流体力学第三章 3--2 讲
- 格式:ppt
- 大小:260.50 KB
- 文档页数:2
Chapter 3 流体动力学积分形式的基本方程流体动力学用欧拉法研究流体运动与所受外力的关系,功能守衡关系。
§3.1 拉格朗日型基本方程(理论力学质点系基本方程)1) 连续方程:一个确定的质点系, 质量守恒。
数学表达式 0=dtdm2)动量方程:质点系动量对时间的变化率等于作用在该系统上的合外力数学表达式 F K∑=dtd ⎰⎰⎰⎰⎰+=ττρdA d A n p f3)动量矩方程:质点系对某点的动量矩对时间的变化率等于作用在系统上的所有外力对同一点的力矩代数和。
数学表达式 dtd oM ⎰⎰⎰⎰⎰⨯+⨯=ττρdA d A n p r f r4)能量方程:单位时间内由外界传给质点系的热量Q 与外力对质点系所作的功W 之和, 等于系统的总能量E 对于时间的变化率。
数学表达式 =+W Q dt dE ⎰⎰⎰+=ττρd V e dtd)2(2 因 ⎰⎰⎰+⎰⎰=τλτρd q dA q Q R A 传导热 辐射热 ⎰⎰⋅+⎰⎰⎰⋅=A n dA d W V p V f τρτ 质量力功率 表面力功率即=⎰⎰⎰+ττρd V e dt d )2(2⎰⎰⎰+⎰⎰τλτρd q dA q R A ⎰⎰⋅+⎰⎰⎰⋅+A n dA d V p V f τρτ 拉格朗日型积分形式的能量方程§3.2 欧拉型基本方程利用输运公式 ⎰⎰⎰0ττφd dt d =⎰⎰⎰∂∂ττφd t+dA A )(n V ⋅⎰⎰φ或⎰⎰⎰0ττφd dt d =⎰⎰⎰∂∂ττφd t-dA V n A 入入⎰⎰φ+dA V n A 出出⎰⎰φ和拉格朗日型的积分方程转换得到3.2.1 连续方程令输运公式中Φ=ρ,代入拉氏型连续方程得dt dm =0⎰⎰⎰=0ττρd dt d=⎰⎰⎰∂∂ττρd t +dA A )(n V ⋅⎰⎰ρ即 -=⎰⎰⎰∂∂ττρd t dA A )(n V ⋅⎰⎰ρ 欧拉型连续方程或 =⎰⎰⎰∂∂ττρd tdA V n A 入入⎰⎰ρdA V n A 出出⎰⎰-ρ物理意义:控制体内质量的增加速率, 等于通过控制面A 流入的质量(流入-流出)的代数和。
第3章理想流体动力学3.1系统和控制体3.1系统和控制体流体力学第三章 系统包含着确定不变的物质的任何集合,称之为系统,系统以外的一切,统称为外界。
系统的边界是把系统和外界分开的真实或假想的曲面。
在流体力学中,系统就是指由确定的流体质点所组成的流体团。
所有的力学定律都是由系统的观念推导而来的。
在系统与外界之间以边界来划分。
系统的边界随着流体一起运动。
在系统的边界处没有质量交换.在系统的边界上,受到外界作用在系统上的表面力。
在系统边界上可以有能量交换,如可以有能量(热或功)进入或跑出系统的边界。
系统流体力学第三章 系统是与拉格朗日观点相联系的。
以确定的流体质点所组成的流体团作为研究的对象。
对应的方程叫拉氏型方程.问题的提出: 但是对大多数实际的流体力学问题来说,感兴趣的往往是流体流过坐标系中某些固定位置时的情况。
例如,在飞机或导弹的飞行; 当燃气轮机在运行时,我们希望知道其进、出口截面处的诸流动参数的分布等等。
在处理流体力学问题时,采用欧拉观点更为方便,与此相应,必须引进控制体的概念。
相对于某个坐标系来说,被流体流过的的固定不变的任何体积称之为控制体。
控制体的边界面称之为控制面,其总是封闭表面。
占据控制体的流体质点是随着时间而改变的。
控制体是与欧拉观点相联系的。
控制面有如下特点:控制体的边界(控制面)相对于坐标系是固定的。
在控制面上可以有质量交换。
在控制面上受到控制体以外物体加在控制体之内物体上的力。
在控制面上可以有能量交换,即可以有能量(内能、动能、热或功)跑进或跑出控制面。
对应的方程叫欧拉型方程.V )(t S System Control Volume S )(t V Control Surface)(t F。
第三章 流体运动学3-1解:质点的运动速度1031014,1024,1011034=-=-==-=w v u 质点的轨迹方程1031,52,103000twt z z t vt y y t ut x x +=+=+=+=+=+= 3-2 解:2/12/12/3222/12/12/3220375.0232501.02501.00375.0232501.02501.00t t t dt d dt y d a t t t dt d dt x d a a y x z =⨯⨯=⎪⎭⎫⎝⎛⨯===⨯⨯=⎪⎭⎫⎝⎛⨯===由501.01t x +=和10=A x ,得19.1501.011001.015252=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=A