气相色谱基本知识
- 格式:ppt
- 大小:2.83 MB
- 文档页数:1
相色谱的分离基本原理是什么?1.利用混合物中各组分在流动相和固定相中具有不同的溶解和解吸能力,或不同的吸附和脱附能力或其他亲和性能作用的差异。
2.当两相作相对运动时样品各组分在两相中反复多次受到各种作用力的作用,从而使混合物中各组分获得分离。
简述气相色谱仪的基本组成。
基本部件包括5个组成部分。
1.气路系统;2.进样系统;3.分离系统;4.检测系统;5.记录系统。
简述气相色谱法的特点?1、高分离效能;2、高选择性;3、高灵敏度;4、快速;5、应用广泛。
什么叫保留时间?从进样开始至每个组分流出曲线达极大值所需的时间,可作为色谱峰位置的标志,此时间称为保留时间,用t表示。
什么是色谱图?进样后色谱柱流出物通过检测器系统时,所产生的响应信号时间或载气流出气体积的叫曲线图称为色谱图。
什么是色谱峰?峰面积?1、色谱柱流出组分通过检测器系统时所产生的响应信号的微分曲线称为色谱峰。
2、出峰到峰回到基线所包围的面积,称为峰面积。
怎样测定载气流速?高档色谱仪上均安装有自动测试装置,无自动测试装置可用皂膜流量计测,将皂膜流量计连接在测检测出口(也可将色谱柱与检测器断开皂膜流量计测接在色谱柱一端),测试每分钟的流速。
测完后色谱升温压力表指示会升高,原因是温度升高色谱柱对气体的阻力增加,不要把压力调下来,当色谱温度升高稳流指示不会改变。
测试载气流速在室温下测试。
怎样控制载气流速?载气流速的控制主要靠气路上高压钢瓶上的减压阀减压,然后经仪器的稳压阀稳压,再经稳流阀以达到控制载气流量稳定,减压阀给出的压力要高出稳压后的压力。
非程序升温色谱一般没有稳流阀,只靠稳压阀控制流速。
气相色谱分析怎样测其线速度?1、一般测定线速度实际上是测定色谱柱的死时间;2、甲烷作为不滞留物,测定甲烷的保留时间(TCD检测器以空气峰),3、用色谱柱的长度除以甲烷的保留时间得到色谱柱的平均线速度。
气相色谱分析中如何选择载气流速的最佳操作条件?在色谱分析中,选择好最佳的载气流速可获得塔板高度的最小值。
气相色谱法知识汇总1.气相色谱法(GC):是以气体为流动相的色谱分析法。
2.气相色谱要求样品:气化,不适用于大部分沸点高和热不稳定的化合物,对于腐蚀性能和反应性能较强的物质更难于分析。
大约有15%~20%的有机物能用气相色谱法进行分析。
3.气相色谱仪的组成:气路系统、进样系统、分离系统、检测系统、温控系统、记录系统。
4.气路系统:包括气源、净化器和载气流速控制;常用的载气有:氢气、氮气、氦气。
5.进样系统:包括:进样装置和气化室,气体进样器(六通阀):试样首先充满定量管,切入后,载气携带定量管中的试样气体进入分离柱;液体进样器:不同规格的微量注射器,填充柱色谱常用10μL;毛细管色谱常用1μL;新型仪器带有全自动液体进样器,清洗、润冲、取样、进样、换样等过程自动完成,一次可放置数十个试样。
6.进样方式:分流进样:样品在汽化室内气化,蒸气大部分经分流管道放空,只有极小一部分被载气导入色谱柱;不分流进样:样品直接注入色谱的汽化室,经过挥发后全部引入色谱柱。
7.分离系统:色谱柱:填充柱(2~6mm直径,1~5m长),毛细管柱(0.1~0.5mm直径,几十米长)。
8.温控系统的作用:温度是色谱分离条件的重要选择参数;气化室、色谱柱恒温箱、检测器三部分在色谱仪操作时均需控制温度;气化室:保证液体试样瞬间气化;检测器:保证被分离后的组分通过时不在此冷凝;色谱柱恒温箱:准确控制分离需要的温度。
9.检测系统:作用:将色谱分离后的各组分的量转变成可测量的电信号;指标:灵敏度、线性范围、响应速度、结构、通用性,通用型——对所有物质均有响应;专属型——对特定物质有高灵敏响应;检测器类型:浓度型检测器:热导检测器、电子捕获检测器;质量型检测器:氢火焰离子化检测器、火焰光度检测器。
10.热导检测器的主要特点:结构简单,稳定性好;对无机物和有机物都有响应,不破坏样品;灵敏度不高。
