DAS、SAN、NAS存储协议工作原理
- 格式:doc
- 大小:189.50 KB
- 文档页数:15
DAS存储结构图
DAS技术是最早被采用的存储技术,如同PC机的结构,是把外部的数据存储设备都直接挂在服务器内部的总线上,数据存储设备是服务器结构一部分,但由于这种存储技术是把设备直接挂在服务器上,随着需求的不断增大,越来越多的设备添加到网络环境中,导致服务器和存储独立数量较多,资源利用率低下,使得数据共享受到严重的限制。
因此适用在一些小型网络应用中。
NAS存储结构图
NAS技术改进了DAS技术,通过标准的拓扑机构连接,可以无须服务器直接与企业网络连接,不依赖于通用的操作系统,所以存储容量可以很好的扩展,对于原来的网络服务器的性能没有任何的影响,可以确保这个网络性能不受影响。
SAN存储结构图
SAN的支撑技术就是光纤通道——FC技术,与前面介绍的NAS技术完全不同,它不是把所有的存储设备集中安装在一个服务器中,而是将这些设备单独通过光纤交换机连接起来,形成一个光纤通道存储在网络中,然后在企业的局域网进行连接,这种技术的最大特性就是将网络和设备的通讯协议与传输介质隔离开,可以在同一个物理连接上传输,高性能的存储系统合宽带网络使用,使得系统在构建成本和复杂程度上大大降低。
浅谈NAS、SAN、DAS三种网络存储技术摘要:本文分析了NAS、SAN、DAS三种网络存储方式的特点和具体知识,简洁精练的语言从软硬件,协议层次等部分概要的叙述了三种方式的优点缺点。
关键词:NAS、SAN、DAS、网络存储网络存储技术一般分为三种,分别是NAS、SAN、DAS:NAS技术1. 最大存储容量最存储大存储容量是指NAS存储设备所能存储数据容量的极限,通俗的讲,就是NAS设备能够支持的最大硬盘数量乘以单个硬盘容量就是最大存储容量。
这个数值取决于NAS设备的硬件规格。
不同的硬件级别,适用的范围不同,存储容量也就有所差别。
通常,一般小型的NAS存储设备会支持几百GB的存储容量,适合中小型公司作为存储设备共享数据使用,而中高档的NAS设备应该支持T级别的容量(1T=1000G)。
2. 处理器同普通电脑类似,NAS产品也都具有自己的处理器(CPU)系统,来协调控制整个系统的正常运行。
其采用的处理器也常常与台式机或服务器的CPU大体相同。
一般针对中小型公司使用NAS产品采用AMD的处理器或Intel PIII/PIV等处理器。
而大规模应用的NAS产品则使用Intel Xeon处理器、或者RISC型处理器等。
但是也不能一概而论,视具体应用和厂商规划而定。
3. 内存NAS从结构上讲就是一台精简型的电脑,每台NAS设备都配备了一定数量的内存,而且大多用户以后可以扩充。
在NAS设备中,常见的内存类型由SDRAM (同步内存)、FLASH(闪存)等。
不同的NAS产品出厂时配备的内存容量不同,一般为几十兆到数GB(1GB=1000MB)容量不等。
4. 接口NAS产品的外部接口比较简单,由于只是通过内置网卡与外界通讯,所以一般只具有以太网络接口,通常是RJ45规格,而这种接口网卡一般都是100M网卡或1000M网卡。
另外,也有部分NAS产品需要与SAN(存储区域网络)产品连接提供更为强大的功能,所以也可能会有FC(Fiber Channel光纤通道)接口。
存储系列之DAS、SAN、NAS三种常见架构概述随着主机、磁盘、⽹络等技术的发展,对于承载⼤量数据存储的服务器来说,服务器内置存储空间,或者说内置磁盘往往不⾜以满⾜存储需要。
因此,在内置存储之外,服务器需要采⽤外置存储的⽅式扩展存储空间,今天在这⾥我们分析⼀下当前主流的存储架构。
⼀、DASDirect Attached Storage,直接连接存储(直连式存储),最常见的⼀种存储⽅式。
意思是存储设备只与⼀台主机服务器连接,如PC中的磁盘或只有⼀个外部SCSI接⼝的JBOD(Just a Band of Disks可以简单理解成磁盘箱)都属于DAS架构。
