12高等电磁场
- 格式:pdf
- 大小:1.94 MB
- 文档页数:18
第一章基本电磁理论1-1 利用Fourier 变换, 由时域形式的Maxwell方程导出其频域形式。
(作1-2—1-3)解:付氏变换和付氏逆变换分别为:麦氏方程:对第一个方程进行付氏变换:(时谐电磁场)同理可得:上面四式即为麦式方程的频域形式。
1-2 设各向异性介质的介电常数为当外加电场强度为(1) ;(2) ;(3) ;(4) ;(5)求出产生的电通密度。
(作1-6)解:将E分别代入,得:1-3 设各向异性介质的介电常数为试求:(1) 当外加电场强度时,产生的电通密度D;(2) 若要求产生的电通密度,需要的外加电场强度E。
(作1-7—1-8)解:即:.附:又所以1-6 已知理想导电体表面上某点的电磁场为试求该点表面电荷及电流密度。
解:由已知条件,理想导体表面某点:(1-6-1)(1-6-2)知该点处的法向单位矢量为: (1-6-3)理想导体表面上的电磁场满足边界条件:(1-6-4)(1-6-5)将(1-6-2)、(1-6-3)式代入(1-6-4)式,得该点处的表面电流密度为:(1-6-6)将(1-6-1)、(1-6-3)式代入(1-6-5)式,得该点处的表面电荷密度为:(1-6-7)1-9 若非均匀的各向同性介质的介电常数为, 试证无源区中的时谐电场强度满足下列方程:(作1-9)证明:非均匀各向同性介质中(无源区)的时谐电磁场满足(1-9-1)(1-9-2)对(1-9-2)式两边取旋度,并利用(1-9-1)得又所以 (1-9-3)又在非均匀各向同性介质中即 (1-9-4)将(1-9-4)代入(1-9-3),得即第2章平面电磁波2-1 导出非均匀的各向同性线性媒质中,正弦电磁场应该满足的波动方程及亥姆霍兹方程。
解:非均匀各向同性线性媒质中,正弦电磁场满足的Maxwell方程组为(2-1-1)(2-1-2)(2-1-3)(2-1-4)对(2-1-2)式两边取旋度,并应用(2-1-1)得即对(2-1-1)式两边取旋度,并应用(2-1-2)得所以非均匀各向同性媒质中,正弦电磁场满足的波动方程为 (2-1-5)(2-1-6)由(2-1-4)式得即 (2-1-7)由(2-1-3)式得即 (2-1-8)利用矢量关系式,并将(2-1-7)(2-1-8)式代入,得电磁场满足的亥姆霍兹方程为(2-1-9)(2-1-10)均匀介质中,无源区中2-4 推导式(2-2-8)。
第三章3-2 在Coulomb 规范条件下,矢量位和标量位满足微分方程: (1) (2)可得:又由电荷守恒定律可知:0t J ρ∂∂∇∙+=(r)J j ωρ∴∇∙=-所以, (3)将(3)带入(1)可得:即证明之 3-4 (1)电流元产生的电磁场求解电Hertz 位满足其中(r)(r)e J P j ω=s=I J dS∙⎰又所以可得:电Hertz 位与场量之间的关系为:2(r)j (r)(r)(r)(r)e e e e eH E ωεωμε=∇⨯∏=∇∇∙∏+∏22()()()j ()k μωμε∇+=-∇ΦA r A r J r +r ()()ρε∇Φ=-2r r ()()4V dV ρπε''Φ='-⎰r r |r r |1()()j 4V dV ωπε'∇⋅'Φ=-'-⎰J r r |r r |22()()()()4Vk dV μμπ'∇⋅'∇+=--∇'-⎰J r A r A r J r |r r |e 2e2e()()()k ε∇+=-P r Πr Πr e j ||j ||e j ()11()4||j 4||j 4k k krzz Vl e Ie Il dV dz er επωεπωεπ''-----''==≈''--⎰⎰r r r r P r Πr e e r r r r代入可得: 其中cos e sin z r e e θθ-θ=(2)磁流元产生的电磁场求解 由对偶原理可得:3-13 y11,εμZ22,εμ如图所示,由边界条件 1212(E )0(H H )Sn E n J⨯-=⨯-=e e j j 2j 221()j ()j j 4sin j 1cos sin 44z kr kr krr Il r Il e e k Il e r r kr k r θφωεωεωεπθθθππ---⎛⎫=∇⨯=∇⨯ ⎪⎝⎭⎛⎫⎛⎫=∇⨯-=+ ⎪ ⎪⎝⎭⎝⎭H r Πr e e e e e e33j j 22332233()()j cos j 1sin 1j 1j j 24kr krr k Il k Il e e k r k r kr k r k r θωεθθπωεπωε--∇⨯=⎛⎫⎛⎫=-+--++ ⎪ ⎪⎝⎭⎝⎭H r E r e e m mmj m j j 2m j 221()j ()j j 4sin j 1cos sin 44kr z kr kr krr I l e r I l e e k I l er r kr k r θφωμωμωμπθθθππ----⎛⎫=-∇⨯=-∇⨯ ⎪⎝⎭⎛⎫⎛⎫=-∇⨯-=-+ ⎪ ⎪⎝⎭⎝⎭E r Πr e e e e m m33j j 22332233()()j cos j1sin 1j 1j j 24m m kr kr rk I l k I l e e k rk r kr k rk r θωμθθπωμπωμ--∇⨯=-⎛⎫⎛⎫=-+--++ ⎪ ⎪⎝⎭⎝⎭E r H r e e又因为(y)z J e I =δ所以可知磁场H 方向为x 方向,电场E 方向为z 方向。
