流体力学第三章-y
- 格式:ppt
- 大小:2.88 MB
- 文档页数:17
流体⼒学第三章课后习题答案⼀元流体动⼒学基础1.直径为150mm 的给⽔管道,输⽔量为h kN /7.980,试求断⾯平均流速。
解:由流量公式vA Q ρ= 注意:()vA Q s kg h kN ρ=?→//A Qv ρ=得:s m v /57.1=2.断⾯为300mm ×400mm 的矩形风道,风量为2700m 3/h,求平均流速.如风道出⼝处断⾯收缩为150mm ×400mm,求该断⾯的平均流速解:由流量公式vA Q = 得:A Q v =由连续性⽅程知2211A v A v = 得:s m v /5.122=3.⽔从⽔箱流经直径d 1=10cm,d 2=5cm,d 3=2.5cm 的管道流⼊⼤⽓中. 当出⼝流速10m/ 时,求(1)容积流量及质量流量;(2)1d 及2d 管段的流速解:(1)由s m A v Q /0049.0333==质量流量s kg Q /9.4=ρ (2)由连续性⽅程:33223311,A v A v A v A v ==得:s m v s m v /5.2,/625.021==4.设计输⽔量为h kg /294210的给⽔管道,流速限制在9.0∽s m /4.1之间。
试确定管道直径,根据所选直径求流速。
直径应是mm 50的倍数。
解:vA Q ρ= 将9.0=v ∽s m /4.1代⼊得343.0=d ∽m 275.0 ∵直径是mm 50的倍数,所以取m d 3.0= 代⼊vA Q ρ= 得m v 18.1=5.圆形风道,流量是10000m 3/h,,流速不超过20 m/s 。
试设计直径,根据所定直径求流速。
直径规定为50 mm 的倍数。
解:vA Q = 将s m v /20≤代⼊得:mm d 5.420≥ 取mm d 450= 代⼊vA Q = 得:s m v /5.17=6.在直径为d 圆形风道断⾯上,⽤下法选定五个点,以测局部风速。
设想⽤和管轴同⼼但不同半径的圆周,将全部断⾯分为中间是圆,其他是圆环的五个⾯积相等的部分。
第三章习题简答3-1 已知流体流动的速度分布为22y x u x -= ,xy u y 2-=,求通过1,1==y x 的一条流线。
解:由流线微分方程yx u dyu dx =得dy u dx u x y =则有 dy y x xydx )(222-=-两边积分可得C y y x yx +-=-3322即0623=+-C y x y将x=1,y=1代入上式,可得C=5,则 流线方程为05623=+-y x y3-3 已知流体的速度分布为⎭⎬⎫==-=-=tx x u ty y u y x 00εωεω(ω>0,0ε>0)试求流线方程,并画流线图。
解:由流线微分方程yx u dyu dx =得dy u dx u x y =则有 tydy txdx 00εε-=两边积分可得C y x +-=22流线方程为C y x =+223-5 以平均速度s m v /5.1=流入直径为D=2cm 的排孔管中的液体,全部经8个直径d=1mm 的排孔流出,假定每孔出流速度依次降低2%,试求第一孔与第八孔的出流速度各为多少?题3-5图解:由题意得:v 2=v 1(1-2%),v 3=v 1(1-2%)2,…,v 8=v 1(1-2%)7 根据质量守恒定律可得282322212832144444dv d v d v d v D v Q Q Q Q Q πππππ⋅+⋅⋅⋅+⋅+⋅+⋅=⋅+⋅⋅⋅+++=sm d vD v v d v v v v d D v /4.80)98.01(001.002.002.05.1)98.01()98.01(98.01)98.01(4)(448228221812832122=-⨯⨯⨯=--⋅=∴--⋅=+⋅⋅⋅+++⋅=⋅πππ则 v 8=v 1(1-2%)7=80.4×(1-2%)7=69.8m/s3-6 油从铅直圆管向下流出。
管直径cm d 101=,管口处的速度为s m v /4.11=,试求管口处下方H=1.5m 处的速度和油柱直径。
第三章流体动力学基础本章是流体动力学的基础。
主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。
此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。
第一节流体流动的基本概念1.流线(1)流线的定义流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。
图3-1为流线谱中显示的流线形状。
(2)流线的作法:在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。
流线是欧拉法分析流动的重要概念。
图3-1 图3-2(3)流线的性质(图3-3)a.同一时刻的不同流线,不能相交。
图3-3因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。
b.流线不能是折线,而是一条光滑的曲线。
因为流体是连续介质,各运动要素是空间的连续函数。
c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。
因为对不可压缩流体,元流的流速与其过水断面面积成反比。
(4)流线的方程(图3-4)根据流线的定义,可以求得流线的微分方程:图3-4设d s为流线上A处的一微元弧长:u为流体质点在A点的流速:因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。
所以即展开后得到:——流线方程(3-1)(或用它们余弦相等推得)2.迹线(1)迹线的定义迹线(path line)某一质点在某一时段内的运动轨迹线。
图3-5中烟火的轨迹为迹线。
(2)迹线的微分方程(3-2)式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。