳绳成绩,收集到了以下数据:男生:192、166,189,186,184,182,178,177,174,170,188,168,205,165,158,150,188,172,180,188女生:186,198,162,192,188,186,185,184,180,180,186,193,178,175,172,166,155,183,187,184.根据统计数据制作了如下统计表:个数x150≤x<170170≤x<185185≤x<190x≥190男生5852女生38a3两组数据的极差、平均数、中位数、众数如表所示:(1)请将上面两个表格补充完整:a =____,b =_____,c =_____;(2)请根据抽样调查的数据估计该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有多少人?(3)体育组的江老师看了表格数据后认为初三年级的女生跳绳成绩比男生好,请你结合统计数据,写出支持江老师观点的理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由科学记数法知90.000000007710-=⨯; 【详解】解:90.000000007710-=⨯; 故选:D . 【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.2.C解析:C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 【详解】460 000 000=4.6×108. 故选C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.D【解析】【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.4.C解析:C【解析】【分析】画出树状图即可求解.【详解】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率=13;故选:C.【点睛】本题考查的是概率,熟练掌握树状图是解题的关键.5.D解析:D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】6.C解析:C【解析】【分析】依据∠1=25°,∠BAC=90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°.【详解】如图,∵∠1=25°,∠BAC=90°,∴∠3=180°-90°-25°=65°,∵l1∥l2,∴∠2=∠3=65°,故选C.【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.7.A解析:A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:1x(x﹣1)=36,2故选:A.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.8.C解析:C【解析】试题分析:设商品原价为x,表示出三家超市降价后的价格,然后比较即可得出答案.解:设商品原价为x,甲超市的售价为:x(1﹣20%)(1﹣10%)=0.72x;乙超市售价为:x(1﹣15%)2=0.7225x;丙超市售价为:x(1﹣30%)=70%x=0.7x;故到丙超市合算.考点:列代数式.9.D解析:D 【解析】分析:根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可.详解:∵a 2÷a 0•a 2=a 4, ∴选项A 不符合题意; ∵a 2÷(a 0•a 2)=1, ∴选项B 不符合题意; ∵(-1.5)8÷(-1.5)7=-1.5, ∴选项C 不符合题意; ∵-1.58÷(-1.5)7=1.5, ∴选项D 符合题意. 故选D .点睛:此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.10.D解析:D 【解析】 【详解】A .因为2+3=5,所以不能构成三角形,故A 错误;B .因为2+4<6,所以不能构成三角形,故B 错误;C .因为3+4<8,所以不能构成三角形,故C 错误;D .因为3+3>4,所以能构成三角形,故D 正确. 故选D .11.D解析:D 【解析】 【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解. 【详解】∵二次函数图象开口方向向上, ∴a >0,∵对称轴为直线02bx a=->,二次函数图形与x 轴有两个交点,则24b ac ->0, ∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交,反比例函数a b cy x++=图象在第二、四象限, 只有D 选项图象符合. 故选:D. 【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.12.D解析:D 【解析】 【分析】直接利用特殊角的三角函数值求解即可. 【详解】 tan30°=,故选:D .【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.二、填空题13.n <2且【解析】分析:解方程得:x=n ﹣2∵关于x 的方程的解是负数∴n﹣2<0解得:n <2又∵原方程有意义的条件为:∴即∴n 的取值范围为n <2且解析:n <2且3n 2≠- 【解析】 分析:解方程3x n22x 1+=+得:x=n ﹣2, ∵关于x 的方程3x n22x 1+=+的解是负数,∴n ﹣2<0,解得:n <2. 又∵原方程有意义的条件为:1x 2≠-,∴1n 22-≠-,即3n 2≠-. ∴n 的取值范围为n <2且3n 2≠-. 14.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6 【解析】设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得:()OABC 122122kS x x=⨯-⨯=菱形,解得 6.k =-15.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键解析:13k <<. 【解析】 【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解; 【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<, ∴1k >,3k <, ∴13k <<, 故答案为:13k <<. 【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.16.5【解析】【分析】连接CC1根据M 是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5 【解析】 【分析】连接CC 1,根据M 是AC 、A 1C 1的中点,AC=A 1C 1,得出CM=A 1M=C 1M=12AC=5,再根据∠A 1=∠A 1CM=30°,得出∠CMC 1=60°,△MCC 1为等边三角形,从而证出CC 1=CM ,即可得出答案. 【详解】解:如图,连接CC 1,∵两块三角板重叠在一起,较长直角边的中点为M , ∴M 是AC 、A 1C 1的中点,AC=A 1C 1, ∴CM=A 1M=C 1M=12AC=5, ∴∠A 1=∠A 1CM=30°, ∴∠CMC 1=60°, ∴△CMC 1为等边三角形,∴CC1长为5.故答案为5.考点:等边三角形的判定与性质.17.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式解析:3.【解析】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.18.cm【解析】试题解析:如图折痕为GH由勾股定理得:AB==10cm由折叠得:AG=BG=AB=×10=5cmGH⊥AB∴∠AGH=90°∵∠A=∠A∠AGH=∠C=90°∴△ACB∽△AGH∴∴∴G解析:cm.【解析】试题解析:如图,折痕为GH,由勾股定理得:AB==10cm,由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,∴,∴,∴GH=cm.