11.氢火焰离子化检测器的特点:优点:(1)典型的质量型检测器;(2)通用型检测器(测含C有机物);(3)氢焰检测器具有结构简单、稳定性好、灵敏度高、响应迅速、死体积小、线性范围宽等特点;(4)比热导检测器的灵敏度高出近3个数量级,检测下限可达10-12g·g-1;缺点:(1)对载气要求高;(2)检测时要破坏样品,无法回收样品;(3)不能检测永久性气体、水及四氯化碳等。
气相色谱根本知识气相色谱是色谱中的一种,就是用气体做为流动相的色谱法,在别离分析方面,具有如下一些特点:1、高灵敏度:可检出10-10克的物质,可作超纯气体、高分子单体的痕迹量杂质分析和空气中微量毒物的分析。
2、高选择性:可有效地别离性质极为相近的各种同分异构体和各种同位素。
3、高效能:可把组分复杂的样品别离成单组分。
4、速度快:一般分析、只需几分钟即可完成,有利于指导和控制生产。
5、应用范围广:即可分析低含量的气、液体,亦可分析高含量的气、液体,可不受组分含量的限制。
6、所需试样量少:一般气体样用几毫升,液体样用几微升或几十微升。
7、设备和操作比拟简单。
气相色谱法的一些常用术语及根本概念解释:1、相、固定相和流动相:一个体系中的某一均匀局部称为相;在色谱别离过程中,固定不动的一相称为固定相;通过或沿着固定相移动的流体称为流动相。
2、色谱峰:物质通过色谱柱进到鉴定器后,记录器上出现的一个个曲线称为色谱峰。
3、基线:在色谱操作条件下,没有被测组分通过鉴定器时,记录器所记录的检测器噪声随时间变化图线称为基线。
4、峰高与半峰宽:由色谱峰的浓度极大点向时间座标引垂线与基线相交点间的高度称为峰高,一般以h表示。
色谱峰高一半处的宽为半峰宽,一般以x1/2表示。
5、峰面积:流出曲线〔色谱峰〕与基线构成之面积称峰面积,用A表示。
6、死时间、保存时间及校正保存时间:从进样到惰性气体峰出现极大值的时间称为死时间,以td表示。
从进样到出现色谱峰最高值所需的时间称保存时间,以tr表示。
保存时间与死时间之差称校正保存时间。
以Vd表示。
7、死体积,保存体积与校正保存体积:死时间与载气平均流速的乘积称为死体积,以Vd 表示,载气平均流速以Fc表示,Vd=tdxFc。
保存时间与载气平均流速的乘积称保存体积,以Vr表示,Vr=trxFc。
8、保存值与相对保存值:保存值是表示试样中各组分在色谱柱中的停留时间的数值,通常用时间或用将组分带出色谱柱所需载气的体积来表示。
§1 色谱法基础§1.1 色谱法原理§1.2 色谱流出曲线§1.3 色谱术语介绍§2 色谱柱系统§2.1 气固填充色谱柱§2.2 气液填充色谱柱§2.2.1固定液的分类§2.2.2固定液选用原则§2.2.3填充柱的制备§2.3 毛细管气相色谱柱§3 气相色谱检测系统§3.1 热导池检测器§3.2 氢火焰离子化检测器§3.3 电子捕获检测器§3.4 热离子检测器§3.5 火焰光度检测器§4 参考资料§4.1 专著§4.2 杂志§4.3 手册§4.4 学术会议文集§4.5 色谱网站1.色谱与色谱概论2.色谱分类3.色谱结构解释4.色谱仪器特点[Last edit by madprodigy]§1 色谱法基础§1.1色谱法原理在互不相溶的两相——流动相和固定相的体系中,当两相作相对运动时,第三组分(即溶质或吸附质)连续不断地在两相之间进行分配,这种分配过程即为色谱过程。
由于流动相、固定相以及溶质混合物性质的不同,在色谱过程中溶质混合物中的各组分表现出不同的色谱行为,从而使各组分彼此相互分离,这就是色谱分析法的实质。
也就是说,当一种不与被分析物质发生化学反应的被称为载气的永久性气体(例如H2 、N2 、He、Ar 、CO2 等)携带样品中各组分通过装有固定相的色谱柱时,由于试样分子与固定相分子间发生吸附、溶解、结合或离子交换,使试样分子随载气在两相之间反复多次分配,使那些分配系数只有微小差别的组分发生很大的分离效果,从而使不同组分得到完全分离,例如一个试样中含A、B二个组分,已知B组分在固定相中的分配系数大于A,即KB > KA ,如图1-1所示。
当样品进入色谱柱时,组分A、B以一条混合谱带出现,由于组分B在固定相中的溶解能力比A大,因此组分A的移动速度大于B,经过多次反复分配后,分配系数较小的组分A首先被带出色谱柱,而分配系数较大的组分B则迟被带出色谱柱,于是样品中各组分达到分离的目的。