存储设备与服务器主机之间的通常采⽤SCSI总线连接。
特点:简单、集中、易⽤,主要在中⼩企业应⽤中。
⼆、SAN1、SANStorage Area Network,存储区域⽹络。
SAN的兴起源于上个世纪80年代FC协议的出现,FC是Fibre Channel的缩写,⽹状通道的意思。
前⾯我们已经得知DAS是通过SCSI接⼝总线,⽽SCSI接⼝有16个节点的限制,不可能接⼊很多的磁盘。
SCSI并⾏总线结构,传输距离短,是⼀种宽⽽短的电缆结构。
⽽细长的串⾏的FC是⼀种可寻址容量⼤、稳定性强、速度快(1Gbps~8Gbps,现在成熟的技术已经达到上百G)、传输距离远的⽹络结构,所以最终替代了SCSI接⼝和总线,但是SCSI协议或者说SCSI语⾔仍然载于FC进⾏传输。
⽽且FC不仅替代了磁盘阵列前端接⼝,也替代了后端接⼝,从⽽使磁盘阵列真正处于⽹络之中。
到后来,2001年⼜提出了SAS传输⽹络,Serial Attached SCSI,串⾏SCSI,所以FC协议也属于串⾏SCSI。
所以SAS和FC协议⼀样跨越OSI七个层次。
紧接着出现了SAS盘,SAS盘接⼝和SATA盘接⼝是相同的,SAS协议通过STP(SATA Tuneling Protocol)来兼容SATA协议。
DAS、NAS和SAN三种存储的区别近期,很多T2的同事都在问什麽是DAS/NAS/SAN存储,三种存储的有哪些不同,本文对三种存储设备进行概要说明。
DAS存储:是指存储设备直接通过主机适配卡(如SCSI卡、SAS HBA卡、FC HBA卡)直接连接服务器,作为服务器内置硬盘容量的扩充,具有一定的灵活性和限制性。
DAS存储通常不具有一些存储的高级功能,如快照、克隆、及容灾功能等。
NAS存储:是指存储设备通过网络(TCP/IP、ATM、FDDI)技术连接服务器,对服务器通过CIFS或NFS提供存储共享服务。
NAS存储设备位置灵活,可位于网络上的任何位置。
早期的NAS设备往往受制于网络传输速率,存在性能瓶颈,随着万兆网络的出现,传输速率有了很大的提高,从而NAS设备的IO性能也有了较大的提高。
NAS设备除了提供CIFS或NFS共享功能外,也有一些存储的高级功能,如快照及克隆功能等。
SAN存储:是指存储设备通过光纤通道(Fibre Channel)或iSCSI技术连接服务器,具有较好的传输速率和扩展性。
SAN存储出了提供容量之外,还具有较丰富的存储高级功能,如快照、克隆及容灾功能等。
DAS、NAS及SAN三种存储方式各有优势,相互共存,可根据客户的实际应用,灵活选择不同方式的存储。
比如DAS存储多用于4台以下服务器的存储直连,作为内置硬盘容量的扩充;NAS存储多用于文件及打印等共享类服务(存储文件、图片等非结构化数据);SAN存储多用于共享性数据存储(存储数据库等结构化数据)。
目前很多厂商的存储产品把NAS和SAN功能进行了融合,形成所谓的统一存储,比如Lenovo|EMC的VNX2系列存储,就是统一存储。
统一存储技术原理上并没有变化,只是在SAN的基础上,通过增加NAS网关或引擎,提供SAN+NAS的功能;或者在NAS的基础上,增加SAN的功能,代表产品有NetApp 的FAS系列存储。
D A S、N A S、S A N的区别-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIANDAS、NAS和SAN的区别有关存储的资料中,经常会遇到DAS、NAS和SAN这三个词,却没有详细的解释。
DAS即直接连接存储(Direct Attached Storage),NAS即网络接入存储(Network Attached Storage),SAN即存储区域网络(Storage Area Network)。
图1DAS是指将外置存储通设备通过SCSI或FC接口直接连接到应用服务器上,存储设备是整个服务器结构的一部分。
