「精品」高中数学第一章导数及其应用1.5定积分的概念1.5.1曲边梯形的面积1.5.2汽车行驶的路程学案含解析新
- 格式:doc
- 大小:548.00 KB
- 文档页数:12
1.5 定积分的概念1.5.1 曲边梯形的面积 1.5.2 汽车行驶的路程 1.5.3 定积分的概念学习目标:、1.了解定积分的概念(难点).2.理解定积分的几何意义.(重点、易错点).3.通过求曲边梯形面积的过程和解决有关汽车行驶路程问题的过程,了解“以直代曲”“以不变代变”的思想(难点).4.能用定积分的定义求简单的定积分(重点).[自 主 预 习·探 新 知]1.曲边梯形的面积和汽车行驶的路程 (1)曲边梯形的面积①曲线梯形:由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的图形称为曲边梯形(如图151①所示).②求曲边梯形面积的方法把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形,对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值(如图151②所示).图① 图②图151③求曲边梯形面积的步骤:分割,近似代替,求和,取极限. (2)求变速直线运动的(位移)路程如果物体做变速直线运动,速度函数v =v (t ),那么也可以采用分割,近似代替,求和,取极限的方法,求出它在a ≤t ≤b 内所作的位移s .2.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n )作和式∑n i =1f (ξi )Δx =∑n i =1 b -a nf (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a b f (x )d x ,即⎠⎛a b f (x )d x =lim n→∞∑n i =1 b -anξ.其中a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.思考:⎠⎛a b f (x )d x 是一个常数还是一个变量?⎠⎛a b f (x )d x 与积分变量有关系吗?[提示]由定义可得定积分⎠⎛a b f (x )d x 是一个常数,它的值仅取决于被积函数与积分上、下限,而与积分变量没有关系,即⎠⎛a b f (x )d x =⎠⎛a b f (t )d t =⎠⎛ab f (u )d u .3.定积分的几何意义与性质 (1)定积分的几何意义由直线x =a ,x =b (a <b ),x 轴及一条曲线y =f (x )所围成的曲边梯形的面积设为S ,则有:① ② ③图152①在区间[a ,b ]上,若f (x )≥0,则S =⎠⎛a b f (x )d x ,如图152①所示,即⎠⎛a b f (x )d x=S .②在区间[a ,b ]上,若f (x )≤0,则S =-⎠⎛a b f (x )d x ,如图152②所示,即⎠⎛a b f (x )d x =-S .③若在区间[a ,c ]上,f (x )≥0,在区间[c ,b ]上,f (x )≤0,则S =⎠⎛a c f (x )d x -⎠⎛cbf (x )d x ,如图152③所示,即⎠⎛ab=SA -SB(S A ,S B 表示所在区域的面积).(2)定积分的性质①⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数); ②⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x ;③⎠⎛a b f (x )d x =⎠⎛a c f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ). [基础自测]1.思考辨析(1)⎠⎛a b f (x )d x =⎠⎛ab f (t )d t .( ) (2)⎠⎛a b f (x )d x 的值一定是一个正数.( ) (3)⎠⎛012xd x <⎠⎛022xd x ( ) [答案] (1)√ (2)× (3)√2.在“近似代替”中,函数f (x )在区间[x i ,x i +1]上的近似值( ) A .只能是左端点的函数值f (x i ) B .只能是右端点的函数值f (x i +1)C .可以是该区间内任一点的函数值f (ξi )(ξi ∈[x i ,x i +1])D .以上答案均正确C [作近似计算时,Δx =x i +1-x i 很小,误差可忽略,所以f (x )可以是[x i ,x i +1]上任一值f (ξi ).]3.图153中阴影部分的面积用定积分表示为( )图153A.