x t 故206.00146.0146.00,146.0,014619.150375.0222222/1=++=++=====⨯=zyxz x y x a a a a a a a a3-3解:当t=1s 时,点A (1,2)处的流速()()sm s m yt xt v s m s m y xt u /1/1211/5/2211222-=⨯-⨯=-==⨯+⨯=+=流速偏导数112221121,1,/12,1,/1-----=-=∂∂==∂∂==∂∂=∂∂==∂∂==∂∂s t yvs t x v s m t t v s yu s t x u s m x t u点A(1,2)处的加速度分量()[]()()[]222/11151/3/21151s m y v v x v u t v Dt Dv a s m s m yuv x u u t u Dt Du a y x -⨯-+⨯+=∂∂+∂∂+∂∂===⨯-+⨯+=∂∂+∂∂+∂∂==3-4解:(1)迹线微分方程为dt udy dt u dx ==, 将u,t 代入,得()tdtdy dt y dx =-=1利用初始条件y(t=0)=0,积分该式,得221t y =将该式代入到式(a ),得dx=(1-t 2/2)dt.利用初始条件x(t=0)=0,积分得361t t x -=联立(c )和(d )两式消去t,得过(0,0)点的迹线方程023492223=-+-x y y y (2)流线微分方程为=.将u,v 代入,得()tdx dy y tdyy dx =-=-11或 将t 视为参数,积分得C xt y y +=-221 据条件x(t=1)=0和y(t=1)=0,得C=0.故流线方程为xt y y =-221 3-5 答:()(),满足满足002,0001=+-=∂∂+∂∂+∂∂++=∂∂+∂∂+∂∂k k zw y v x u zw y v x u()()()(),满足,满足000040223222222=++=∂∂+∂∂+∂∂=+-++=∂∂+∂∂+∂∂zw y v x u yxxyyxxyzw yv xu()()()()()()处满足,其他处不满足仅在,不满足,满足,满足满足,满足0,41049000018001760000522==∂∂+∂∂=∂∂+∂∂=++=∂∂++∂∂=++-=∂∂++∂∂=++=∂∂+∂∂+∂∂y y yv x u yv x u u r r u r u rk r k u r r u r u zw yv xu r r r rθθθθ3-6 解:max 02042020max 20320max 2020max 2020214222111000u r r r r u dr r r r r u rdrd r r u r udA r V r rA r =⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-==⎰⎰⎰⎰⎰πππππ3-7 证:设微元体abcd 中心的速度为u r ,u θ。
第三章 流体运动学3-1解:质点的运动速度1031014,1024,1011034=-=-==-=w v u 质点的轨迹方程1031,52,103000twt z z t vt y y t ut x x +=+=+=+=+=+= 3-2 解:2/12/12/3222/12/12/3220375.0232501.02501.00375.0232501.02501.00t t t dt d dt y d a t t t dt d dt x d a a y x z =⨯⨯=⎪⎭⎫⎝⎛⨯===⨯⨯=⎪⎭⎫⎝⎛⨯===由501.01t x +=和10=A x ,得19.1501.011001.015252=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=A x t 故206.00146.0146.00,146.0,014619.150375.0222222/1=++=++=====⨯=zyxz x y x a a a a a a a a3-3解:当t=1s 时,点A (1,2)处的流速()()sm s m yt xt v s m s m y xt u /1/1211/5/2211222-=⨯-⨯=-==⨯+⨯=+=流速偏导数112221121,1,/12,1,/1-----=-=∂∂==∂∂==∂∂=∂∂==∂∂==∂∂s t yvs t x v s m t t v s yu s t x u s m x t u点A(1,2)处的加速度分量()[]()()[]222/11151/3/21151s m y v v x v u t v Dt Dv a s m s m yuv x u u t u Dt Du a y x -⨯-+⨯+=∂∂+∂∂+∂∂===⨯-+⨯+=∂∂+∂∂+∂∂==3-4解:(1)迹线微分方程为dt udy dt u dx ==, 将u,t 代入,得()tdtdy dt y dx =-=1利用初始条件y(t=0)=0,积分该式,得221t y =将该式代入到式(a ),得dx=(1-t 2/2)dt.