气相色谱基本理论知识气相色谱理论可分为热力学和动力学理论两方面。
热力学理论是从相平衡观点来研究分离过程,以塔片理论为代表。
动力学理论是从动力学观点来研究各种动力学因素对柱效的影响,以Van Deemter 方程式为代表。
在叙述这两个理论前先介绍有关基本概念。
一、基本概念l.色谱峰(流出峰) 由电信号强度对时间作图所绘制的曲线称为色谱流出曲线。
流出曲线(图2-2)上的突起部分称为色谱峰。
正常色谱峰为对称形正态分布曲线,曲线有最高点,以此点的横坐标为中心,曲线对称地向两侧快速、单调下降。
不正常色谱峰有两种:拖尾峰及前延峰。
前沿陡峭,后沿拖尾的不对称色谱峰称为拖尾峰(tailing peak),前沿平缓,后沿陡峭的不对称色峰与不正常色谱峰可用对称因子f s(symmetryfactor)或叫拖尾因子来衡量(图20-3)。
对称因子在0.95~1.05之间为对称峰,小于0.95为前延峰,大于1.05为拖尾峰。
f s = W0.05h/2A = (A+B)/2A (2.1)一个组分的色谱峰可用三项参数即峰高或峰面积(用于定量)、峰位(用保留值表示、用于定性)及峰宽(用于衡量柱效)说明。
2.基线在操作条件下,没有组分流出时的流出曲线称为基线。
稳定的基线应是一条平行于横轴的直线。
基线反映仪器(主要是检测器)的噪音随时间的变化。
3.保留值(滞留值) 是色谱定性参数。
(1)保留时间(t R):从进样开始到某个组分的色谱峰顶点的时间间隔称为该组分的保留时间(retention time),即从进样到柱后某组分出现浓度极大时的时间间隔。
图2-2中t R1及t R2分别为组分l及组分2的保留时间。
(2)死时间(t 0):分配系数为零的组分的保留时间称为死时间(dead time)。
通常把空气或甲烷视为此种组分,用来测定死时间。
(3)调整保留时间(R t '):某组分由于溶解(或被吸附)于固定相,比不溶解(或不被吸附)的组分在柱中多停留的时间称为调整保留时间(adjusted retention time),又称为校正保留时间。
气相色谱基本知识1、什么是气相色谱法以气体为流动相(称载气)的色谱分析法称气相色谱法(GC )。
2.、气相色谱是基于时间的差别进行分离在加温的状态下使样品瞬间气化,由载气带入色谱柱,由于各组分在固定相与流动相(载气)间相对吸附能力/保留性能不同而在两相间进行分配,在色谱柱中以不同速度移动,经一段时间后得到分离,再依次被载气带入检测器,将各组分的浓度或质量转换成电信号变化并记录成色谱图,每一个峰代表最初混合物中不同的组分。
峰出现的时间称为保留时间(t R ),可以用来对每个组分进行定性,根据峰的大小(峰面积)对每个组分进行定量。
涉及的几个术语:固定相(stationary phase ): 在色谱分离中固定不动、对样品产生保留的一相; 流动相(mobile phase ):与固定相处于平衡状态、带动样品向前移动的另一相; 色谱图:若干物质的流出曲线,即在不同时间的浓度或响应大小;保留时间 (retention time ,t R ):样品注入到色谱峰最大值出现的时间;3、气相色谱法特点3.⒈选择性高:能分离同位素、同分异构体等物理、化学性质十分相近的物质。
3.⒉分离效能高:一次可进行含有150多个组分的烃类混合物的分离分析。
3.⒊灵敏度高:气相色谱可检测1110-~1310-g的物质。
3.⒋分析速度快:一般几分钟或几十分钟便可完成一个分析周期。
3.⒌应用范围广:450℃以下有不低于27~330Pa 的蒸气压,热稳定性好的物质。
3.⒍缺点:不适应于大部分沸点高的和热不稳定的化合物;需要有已知标准物作对照。
4、气相色谱系统主要包括五大系统:载气系统、进样系统、分离系统、检测系统和记录系统。
基本流程如下脱水管限流器4.1、载气系统:可控而纯净的载气源。
载气从起源钢瓶/气体发生器出来后依次经过减压阀、净化器、气化室、色谱柱、检测器,然后放空。