在这种情况下,数据和操作系统往往都未分离。
SAN是通过光纤交换机连接存储阵列和服务器,建立专用数据存储的存储私网。
NAS采用网络技术(TCP/IP、ATM、FDDI),通过网络交换机连接存储系统和服务器主机来建立存储私网。
其主要特征是把存储设备、网络接口和以太网技术集成在一起,直接通过以太网网络存取数据。
也就是把存储功能从通用文件服务器中分离出来。
三种模式中,DAS模式最简单,就是直接把存储设备连接到服务,而这种模式最大的问题是:每个应用服务器都要有独立的存储设备,这样增加了数据处理的复杂度,随着服务器的增加,网络系统效率也急剧下降。
为了解决上述问题,提出了NAS和SAN两种模式。
NAS:通过TCP/IP协议访问数据,采用业界标准文件共享协议,如果NFS、HTTP、CIFS实现共享。
SNA:通过专用光纤交换机访问数据,采用SCSI、FC-AL接口。
NAS和SAN最本质的区别就是文件管理系统在哪里。
如图1所示,SAN结构中,文件管理系统(FS)分别在每一个应用服务器上面,而NAS则是每个应用服务器通过网络共享协议,使用同一个文件管理系统。
即NAS和SAN存储系统的区别就是NAS有自已的文件管理系统。
目前磁盘存储市场上,存储分类(如下表一)根据服务器类型分为:封闭系统的存储和开放系统的存储,封闭系统主要指大型机,AS400等服务器,开放系统指基于包括Windows、UNIX、Linux等操作系统的服务器;开放系统的存储分为:内置存储和外挂存储;开放系统的外挂存储根据连接的方式分为:直连式存储(Direct-Attached Storage,简称DAS)和网络化存储(Fabric-Attached Storage,简称FAS);开放系统的网络化存储根据传输协议又分为:网络接入存储(Network-Attached Storage,简称NAS)和存储区域网络(Storage Area Network,简称SAN)。
由于目前绝大部分用户采用的是开放系统,其外挂存储占有目前磁盘存储市场的70%以上,因此本文主要针对开放系统的外挂存储进行论述说明。
第一个图有问题,把NAS和SAN一样放在FAS之下是不对的,通常也没有FAS 这种说法,DAS,NAS和SAN是平行的关系。
NAS不一定要用光纤。
NAS是文件级存储,SAN和DAS通常是数据块级存储。
表一:今天的存储解决方案主要为:直连式存储(DAS)、存储区域网络(SAN)、网络接入存储(NAS)。
如下表二:开放系统的直连式存储(Direct-Attached Storage,简称DAS)已经有近四十年的使用历史,随着用户数据的不断增长,尤其是数百GB以上时,其在备份、恢复、扩展、灾备等方面的问题变得日益困扰系统管理员。
主要问题和不足为:直连式存储依赖服务器主机操作系统进行数据的IO读写和存储维护管理,数据备份和恢复要求占用服务器主机资源(包括CPU、系统IO等),数据流需要回流主机再到服务器连接着的磁带机(库),数据备份通常占用服务器主机资源20-30%,因此许多企业用户的日常数据备份常常在深夜或业务系统不繁忙时进行,以免影响正常业务系统的运行。
直连式存储的数据量越大,备份和恢复的时间就越长,对服务器硬件的依赖性和影响就越大。
存储技术-DAS NAS和SAN在视频监控系统数字化、网络化、智能化的过程中,存储技术得到越来越多的应用。
在单机DVR时代,人们对存储空间按照G单位来部署,几百个G的硬盘是主流;而伴随DVR的网络化及NVR的大量应用,单机DVR或NVR自带的存储空间已经远远不能满足人们对海量视频的存储、检索需求。
因此,人们将存储功能从DVR或NVR中剥离出来,让更专业的设备来做,从此,磁盘阵列轰轰烈烈地进入安防应用,人们谈到的是以T为单位的存储空间,考虑的是DAS、NAS、SAN 架构及I/O、吞吐、冗余等技术参数。
DAS、NAS和SAN是目前主流的存储架构。
