电路第三章 电阻电路的一般分析 教案
- 格式:ppt
- 大小:1.28 MB
- 文档页数:46
第三章电阻电路的一般分析电路的一般分析是指方程分析法,它是以电路元件的约束特性(VCR)和电路的拓扑约束特性(KCL,KVL)为依据,建立以支路电流或回路电流,或结点电压为变量的回路方程组,从中解出所要求的电流、电压、功率等。
方程分析法的特点是:(1)具有普遍适用性,即无论线性和非线性电路都适用;(2)具有系统性,表现在不改变电路结构,应用KCL,KVL,元件的VCR建立电路变量方程,方程的建立有一套固定不变的步骤和格式,便于编程和用计算机计算。
本章的重点是会用观察电路的方法,熟练运用支路法、回路法和结点电压法的“方程通式”写出支路电流方程、回路方程和结点电压方程,并加以求解。
3-1 在一下两种情况下,画出图示电路的图,并说明其节点数和支路数(1)每个元件作为一条支路处理;(2)电压源(独立或受控)和电阻的串联组合,电流源和电阻的并联组合作为一条支路处理。
解:(1)每个元件作为一条支路处理时,图(a)和(b)所示电路的图分别为题解3-1图(a1)和(b1)。
图(a1)中节点数6b==n,支路数11图(b1)中节点数7=bn,支路数12=(2)电压源和电阻的串联组合,电流源和电阻的并联组合作为一条支路处理时,图(a)和图(b)所示电路的图分别为题解图(a2)和(b2)。
图(a2)中节点数4b=n,支路数8=图(b2)中节点数15b=n,支路数9=3-2指出题3-1中两种情况下,KCL,KVL独立方程数各为多少?解:题3-1中的图(a)电路,在两种情况下,独立的KCL方程数分别为(1)51==4n1--1=6-1-=n (2)3独立的KVL方程数分别为(1)61=84+--n+=1b1=111b (2)5+6+--n=图(b)电路在两种情况下,独立的KCL方程数为(1)61=5-=1n-7n (2)41=1-=-独立的KVL方程数分别为(1)6+1=95b1-n+=-=1271b (2)51=-n++-3-3对题图(a)和(b)所示G,各画出4个不同的树,树支数各为多少?解:一个连通图G 的树T 是这样定义的:(1) T 包含G 的全部结点和部分支路;(2) T 本身是连通的且又不包含回路。
第3章 电阻电路的一般分析● 本章重点1、独立independent KCL 、KVL 方程equations 个数;2、支路法列方程construct equations 解电路;3、网孔法列方程解电路analyse circuit ;4、回路法列方程解电路;5、节点法列方程解电路.● 本章难点1、含有理想电源Ideal Power 的回路法Loop method ;2、含有受控源Controlled source 的回路法;3、含有理想电源的节点法node method ;4、含有受控源的节点法。
● 教学方法本章主要讲述电阻电路的一般分析方法,即方程法。
本章采用讲授为主,自学为辅的教学方法,共需6课时.对独立KCL 、KVL 方程个数确定,可以自学;有关图论Graph 的内容,在15章统一讲解;对支路法、网孔法、回路法、节点法在不同情况下如何建立方程等重点和难点内容,课堂上要讲解透彻,课下布置一定的作业,使学生加深对内容的理解并牢固掌握。
为使学生能区分各方法的优点和应用对象,可采用一个电路用不同的方法来分析。
● 授课内容 3.1 支路法一、支路电流法以支路电流为未知量,根据KCL 、KVL 列关于支路电流的方程,进行求解的过程.图3—1仅含电阻和电压源的电路第1步 选定各支路电流参考方向,如图3—1所示. 第2步 对(n -1)个独立节点列KCL 方程如果选图3—1所示电路中的节点4为参考节点,则节点1、2、3为独立节点,其对应的KCL 方程必将独立,即:1 0431=+-I I I 2 0521=+--I I I 3 0632=-+I I I 第3步.对)1(--n b 个独立回路列关于支路电流的KVL 方程U s33 3Ⅰ:014445511=--++s s U I R U I R I R Ⅱ:05566222=--+-I R I R U I R s Ⅲ:033366444=+-+-I R U I R U I R s s 第4步.求解3。
第三章电阻电路的一般分析本章内容:1.电路的图及KCL和KVL独立方程数 2.支路分析法3.网孔分析法4.回路电流法5.结点分析法本章重点:主要学习电阻电路的方程建立及一般分析方法(支路分析法、网孔分析法、节点分析法、回路分析法。
其中,支路分析法是最基本的方法)。
本章难点:独立回路数的确定, 回路分析法及节点分析法.§3-1 电路的图本节介绍有关图论的初步知识,学习应用图的方法选择电路方程的独立变量一、电路的图(G)数学上的图:是边(支路)和顶点(结点)的集合,每一条边都连到相应的顶点上,边是抽象的线段,当移去边时,顶点保留,当移去顶点时,应将顶点所连的支路移走。
1.电路的图(连通图G):是将支路画成的抽象线段形成的节点和支路的集合,结点相对于数学图的顶点,支路相当于数学图中的边。
支路是实体。
KVL和KCL 与元件的性质无关,故可用图讨论其方程。