⎠⎛012xd x B.⎠⎛01(2x -1)d x C.⎠⎛01(2x +1)d x D.⎠⎛01(1-2x )d x B [根据定积分的几何意义,阴影部分的面积为⎠⎛012xd x -⎠⎛011d x =⎠⎛01(2x-1)d x .]4.已知⎠⎛01x 2d x =13,⎠⎛12x 2d x =73,⎠⎛021d x =2,则⎠⎛02(x 2+1)d x =________.【导学号:31062080】[解析] ∵⎠⎛01x 2d x =13,⎠⎛12x 2d x =73,⎠⎛021d x =2,∴⎠⎛02(x 2+1)d x =⎠⎛01x 2d x +⎠⎛12x 2d x +⎠⎛021d x=13+73+2 =83+2=143. [答案]143[合 作 探 究·攻 重 难]图154[解] (1)分割将曲边梯形分割成n 个小曲边梯形,用分点1n ,2n ,…,n -1n 把区间[0,1]等分成n 个小区间:⎣⎢⎡⎦⎥⎤0,1n ,⎣⎢⎡⎦⎥⎤1n ,2n ,…,⎣⎢⎡⎦⎥⎤i -1n ,i n ,…,⎣⎢⎡⎦⎥⎤n -1n ,n n ,简写作⎣⎢⎡⎦⎥⎤i -1n,i n (i =1,2,…,n ).每个小区间的长度为Δx =i n -i -1n =1n .过各分点作x 轴的垂线,把曲边梯形分成n个小曲边梯形,它们的面积分别记作:ΔS 1,ΔS 2,…,ΔS i ,…,ΔS n .(2)近似代替用小矩形面积近似代替小曲边梯形面积,在小区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上任取一点ξi(i =1,2,…,n ),为了计算方便,取ξi 为小区间的左端点,用f (ξi )的相反数-f (ξi )=-⎝ ⎛⎭⎪⎫i -1n ⎝ ⎛⎭⎪⎫i -1n -1为其一边长,以小区间长度Δx =1n 为另一边长的小矩形对应的面积近似代替第i 个小曲边梯形面积,可以近似地表示为ΔS i ≈-f (ξi )Δx =-⎝ ⎛⎭⎪⎫i -1n ⎝ ⎛⎭⎪⎫i -1n -1·1n (i =1,2,…,n ).(3)求和因为每一个小矩形的面积都可以作为相应小曲边梯形面积的近似值,所以n 个小矩形面积的和就是曲边梯形面积S 的近似值,即S =∑i =1nΔS i ≈-∑i =1nf(ξi)Δx=∑i =1n⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫i -1n ⎝ ⎛⎭⎪⎫i -1n -1·1n=-1n3[02+12+22+…+(n -1)2]+1n2[0+1+2+…+(n -1)]=-1n3·16n (n -1)(2n -1)+1n2·-2=--n2+16n2=-16⎝ ⎛⎭⎪⎫1n2-1. (4)取极限当分割无限变细,即Δx 趋向于0时,n 趋向于∞, 此时-16⎝ ⎛⎭⎪⎫1n2-1趋向于S .从而有 S =lim n→∞ ⎣⎢⎡⎦⎥⎤-16⎝ ⎛⎭⎪⎫1n2-1=16.所以由直线x =0,x =1,y =0和曲线y =x (x -1)围成的图形面积为16.[规律方法] 求曲边梯形的面积 (1)思想:以直代曲.(2)步骤:分割→近似代替→求和→取极限. (3)关键:近似代替.(4)结果:分割越细,面积越精确. (5)求和时可用到一些常见的求和公式,如1+2+3+…+n =+2,12+22+32+…+n 2=++6,13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤+22. [跟踪训练]1.求由抛物线y =x 2与直线y =4所围成的曲边梯形的面积.【导学号:31062081】[解] ∵y =x 2为偶函数,图象关于y 轴对称,∴所求曲边梯形的面积应为抛物线y =x 2(x ≥0)与直线x =0,y =4所围图形面积S阴影的2倍,下面求S 阴影.由⎩⎪⎨⎪⎧y =,y =4,得交点为(2,4),如图所示,先求由直线x =0,x =2,y =0和曲线y =x 2围成的曲边梯形的面积.(1)分割将区间[0,2]n 等分, 则Δx =2n ,取ξi =-n.(2)近似代替求和S n =∑ni =1 ⎣⎢⎡⎦⎥⎤-n2·2n =8n3[12+22+32+…+(n -1)2] =83⎝ ⎛⎭⎪⎫1-1n ⎝ ⎛⎭⎪⎫1-12n .(3)取极限S =lim n→∞S n =lim n→∞ 83⎝⎛⎭⎪⎫1-1n ⎝⎛⎭⎪⎫1-12n=83.∴所求平面图形的面积为S 阴影=2×4-83=163.∴2S 阴影=323,即抛物线y =x 2与直线y =4所围成的图形面积为323.(单位:km/h),求它在1≤t ≤2这段时间行驶的路程是多少?