DAS是直连式存储,存储设备直接和服务器主机连接,接口一般为FC或者SCSI;NAS是网络附加存储,通过网络连接存储系统,接口为TCP/IP;SAN是存储区网络,一般采用FC(光纤通道),将存储系统网络化,接口为FC(光纤通道),当然还有直接利用网络的SAN架构,即IP SAN系统。
DAS技术DAS即直连方式存储,英文全称是Direct Attached Storage,中文翻译成“直接附加存储”。
DAS是以服务器为中心的存储结构,就是将存储设备直接连在服务器主机上(可以在服务器内部或者外部),然后服务器连接在网络上,网络上任何客户端要访问某存储设备上的资源时必须经过服务器。
由于连接在各个节点服务器上的存储设备是独立的,因此整个网络上的存储设备其实是分散、独立而难以共享的。
由于所有的数据流必须经过服务器转发,因此服务器的负担比较重,也将是整个系统的瓶颈。
DAS架构NAS技术NAS即网络附加存储,英文全称是Network Attached Storage,在NAS存储结构中,存储系统不再通过I/O总线附属于某个特定的服务器或客户机,而是直接通过网络接口与网络直接相连,用户通过网络访问。
NAS实际上是一个带有“瘦服务器”的存储设备,其作用类似于一个专用的文件服务器。
目前磁盘存储市场上,存储分类(如下表一)根据服务器类型分为:封闭系统的存储和开放系统的存储,封闭系统主要指大型机,AS400等服务器,开放系统指基于包括Windows、UNIX、Linux等操作系统的服务器;开放系统的存储分为:内置存储和外挂存储;开放系统的外挂存储根据连接的方式分为:直连式存储(Direct-Attached Storage,简称DAS)和网络化存储(Fabric-Attached Storage,简称FAS);开放系统的网络化存储根据传输协议又分为:网络接入存储(Network-Attached Storage,简称NAS)和存储区域网络(Storage Area Network,简称SAN)。
由于目前绝大部分用户采用的是开放系统,其外挂存储占有目前磁盘存储市场的70%以上,因此本文主要针对开放系统的外挂存储进行论述说明。
第一个图有问题,把NAS和SAN一样放在FAS之下是不对的,通常也没有FAS 这种说法,DAS,NAS和SAN是平行的关系。
NAS不一定要用光纤。
NAS是文件级存储,SAN和DAS通常是数据块级存储。
表一:今天的存储解决方案主要为:直连式存储(DAS)、存储区域网络(SAN)、网络接入存储(NAS)。
如下表二:开放系统的直连式存储(Direct-Attached Storage,简称DAS)已经有近四十年的使用历史,随着用户数据的不断增长,尤其是数百GB以上时,其在备份、恢复、扩展、灾备等方面的问题变得日益困扰系统管理员。
主要问题和不足为:直连式存储依赖服务器主机操作系统进行数据的IO读写和存储维护管理,数据备份和恢复要求占用服务器主机资源(包括CPU、系统IO等),数据流需要回流主机再到服务器连接着的磁带机(库),数据备份通常占用服务器主机资源20-30%,因此许多企业用户的日常数据备份常常在深夜或业务系统不繁忙时进行,以免影响正常业务系统的运行。
直连式存储的数据量越大,备份和恢复的时间就越长,对服务器硬件的依赖性和影响就越大。
直连式存储与服务器主机之间的连接通道通常采用SCSI连接,带宽为10MB/s、20MB/s、40MB/s、80MB/s等,随着服务器CPU的处理能力越来越强,存储硬盘空间越来越大,阵列的硬盘数量越来越多,SCSI通道将会成为IO瓶颈;服务器主机SCSI ID资源有限,能够建立的SCSI通道连接有限。
无论直连式存储还是服务器主机的扩展,从一台服务器扩展为多台服务器组成的群集(Cluster),或存储阵列容量的扩展,都会造成业务系统的停机,从而给企业带来经济损失,对于银行、电信、传媒等行业7×24小时服务的关键业务系统,这是不可接受的。