2.无向图:画出的没有方向的图为无向图3.有向图:画出的有方向的图为有向图4.连通图:任意两个结点之间至少有一条支路或路径时的图为连通图。
二、电路的图的画法(有几种,其中简便的画法)1.一般将电阻和电压源串联的组合,电阻和电流源并联的组合看成一条支路, 将流过同一个电流的每一个分支看成一条支路。
如(b)2.指定电流和电压的参考方向,一般选关联参考方向。
如图(c)(a) (b) (c)§3-2 KCL和KVL的独立方程数一、KCL的独立方程数(n个结点电路,KCL的独立方程是n-1个)将电路的有向图,结点和支路加以编号,如下图,对结点①②③④列写KCL 方程有由于每条支路与两个结点相联,其电流从一个节点流出,从另一个结点流入,一正,一负(从表达式可见),将上面4个方程相加,等式两边为0,说明4个方程不是独立的;将上面3个方程相加,等式两边不为0,说明3个方程是独立的。
可见,n个结点电路,n-1个结点的KCL方程是独立的一、KVL的独立方程数(b条支路,n个结点,KVL为b-(n-1)个)KVL的独立方程数等于独立回路数独立回路数等于基本回路数,回路与支路的方向无关,以无向图讨论。
第三章电阻电路的一般分析一、教学基本要求电路的一般分析是指方程分析法,是以电路元件的约束特性(VCR)和电路的拓补约束特性(KCL、KVL)为依据,建立以支路电流或回路电流或结点电压为变量的电路方程组,解出所求的电压、电流和功率。
方程分析法的特点是:(1)具有普遍适用性,即无论线性和非线性电路都适用;(2)具有系统性,表现在不改变电路结构,应用KCL,KVL,元件的VCR建立电路变量方程,方程的建立有一套固定不变的步骤和格式,便于编程和用计算机计算。
本章学习的内容有:电路的图,KCL和KVL的独立方程数,支路电流法,网孔电流法,回路电流法,结点电压法。
本章内容以基尔霍夫定律为基础。
介绍的支路电流法、回路电流法和节点电压法适用于所有线性电路问题的分析,在后面章节中都要用到。
内容重点:会用观察电路的方法,熟练应用支路电流法,回路电流法,结点电压法的“方程通式”写出支路电流方程,回路电流方程,结点电压方程,并求解。
预习知识:线性代数方程的求解难点:1. 独立回路的确定2. 正确理解每一种方法的依据3. 含独立电流源和受控电流源的电路的回路电流方程的列写4. 含独立电压源和受控电压源的电路的结点电压方程的列写二、学时安排总学时:6三、教学内容§3-1 电路的图1. 网络图论图论是拓扑学的一个分支,是富有趣味和应用极为广泛的一门学科。
图论的概念由瑞士数学家欧拉最早提出,欧拉在1736年发表的论文《依据几何位置的解题方法》中应用图的方法讨论了各尼斯堡七桥难题,见图3.1a和b所示。
图3.1 a 哥尼斯堡七桥 b 对应的图19~20世纪,图论主要研究一些游戏问题和古老的难题,如哈密顿图及四色问题。
1847年,基尔霍夫首先用图论来分析电网络,如今在电工领域,图论被用于网络分析和综合、通讯网络与开关网络的设计、集成电路布局及故障诊断、计算机结构设计及编译技术等等。
2. 电路的图电路的图是用以表示电路几何结构的图形,图中的支路和结点与电路的支路和结点一一对应,如图3.2所示,所以电路的图是点线的集合。
重点:熟练掌握电路方程的列写方法:支路电流法回路电流法结点电压法前 言1. 线性电路的一般分析方法 a.b. 2. 方法的基础(理论依据) 电路的连接关系—KCL , 复杂电路的一般分析法就是根据KCL 、KVL 及元件电压和电流关系列方程、解方程。
根据列方程时所选变量的不同可分为支路电流法、回路电流法和结点电压法等。
3.1 电路的图1. 网络图论(图:由点和连接这些点的边构成的形状结构。
)图论是拓扑学的一个分支,是富有趣味和应用极为广泛的一门学科。
哥尼斯堡七桥难题(有时间则简介)2. 电路的图(忽略各支路的内容,则构成电路的图)(c)(b)(a)抛开元件性质,一个元件作为一条支路,则有图b,85==bn,元件的串联及并联组合作为一条支路,则有图c,64==bn,若给出参考方向,则成为有向图。
结论:电路的图是用以表示电路几何结构的图形,图中的支路和结点与电路的支路和结点一一对应。
●图的定义(Graph)G={支路,结点} 图是支路和结点的集合。
具有以下几个特征(作图讲解):1.图中的结点和支路各自是一个整体。
2.移去图中的支路,与它所联接的结点依然存在,因此允许有孤立结点存在。
3.如把结点移去,则应把与它联接的全部支路同时移去。
●路径:从图G的一个结点出发沿着一些支路连续移动到达另一结点所经过的支路构成路径。
●连通:图G的任意两结点间至少有一条路径时称为连通图,非连通图至少存在两个分离部分。
●子图:若图G1中所有支路和结点都是图G中的支路和结点,则称G1是G的子图。
a)树(Tree):T是连通图的一个子图且满足下列条件:◆连通◆包含所有结点◆不含闭合路径树支:构成树的支路;连支:属于G而不属于T的支路。
注意:对应一个图有很多的树,树支的数目是一定的。
树支数1-=nb t,连支数)1(--=-=nbbbb tl。
b)回路(Loop):L是连通图的一个子图,构成一条闭合路径,并满足(作图讲解):(1)连通;(2)每个结点关联2条支路。