载气必须是纯洁的(99.999%),要求化学惰性,不与有关物质反应。
frit 气相色谱-回复气相色谱(Gas Chromatography,简称GC)是一种重要的色谱技术,在化学分析、环境检测、食品安全等领域起着重要的作用。
本文将从基本原理、仪器系统、操作步骤、应用领域等方面一步一步地介绍气相色谱的相关知识。
一、基本原理气相色谱是基于化学物质在气态载体流动相中的分离与检测。
其基本原理是利用分离柱对样品中化合物进行分离,然后通过检测器对分离出的化合物进行定性和定量分析。
这种分离是通过样品溶液在进样器注入,由主流气体将其推进,样品蒸发,形成气相,然后通过柱子的填充物(固定相)进行分离。
二、仪器系统气相色谱仪由进样系统、柱温控制系统、分离柱、检测器和数据处理系统组成。
其中,进样系统用于样品的自动加入和蒸发,柱温控制系统控制柱子温度的稳定性,分离柱是决定分离效果的重要部分,检测器用于检测分离出的化合物,数据处理系统用于对所得数据进行分析和处理。
三、操作步骤1. 样品的制备:根据需要的分析物质,选择合适的溶剂将样品溶解或提取。
2. 进样:将样品溶液以适量注入进样器中,其中进样量要根据样品的浓度和分析要求进行调整。
3. 分离:样品进入进样器后,由气流带动样品蒸发,进而进入柱子进行分离。
柱子的填充物和柱温是影响分离效果的两个核心参数。
4. 检测:通过检测器对分离出的化合物进行检测,一般常用的检测器有FID(火焰离子化检测器)、TCD(热导检测器)、ECD(电子捕获检测器)等。
5. 数据处理:通过数据处理系统对所得数据进行分析和处理,得出最终的结果。
四、应用领域气相色谱广泛应用于化学分析、环境检测、食品安全等领域。
在化学分析中,通过气相色谱可以对样品中的化合物进行分离和鉴定,从而确定其组成及含量。
在环境检测中,气相色谱可以用于监测大气中的有机物、土壤中的残留物等。
在食品安全方面,气相色谱可以用于检测食品中的农药残留、添加剂等有害物质。
总结:气相色谱作为一种重要的色谱技术,在化学分析、环境检测、食品安全等领域起着重要的作用。
气相色谱期末总结一、气相色谱的原理气相色谱的原理是基于化学物质在固定相(柱填料)和流动相(惰性气体)共同作用下的分离行为。
样品经过气相进样器进入GC柱,被固定相吸附或溶解,然后由流动相推动分离,并逐个通过检测器,最终由信号采集系统得到峰形图。
气相色谱的分离机理主要包括吸附、分配和离子交换等。
在吸附色谱中,样品成分在固定相表面吸附,并根据亲和力大小进行分离。
在分配色谱中,样品成分在流动相和固定相之间按照平衡分配系数的大小进行分离。
在离子交换色谱中,固定相上的离子交换基团与样品成分的带电部分发生离子交换反应,实现分离。
二、气相色谱的仪器气相色谱主要由进样系统、柱箱、检测器和信号采集系统等组成。
进样系统包括进样口、气化室、气道、进样针和进样阀等。
进样量的大小和均匀性对分析结果有很大影响,因此进样系统的设计和使用非常重要。
柱箱是气相色谱的核心部分,用于放置和温控柱子。
根据需要,柱子可以是毛细管柱、开管柱或厚膜柱等。
检测器是气相色谱的核心部分,用于将化学物质转化为可测量的信号。
常见的检测器有火焰离子化检测器(FID)、热导率检测器(TCD)、质谱检测器(MS)等。
信号采集系统用于接收检测器输出的信号,并将信号转换为可读的峰形图或数据。
三、气相色谱的方法气相色谱的方法主要包括站相法和程序升温法。
站相法是最早也是最简单的气相色谱方法,即柱子温度恒定,样品在柱子中各部分达到平衡后即得到分离结果。
该方法适用于样品成分相对简单的情况。
程序升温法则是针对样品成分复杂的情况设计的。
柱子温度会按照一定的升温速度进行升温,使样品成分在不同温度下分离出来。
该方法能够得到更好的分离效果,并且可以通过分析峰的保留时间确定样品成分。
四、气相色谱的应用气相色谱广泛应用于各个领域的化学分析,如环境检测、食品安全、制药和石油化工等。
在环境检测中,气相色谱常用于挥发性有机物(VOCs)的分析,如甲醛、苯系物、多氯联苯等。
通过气相色谱分析,可以对环境中有害物质的浓度进行定量分析,评估环境质量。