并且直连式存储或服务器主机的升级扩展,只能由原设备厂商提供,往往受原设备厂商限制。
存储区域网络(Storage Area Network,简称SAN)采用光纤通道(Fibre Channel)技术,通过光纤通道交换机连接存储阵列和服务器主机,建立专用于数据存储的区域网络。
SAN经过十多年历史的发展,已经相当成熟,成为业界的事实标准(但各个厂商的光纤交换技术不完全相同,其服务器和SAN存储有兼容性的要求)。
SAN存储采用的带宽从100MB/s、200MB/s,发展到目前的1Gbps、2Gbps。
网络接入存储(Network-Attached Storage,简称NAS)采用网络(TCP/IP、ATM、FDDI)技术,通过网络交换机连接存储系统和服务器主机,建立专用于数据存储的存储私网。
随着IP网络技术的发展,网络接入存储(NAS)技术发生质的飞跃。
早期80年代末到90年代初的10Mbps带宽,网络接入存储作为文件服务器存储,性能受带宽影响;后来快速以太网(100Mbps)、VLAN虚网、Trunk(Ethernet Channel) 以太网通道的出现,网络接入存储的读写性能得到改善;1998年千兆以太网(1000Mbps)的出现和投入商用,为网络接入存储(NAS)带来质的变化和市场广泛认可。
由于网络接入存储采用TCP/IP网络进行数据交换,TCP/IP是IT业界的标准协议,不同厂商的产品(服务器、交换机、NAS存储)只要满足协议标准就能够实现互连互通,无兼容性的要求;并且2002年万兆以太网(10000Mbps)的出现和投入商用,存储网络带宽将大大提高NAS存储的性能。
NAS需求旺盛已经成为事实。
首先NAS几乎继承了磁盘列阵的所有优点,可以将设备通过标准的网络拓扑结构连接,摆脱了服务器和异构化构架的桎梏。
其次,在企业数据量飞速膨胀中,SAN、大型磁带库、磁盘柜等产品虽然都是很好的存储解决方案,但他们那高贵的身份和复杂的操作是资金和技术实力有限的中小企业无论如何也不能接受的。
NAS正是满足这种需求的产品,在解决足够的存储和扩展空间的同时,还提供极高的性价比。
因此,无论是从适用性还是TCO的角度来说,NAS自然成为多数企业,尤其是大中小企业的最佳选择。
NAS与SAN的分析与比较针对I/O是整个网络系统效率低下的瓶颈问题,专家们提出了许多种解决办法。
其中抓住症结并经过实践检验为最有效的办法是:将数据从通用的应用服务器中分离出来以简化存储管理。
问题:图1由图1可知原来存在的问题:每个新的应用服务器都要有它自己的存储器。
这样造成数据处理复杂,随着应用服务器的不断增加,网络系统效率会急剧下降。
解决办法:图2从图2可看出:将存储器从应用服务器中分离出来,进行集中管理。
这就是所说的存储网络(Storage Networks)。
使用存储网络的好处:统一性:形散神不散,在逻辑上是完全一体的。
实现数据集中管理,因为它们才是企业真正的命脉。
容易扩充,即收缩性很强。
具有容错功能,整个网络无单点故障。
专家们针对这一办法又采取了两种不同的实现手段,即NAS(Network Attached Storage)网络接入存储和SAN(Storage Area Networks)存储区域网络。
NAS:用户通过TCP/IP协议访问数据,采用业界标准文件共享协议如:NFS、HTTP、CIFS实现共享。
SAN:通过专用光纤通道交换机访问数据,采用SCSI、FC-AL接口。
什么是NAS和SAN的根本不同点?NAS和SAN最本质的不同就是文件管理系统在哪里。
如图:图3由图3可以看出,SAN结构中,文件管理系统(FS)还是分别在每一个应用服务器上;而NAS则是每个应用服务器通过网络共享协议(如:NFS、CIFS)使用同一个文件管理系统。
换句话说:NAS和SAN存储系统的区别是NAS有自己的文件系统管理。
NAS是将目光集中在应用、用户和文件以及它们共享的数据上。
