本征函数表
- 格式:pdf
- 大小:1.44 MB
- 文档页数:1
本征函数
维基百科,自由的百科全
在数学中,函数空间上定义的线性算子A的本征函数就是对该空间中任意一个非零函数f进行变换仍然是函数f或者其矢量倍数的函数。
更加精确的描述就是
其中λ是标量,它是对应的本征值。
另外本征值微分的解受到边界条件的限制。
当考虑限制条件的时候,只有特定的本征值()对应于的解(每个对应于一个本征值)。
分析的最有效的方法就是检查其本征矢量是否存在。
例如,是微分算子
的本征函数,对于任意的,有对应的本征值。
如果在这个系统上加上限制条件,如在空间中某两个物理位置,那么只有特定的才能满足这个限制条件,这样对应的离散本征值为. 本征函数在物理学的很多分支中都起着重要作用,其中一个重要的例子就是量子
的解的形式为
其中是本征值为的算子的本征函数。
只有特定的与本征函数相关的本征值满足薛定谔方程这样的事实引出了量子力学的自然基础以及元素周期表,每个定义了一个允许存在系统能量状态。
这个方程成功地解释了氢原子的谱特性被认为是20世纪物理学的一项巨大成就。
根据哈密顿算子的特性,可以知道它的本征函数是正交函数。
但是对于其它算子的本征函数可能并不是这样,如上面提及的。
正交函数
()有以下特性
其中,在这种情况下集合是线性无关的。
第三章 力学量用算符表达§3.1 算符的运算规则一、算符的定义:算符代表对波函数进行某种运算或变换的符号。
ˆAuv = 表示Â把函数u 变成 v , Â就是这种变换的算符。
为强调算符的特点,常常在算符的符号上方加一个“^”号。
但在不会引起误解的地方,也常把“^”略去。
二、算符的一般特性 1、线性算符满足如下运算规律的算符Â,称为线性算符11221122ˆˆˆ()A c c c A c A ψψψψ+=+ 其中c 1, c 2是任意复常数,ψ1, ψ2是任意两个波函数。
例如:动量算符ˆpi =-∇, 单位算符I 是线性算符。
2、算符相等若两个算符Â、ˆB对体系的任何波函数ψ的运算结果都相同,即ˆˆA B ψψ=,则算符Â和算符ˆB 相等记为ˆˆAB =。
3、算符之和若两个算符Â、ˆB对体系的任何波函数ψ有:ˆˆˆˆˆ()A B A B C ψψψψ+=+=,则ˆˆˆA B C +=称为算符之和。
ˆˆˆˆAB B A +=+,ˆˆˆˆˆˆ()()A BC A B C ++=++ 4、算符之积算符Â与ˆB之积,记为ˆˆAB ,定义为 ˆˆˆˆ()()ABA B ψψ=ˆC ψ= ψ是任意波函数。
一般来说算符之积不满足交换律,即ˆˆˆˆABBA ≠。
5、对易关系若ˆˆˆˆABBA ≠,则称Â与ˆB 不对易。
若A B B Aˆˆˆˆ=,则称Â与ˆB 对易。
若算符满足ˆˆˆˆABBA =-, 则称ˆA 和ˆB 反对易。
例如:算符x , ˆx pi x∂=-∂不对易证明:(1) ˆ()x xpx i x ψψ∂=-∂i x x ψ∂=-∂ (2) ˆ()x px i x x ψψ∂=-∂i i x xψψ∂=--∂ 显然二者结果不相等,所以:ˆˆx x xpp x ≠ ˆˆ()x x xpp x i ψψ-= 因为ψ是体系的任意波函数,所以ˆˆx x xpp x i -= 对易关系 同理可证其它坐标算符与共轭动量满足ˆˆy y ypp y i -=,ˆˆz z zp p z i -= 但是坐标算符与其非共轭动量对易,各动量之间相互对易。
2.p pL ξ∧∧→→∧→和的本征值方程1、动量算符⑴动量算符的本征值。
p p p i p r p r i iψψ→→∧∧→→→→→⎛⎫⎛⎫=-∇=∇∴∇= ⎪ ⎪⎝⎭⎝⎭ 的本征方程为 其中,p →为p ∧→的本征值,p r ψ→→⎛⎫ ⎪⎝⎭是属于p →的本征态。
为求其本征态,可先求x p ∧的本征态,其本征值方程为()()()x y z 'p p p p p p i r r x c exp y z r cexp p r x x i p p x x i ψψψψψψ→→→→→→→→∂⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭其解为:同理可得:,综合可得: 讨论:若粒子位置不受限制,则x p p p y z (,)可取一切实数值(,-∞+∞),它是连续变化的,上述本征态表示平面波,是不能归一化的。
⑵连续谱本征态是不能归一化的。
量子力学中最常见的几个力学量是:,,,r p L E →→→其中,r →和p →的取值(本征值)是连续变化的,L →的本征值是分立的。
而E 的本征值往往兼而有之。
将看到,连续谱的本征态是不能归一化的。
以p →本征态为例,一维粒子的本征值为p →的本征态为平面波:()()22,()0,ipxp p x ce p c x dx cdx ψψ+∞+∞-∞-∞=-∞<<+∞≠==∞⎰⎰显然只要这个结论的理解:因为()p x ψ描述的状态下,几率密度为常数2c (()2222ipx p x c ec ψ==)即粒子在空间各点的相对几率是相等的。
在().x x dx +内找到粒子的几率为()220p x dx c dx dx c ψ∝=∝≠只要在全空间找到粒子的几率必定是无穷大。
习惯上常取()x ip x p x e ψ=。
⑶δ函数为处理连续谱本征态“归一化”问题,引用狄拉克δ函数是很方便的。
一维δ函数定义为:()()()()()0,,a 0f 1x 1x ax a f x x a dx f a x a x d δδδ+∞-∞+∞-∞≠⎧-=-=⎨∞=⎩===⎰⎰以及:....⑴取,,得:即δ函数对全实数轴的积分等于1.利用傅里叶积分公式,可以将δ函数用具体形式表示出来:()()()()()()()()]()()()()()'''''''''....()......ikx ikxikx ikx ik x x f x g k e dk f x x g k f x edxf x f x e dx e dk f x e dk dx x f x x x δ+∞+∞-+∞+∞--∞-∞+∞+∞--∞-∞+∞-∞==⎡∴=⎢⎣⎡⎤=⎥⎦-⎰⎰⎰⎰⎰⎰⎰的傅氏变换为g 其逆变换为:⑵(f =dx )比较⑴和⑵得:()()''()11ik x x ikxx x edkx edkδδ+∞--∞+∞-∞-==⎰⎰或所以,若取动量本征态为()()()()()()''''exp exp xx xx p p x x p x x x x ip x x i x x dx p p x dx i x p p x d p p ψψψδ+∞+∞*-∞+∞-∞⎛⎫=⎪⎝⎭⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦⎡⎤⎛⎫=-=- ⎪⎢⎥⎣⎦⎝⎭⎰⎰⎰ 则: 于是,平面波“归一化”就用δ函数的形式表示出来了。