利用初始条件x(t=0)=0,积分得361t t x -=联立(c )和(d )两式消去t,得过(0,0)点的迹线方程023492223=-+-x y y y (2)流线微分方程为=.将u,v 代入,得()tdx dy y tdyy dx =-=-11或 将t 视为参数,积分得C xt y y +=-221 据条件x(t=1)=0和y(t=1)=0,得C=0.故流线方程为xt y y =-221 3-5 答:()(),满足满足002,0001=+-=∂∂+∂∂+∂∂++=∂∂+∂∂+∂∂k k zw y v x u zw y v x u()()()(),满足,满足000040223222222=++=∂∂+∂∂+∂∂=+-++=∂∂+∂∂+∂∂zw y v x u yxxyyxxyzw yv xu()()()()()()处满足,其他处不满足仅在,不满足,满足,满足满足,满足0,41049000018001760000522==∂∂+∂∂=∂∂+∂∂=++=∂∂++∂∂=++-=∂∂++∂∂=++=∂∂+∂∂+∂∂y y yv x u yv x u u r r u r u rk r k u r r u r u zw yv xu r r r rθθθθ3-6 解:max 02042020max 20320max 2020max 2020214222111000u r r r r u dr r r r r u rdrd r r u r udA r V r rA r =⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-==⎰⎰⎰⎰⎰πππππ3-7 证:设微元体abcd 中心的速度为u r ,u θ。
Chapter 3 流体运动的基本方程组本章任务:建立控制流动的基本方程组,确定边界条件。
§3.1系统和控制体系统(sys )指给定流体质点组成的流体团,相当于质点或刚体力学中的研究对象——物体;系统在流动过程中可以不断改变自己的位置和形状,但维持其连续性,始终由固定的那些流体质点组成。
系统与外界可以有力的相互作用,可以有动量和能量交换,但是没有物质交换。
控制体(CV )指流动空间内的一个给定空间区域(子空间),其边界面称为控制面(CS )。
控制体一旦选定,其大小、形状和位置都是确定的,有流体不断出入。
物质体元即流体微团。
物质面元可以看成由连续分布的流体质点(看成是没有体积的几何点)构成的面元,物质面元在流动过程中可以变形,但始终由这些流体质点组成。
物质线元可以看成连续分布的流体质点(看成是没有体积的几何点)构成的线元,或者说是连续分布的流体质点的连线线元,物质线元在流动过程中可以变形,但始终由这些流体质点组成。
时间线就是物质线。
(三者如同面团、薄饼和面条) §3.2雷诺输运定理设(),f r t 代表流动的某物理量场(可以是密度场、温度场、动量密度分量场、能量密度场等),t 时刻某流体团(即系统)占据空间τ,取该空间为控制体。
t 时刻该流体团的总f 为()(),I t f r t d ττ=⎰。
(3-1)此I 也是t 时刻控制体内的总f 。
设t t δ+时刻(0t δ→)该系统运动到如图所示位置,占据空间τ',此时系统的总f 为()(),I t t f r t t d τδδτ'+=+⎰。
(3-2)该系统总f 的随体导数()()()0lim t I t t I t DI t Dt tδδδ→+-=。
(3-3)将空间II τ分为与空间I τ重合的部分2τ和其余部分1τ,空间I τ去除2τ后剩余部分记为3τ,于是13ττττ'=+-,(3-4)进而()()()()13I t t I t t I t t I t t τττδδδδ+=+++-+,(3-5)可得()()()()()130lim t I t t I t t I t t I t DI t Dt tττττδδδδδ→+++-+-=()()()()31000lim lim lim t t t I t t I t t I t t I t t t tττττδδδδδδδδδ→→→+++-=+-, (3-6)其中第一项()()()0limt I t t I t I t t t ττδδδ→+-∂=∂。