SAN是将目光集中在磁盘、磁带以及联接它们的可靠的基础结构。
将来从桌面系统到数据集中管理到存储设备的全面解决方案将是NAS加SAN。
怎样制定完善的企业网络存储备份方案企业的运作需要大量的数据的支撑,如今,纸质的数据存储方式一去不复返,取而代之的是更易于管理和使用便捷的网络存储的形式。
然而网络数据存储方式却存在诸多风险,数据被丢失或被破坏都可能会造成企业的日常运作无法正常进行,甚至会给企业带来不可估量的损失,而唯一可以把损失降到最低且又行之有效的方法理当首选——进行数据的存储备份。
大部分企业都在企业也正在不断地加大投入,以寻求更具扩展性、安全性和经济性的存储备份方案,实现“有存无丢,有备无患”的目的。
一、企业网络存储备份的真面目数据存储备份这个词已被人们所熟知,然而人们由于惯常思维的引导而误解了备份的本质。
很多人把备份和拷贝这两个概念简单的划上等号,甚至把备份单纯的看做是更换磁带、为磁带编序等一个简单、程序化的操作过程;也有不少人会把双机热备份、磁盘阵列备份以及磁盘镜象备份等硬件备份的内容和数据存储备份相提并论。
实际上,数据的备份除了对原始数据完全一致的复制外,更重要的任务是其管理功能。
备份管理是一个全面的概念,它不仅包含备份规则的制定和磁带的管理,而且还涉及到整个存储备份系统的规划,包括备份技术的选择、备份设备的选择、介质的选择乃至软件技术的挑选、存储网络的设计和架设等。
此外,双机热备份、磁盘阵列、磁盘镜像、数据库软件的自动复制等功能并不能完全代表数据存储备份系统,因为硬件备份只是牺牲一个系统、一个设备等来实现另一个系统或另一台设备在一定时期内的安全,它们往往能解决的只是系统的可用性问题,而当所有设备因为人为因素的错误、自然灾害、电源故障、病毒入侵等问题而无法正常运行时,数据的恢复也就无从说起了。
大体上来说,数据存储备份是用一种容量大、具有先进自动管理功能、以经济性为原则的设备对整个系统,尤其是对整个网络系统的数据进行备份的方案。
实践证明,只有数据存储备份才能为企业提供最完善的数据安全保护,因此,在原网络上增加数据存储备份管理系统和把数据存储备份管理系统列入到网络建设方案中是不容有怠的。
二、数据存储系统入选“完善”的条件在定制数据存储方案之前,我们应该了解一个完善的数据存储系统应具备怎样的条件,大体来说,应该符合以下的四个条件:1.具有一个完善的面向应用和数据库的备份与恢复系统,保证在各种意外情况下能够迅速恢复数据;2.要对磁盘阵列上的数据文件提供镜像保护,同时增强数据文件的访问性能,提高数据文件的可管理性;3.可以通过集群方式保证本地业务的不中断运行;4.对于环境所造成的系统极端故障,应具有相应的灾难恢复策略等。
三、如何数据存储备份系统方案的定制在定制数据存储备份方案时,我们应该在下面这些问题的引导下,制定出适合你自己企业的存储备份方案。
1.、明确目标和条件●你要存储的是什么,数量有多少,属于哪种类型的数据?●你打算如何使用这个存储系统?它是一般性存储还是用作备份或者归档?●你的存储系统是远程存储系统还是灾难恢复系统?●你正在使用的应用软件有哪些?●你是否希望系统是自动化管理的?●系统是否必须具备可调整性?●速度和性能的重要性如何?2、你想要什么?想要了解你想要什么,建议你制作一张表。
表格分三栏,第一栏填写你的存储系统必须获得的特色和功能;第二栏填写想获得的特色和功能;第三栏填写不一定必须拥有,但是有就更好的特色和功能。
例如,必须获得的功能包括“可用性、可靠性、一定水平的性能、一定水平的容量和可调整性”,特别是RAID 1、RAID 5、RAID 6、失效转移、容错控制器、自动管理、分级存储、不同种类的驱动器。
第二栏和第三栏的功能可包括:重复数据删除、自动精简配置和快照等,这些功能都是非常有用的。
接下来,你首先应将重点集中在根本问题上。
如果你刚好发现一个解决方案可以满足你的所有第一栏需求,而且还可以提供部分第二栏和第三栏的功能,那么你就可以配置它。