高等电磁场答案【篇一:电磁场作业题答案全】>1.1 什么是场?什么是矢量场?什么是标量场?什么是静态场?什么是时变场?答:如果在空间某一个区域内上任意一点都有一确定物理量值与之对应,则这个区域就构了一个物理量的场。
如果这个确定物理量值是一个标量(只有大小没有方向),我们称这种场为标量场,如温度场、密度场、电位场等等。
如果这个确定物理量值是一个矢量(既有大小又有方向),我们称这种场为矢量场,如电场、磁场、重力场等等。
如果在场中的这个物理量仅仅是空间位置的函数,而不是时间的函数(即不随时间变化的场),我们称这种场为静态场。
如果在场中的这个物理量不仅仅是空间位置的函数,而且还是时间的函数(即随时间变化的场),我们称这种场为时变场。
1.2 什么是标量?什么是矢量?什么是常矢?什么是变矢?什么是单位矢量?答:一个物理量如果仅仅只有大小的特征,我们称此物理量为标量。
例如体积、面积、重量、能量、温度、压力、电位等。
如果一个物理量不仅仅有大小,而且还具有方向的特征,我们称此物理量为矢量。
例如电场强度,磁感应强度、电位移矢量、磁场强度、速度、重力等。
一个矢量如果其大小和方向都保持不变的矢量我们称之为常矢。
如果矢量的大小和方向或其中之一是变量的矢量称为变矢。
矢量与矢量的模值的比值,称为单位矢量。
即模值为1的矢量称为单位矢量 1.3什么是等值面?什么是等值面方程?什么是等值线?什么是等值线方程?答:在标量场中许多相同的函数值(他们具有不同的位置)。
构成的曲面,称为等值面。
例如,温度场中由相同温度构成的等温面,电位场中相同电位构成的等位面等都是等值面。
描述等值面的方程称为等值面方程。
假定u?x,y,z?是坐标变量的连续可微函数。
则等值面方程可表述为 u?x,y,z??c (c为任意常数)在标量场中平面中相同的函数值构成的曲线,称为等值线。
描述等值线的方程称为等值线方程。
假定u?x,y?是坐标变量的连续可微函数。
则等值线方程可表述为 u?x,y??c (c为任意常数) 1.4求下列电场的等位线方程 (1)??xz, (2) ??4 x?y22解:根据等值线方程的定义即电位函数应为一常数,所以等位线方程为⑴ ??c?xz,即 x?c;⑵ ??4?c 即 x2?y2?4?k (k为常数) zcx?y1.5 求下电场的等值面方程 1)??2221222, 2) ?=x-x0)?(y?y0)?(z-z0) , 3)?=ln(x+y+z) 22x?y?z2解:根据等值面方程的定义即电位函数应为一常数,所以等位面方程为⑴ ??1即 x2?y2?z2?1?k2 ?ccx2?y2?z2⑵?=x-x0)2?(y?y0)2?(z-z0)2 ?c 即(x?x0)2?(y?y0)2?(z?z0)2?c2?k2 ⑶ ln?x2?y2?z2??c 即x2?y2?z2?ec?k2,(k为常数)1.6 什么方向导数?什么梯度?梯度与方向导数的关系?答:在标量场中任一点在某一方向上的变化率称为方向导数。
《电磁场》课程教学大纲大纲执笔人:胡登宇大纲审核人:课程编号:0806145英文名称:Electric magnetic field学分:2学分总学时:32。
其中,讲授32学时。
适用专业: 电气工程及其自动化、电子信息工程等先修课程:高等教学、大学物理一、课程性质与教学目的电磁场是关于电与磁现象的一门学科,是工科电类专业的一门理论性比较强的专业课,它的任务是阐明电磁场的基本概念、基本规律和基本的分析计算方法。
本课程是学生在学习了大学物理以后再继续学习的,在内容编写上,即保证了与大学物理电磁学部分的衔接,又保证了理论的完整性,同时避免了一些不必要的重复。
本课程具体分为电场与磁场2个部分进行讲述,通过本课程的学习,可为后续课程,如电机学、高电压技术等打下良好的基础。
同时,培养学生的辨证思维能力,树立理论联系实际的科学观点;提高学生分析和解决问题的能力。
二、基本要求(一)掌握电场强度、电位、静电力、电容的计算方法。
(二)掌握绝缘电阻、接地电阻的计算方法。
(三)掌握磁通量、电感量以及磁场能量的计算。
三、重点与难点重点内容:高斯定理,镜像法,电场强度、电位、电容的计算,电流密度、绝缘电阻、接地电阻的计算,磁感应强度、磁通量、磁场的能量与电感的计算,电磁感应定律。
难点内容:高斯定理,镜像法,电流密度、绝缘电阻、电感的计算四、教学方法课堂讲授,运用启发、讨论、教学互动的多模式教学方法。
五、课程知识单元、知识点及学时分配见表1表1 课程的知识单元、知识点及学时分配知识单元知识点讲课序号描述序号描述1 静电场1 电场强度152 电位3 导体与电介质4 高斯定理5 静电场的基本方程、边界条件6 泊松方程与拉普拉斯方程7 镜象法8 部分电容2 恒定电场1 电流强度与电流密度82 恒定电场的基本方程3 分界面上的边界条件4 恒定电场静电场的比拟5 电导与接地电阻3 恒定磁场1 磁感应强度72 安培环路定理(真空)3 媒质的磁化4 恒定磁场的基本方程与边界条件5 电感6 磁场能量4 时变场1 电磁感应定理2 2 全电流定理六、实验教学内容实验单独开设七、作业要求每个知识单元后均布置一定数量的作业,要求学生独立书面完成。