[解] 将时间区间[1,2]等分成n 个小区间,则第i 个小区间为⎣⎢⎡⎦⎥⎤1+i -1n ,1+i n , 在第i 个时间段的路程近似为Δs i =v ⎝ ⎛⎭⎪⎫1+i n Δt =⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫1+i n 2+2⎝ ⎛⎭⎪⎫1+i n ·1n,i =1,2,…,n .所以s n =∑n i =1Δs i =∑n i =1 ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫1+i n 2+2⎝ ⎛⎭⎪⎫1+i n ·1n=-1n3[(n +1)2+(n +2)2+(n +3)2+…+(2n )2]+2n2[(n +1)+(n +2)+…+2n ]=-1n3⎣⎢⎡⎦⎥⎤++6-++6+2n2·+1+2=-13⎝ ⎛⎭⎪⎫2+1n ⎝ ⎛⎭⎪⎫4+1n +16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n +3+1n,s =lim n→∞s n =lim n→∞⎣⎢⎡⎦⎥⎤-13⎝ ⎛⎭⎪⎫2+1n ⎝ ⎛⎭⎪⎫4+1n +16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n +3+1n =23,所以这段时间行驶的路程为23 km.[规律方法]求变速直线运动路程的问题,方法和步骤类似于求曲边梯形的面积,用“以直代曲”“逼近”的思想求解.求解过程为:分割、近似代替、求和、取极限.应特别注意变速直线运动的时间区间.[跟踪训练]2.一物体自200 m 高空自由落下,求它在开始下落后的第3秒至第6秒之间的距离.(g =9.8 m/s 2)【导学号:31062082】[解] 自由落体的下落速度为v (t )=gt . 将[3,6]等分成n 个小区间,每个区间的长度为3n.在第i 个小区间⎣⎢⎡⎦⎥⎤3+-n,3+3i n (i =1,2,…,n )上,以左端点函数值作为该区间的速度.所以s n =∑n i =1v ⎣⎢⎡⎦⎥⎤3+-n3n=∑n i =1⎣⎢⎡⎦⎥⎤3g +3g n -·3n =⎩⎨⎧⎭⎬⎫3ng +3gn [1+2+…+-·3n =9g +9gn2·-2=9g +92g ·⎝⎛⎭⎪⎫1-1n .所以s =lim n→∞s n =lim n→∞ ⎣⎢⎡⎦⎥⎤9g +92g·⎝ ⎛⎭⎪⎫1-1n =9g +92g =272×9.8=132.3(m).故该物体在下落后第3 s 至第6 s 之间的距离是132.3 m.1.在定积分的几何意义中f (x )≥0,如果f (x )<0,⎠⎛ab f (x )d x 表示什么?提示:如果在区间[a ,b ]上,函数f (x )<0,那么曲边梯形位于x 轴的下方(如图所示),由于Δx i >0,f (ξi )<0,故f (ξi )·Δx i <0,从而定积分⎠⎛a b f (x )d x <0,这时它等于图中所示曲边梯形面积的相反数,即⎠⎛a b f (x )d x =-S 或S =-⎠⎛a b f (x )d x . 2.⎠⎛024-x2d x 的几何意义是什么? 提示:是由直线x =0,x =2,y =0和曲线y =4-x2所围成的曲边梯形面积,即以原点为圆心,2为半径的14圆的面积即⎠⎛024-x2d x =π.3.若f (x )为[-a ,a ]上的偶函数,则f (x )d x 与f (x )d x 存在什么关系?若f (x )为[-a ,a ]上的奇函数,则f (x )d x 等于多少?提示:若f (x )为偶函数,则f (x )d x =2f (x )d x ;若f (x )为奇函数,则f (x )d x=0.说明下列定积分所表示的意义,并根据其意义求出定积分的值. (1)⎠⎛012d x ;(2)⎠⎛12x d x ; (3)1-x2d x .[解] (1)⎠⎛012d x 表示的是图①中阴影部分所示的长方形的面积,由于这个长方形的面积为2,所以⎠⎛012d x =2.① ② ③(2)⎠⎛12x d x 表示的是图②中阴影部分所示的梯形的面积,由于这个梯形的面积为32,所以⎠⎛12x d x =32. (3)1-x2d x 表示的是图③中阴影部分所示的半径为1的半圆的面积,其值为π2,所以1-x2d x =π2.母题探究:1.(变条件)将例3(3)改为利用定积分的几何意义求⎠⎛011-x2d x .[解]⎠⎛011-x2d x 表示的是图④中阴影部分所示半径为1的圆的14的面积,其值为π4, ∴⎠⎛011-x2d x =π4.2.(变条件)将例3(3)改为利用定积分的几何意义求⎠⎛011--d x .[解] ⎠⎛011--d x 表示的是图⑤中阴影部分所示半径为1的14圆的面积,其值为π4,∴⎠⎛011--d x =π4.3.