考点:翻折变换19.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x 的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x 的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式解析:x ≥﹣3【解析】【分析】直接利用二次根式的定义求出x 的取值范围.【详解】.在实数范围内有意义,则x +3≥0,解得:x ≥﹣3,则x 的取值范围是:x ≥﹣3.故答案为:x ≥﹣3.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.20.【解析】【分析】根据解分式方程的步骤即可解答【详解】方程两边都乘以得:解得:检验:当时所以分式方程的解为故答案为【点睛】考查了解分式方程解分式方程的基本思想是转化思想把分式方程转化为整式方程求解解分解析:x 1=【解析】【分析】根据解分式方程的步骤,即可解答.【详解】方程两边都乘以x 2-,得:32x 2x 2--=-,解得:x 1=,检验:当x 1=时,x 21210-=-=-≠,所以分式方程的解为x 1=,故答案为x 1=.【点睛】考查了解分式方程,()1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解().2解分式方程一定注意要验根.三、解答题21.123米.【解析】【分析】在Rt △ABC 中,利用tan BC CAB AB∠=即可求解. 【详解】解:∵CD∥AB,∴∠CAB=∠DCA=39°.在Rt△ABC中,∠ABC=90°,tanBC CABAB∠=.∴100123tan0.81BCABCAB==≈∠.答:A、B两地之间的距离约为123米.【点睛】本题考查解直角三角形,选择合适的锐角三角函数是解题的关键.22.49.【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.【详解】解:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为49.【点睛】本题考查列表法与树状图法.23.(1)AD=95;(2)当点E是AC的中点时,ED与⊙O相切;理由见解析.【解析】【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与 O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE即可.【详解】(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点睛】本题考查了圆周角定理、切线的判定、相似三角形的判定与性质,熟练掌握该知识点是本题解题的关键. 24.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】解:341 {5122x xxx≥--->①②解不等式①可得x≤1,解不等式②可得x>-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键.25.(1)a=6,b=179,c=188;(2)600;(3)详见解析.【解析】【分析】(1)依据中位数以及众数的定义即可将上面两个表格补充完整;(2)依据样本中能得满分(185个及以上)的同学所占的比例,即可估计该校初三年级学生中考跳绳成绩能得满分的人数;(3)依据两组数据的极差和平均数的大小,即可得到结论.【详解】(1)满足185≤x<190的数据有:186,188,186,185,186,187.∴a=6,20名男生的跳绳成绩排序后最中间的两个数据为178和180,∴b=(178+180)=179,20名男生的跳绳成绩中出现次数最多的数据为188,∴c=188,故答案为:6;179;188;(2)∵20名男生和20名女生的跳绳成绩中,185个及以上的有16个,∴该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有1500×=600(人);(3)理由:初三年级的女生跳绳成绩的极差较小,而平均数较大.【点睛】本题考查了用样本估计总体,中位数,众数,正确的理解题意是解题的关键.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.。
马上就要中考了,祝大家中考都考上一个理想的高中!欢迎同学们下载,希望能帮助到你们!
2020年全国各地中考数学常考试题(含答案)
一、函数与几何综合的压轴题
1.(2018安徽芜湖)如图①,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D且AD与B相交于E 点.已知:A(-2,-6),C(1,-3)
(1)求证:E点在y轴上;
(2)如果有一抛物线经过A,E,C三点,求此抛物线方程.
(3)如果AB位置不变,再将DC水平向右移动k(k>0)个单位,此时AD与BC相交于E′点,如图②,求△AE′C的面积S关于k的函数解析式.
图②
[解] (1)(本小题介绍二种方法,供参考)
方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴,EO DO EO BO AB DB CD DB ''''== 又∵DO ′+BO ′=DB ∴1EO EO AB DC
''+= ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ''=,∴2316
EO DO DB AB ''=⨯=⨯= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上
方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2①
再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ②
图①
联立①②得02x y =⎧⎨=-⎩
∴E 点坐标(0,-2),即E 点在y 轴上
(2)设抛物线的方程y =ax 2+bx +c (a ≠0)过A (-2,-6),C (1,-3)
E (0,-2)三点,得方程组4263
2a b c a b c c -+=-⎧⎪++=-⎨⎪=-⎩
解得a =-1,b =0,c =-2
∴抛物线方程y =-x 2-2
(3)(本小题给出三种方法,供参考)
由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。
同(1)可得:
1E F E F AB DC
''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '⇒=,∴13
DF DB = S △AE ′C = S △ADC - S △E ′DC =11122223
DC DB DC DF DC DB •-•=• =13DC DB •=DB=3+k S=3+k 为所求函数解析式
方法二:∵ BA ∥DC ,∴S △BCA =S △BDA
∴S △AE ′C = S △BDE ′()1132322
BD E F k k '=•=+⨯=+ ∴S =3+k 为所求函数解析式.
证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2
同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2=1∶4 ∴()2213992
AE C ABCD S S AB CD BD k '∆==⨯+•=+梯形 ∴S =3+k 为所求函数解析式.
2. (2018广东茂名)已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22
的圆与y 轴交于A 、
D 两点.
(1)求点A 的坐标;
(2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明;
(3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若421h S S =,抛物线 y =ax 2+bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式.。