(变条件)将例3(3)改为利用定积分的几何意义求 (x +1-x2)d x .[解] 由定积分的性质得,(x +1-x2)d x = x d x +1-x2d x .∵y =x 是奇函数,∴x d x =0.由例3(3)知1-x2d x =π2.∴(x +1-x2)d x =π2.[当 堂 达 标·固 双 基]1.把区间[1,3]n 等分,所得n 个小区间中每个小区间的长度为( ) A.1n B.2n C.3nD.12nB [区间长度为2,n 等分后每个小区间的长度都是2n ,故选B.]2.定积分⎠⎛ab f (x )d x 的大小( )A .与f (x )和积分区间[a ,b ]有关,与ξi 的取法无关B .与f (x )有关,与区间[a ,b ]以及ξi 的取法无关C .与f (x )以及ξi 的取法有关,与区间[a ,b ]无关D .与f (x )、积分区间[a ,b ]和ξi 的取法都有关A [由定积分的定义可知A 正确.]3.由y =sin x ,x =0,x =π2,y =0所围成图形的面积写成定积分的形式是________. 【导学号:31062083】[解析] ∵0<x <π2, ∴sin x >0.∴y =sin x ,x =0,x =π2,y =0所围成图形的面积写成定积分的形式为sin x d x .[答案] sin x d x4.已知某物体运动的速度为v =t ,t ∈[0,10],若把区间10等分,取每个小区间右端点处的函数值为近似小矩形的高,则物体运动的路程近似值为__________.[解析] ∵把区间[0,10]10等分后,每个小区间右端点处的函数值为n (n =1,2,…,10),每个小区间的长度为1.∴物体运动的路程近似值s =1×(1+2+…+10)=55.[答案] 555.计算: (2-5sin x )d x . 【导学号:31062084】[解] 由定积分的几何意义得,2d x =⎝ ⎛⎭⎪⎫3π2-π2×2=2π. 由定积分的几何意义得,sin x d x =0. 所以 (2-5sin x )d x=2d x-5sin x d x=2π.。
1.5.1 曲边梯形的面积1.5.2 汽车行驶的路程1.5.3 定积分的概念[学习目标]1.了解“以直代曲”、“以不变代变”的思想方法.2.会求曲边梯形的面积和汽车行驶的路程.3.了解定积分的概念.4.了解定积分的几何意义和性质.[知识链接]1.如何计算下列两图形的面积?答①直接利用梯形面积公式求解.②转化为三角形和梯形求解.2.求曲边梯形面积时,对曲边梯形进行“以直代曲”,怎样才能尽量减小求得的曲边梯形面积的误差?答为了减小近似代替的误差,需要先分割再分别对每个小曲边梯形“以直代曲”,而且分割的曲边梯形数目越多,得到的面积的误差越小.b f(x)d x表示的含义是什么?3.当f(x)在区间[a,b]上且f(x)<0时,⎠⎛ab f(x)d x表示由y=f(x),x=a,x=b,y=0所答当f(x)在区间[a,b]上值小于零时,⎠⎛a围成的图形的面积的相反数.[预习导引]1.曲边梯形的面积(1)曲边梯形:由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的图形称为曲边梯形(如图①所示).(2)求曲边梯形面积的方法把区间[a,b]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形,对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值(如图②所示).(3)求曲边梯形面积的步骤:①分割,②近似代替,③求和,④取极限.2.求变速直线运动的(位移)路程如果物体做变速直线运动,速度函数v=v(t),那么也可以采用分割,近似代替,求和,取极限的方法,求出它在a≤t≤b内所作的位移s.3.定积分的概念如果函数f(x)在区间[a,b]上连续,用分点a=x0<x1<…<x i-1<x i<…<x n=b将区间[a,b]等分成n个小区间,在每个小区间[x i-1,x i]上任取一点ξi(i=1,2,…,n)作和式∑i=1nf(ξi)Δx=∑i=1n b-anf(ξi),当n→∞时,上述和式无限接近某个常数,这个常数叫做函数f(x)在区间[a,b]上的定积分,记作⎠⎛ab f(x)d x,即⎠⎛ab f(x)d x=li mn→∞∑i=1n b-anf(ξi).其中a与b分别叫做积分下限和积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式.4.定积分的几何意义如果在区间[a,b]上函数f(x)连续且恒有f(x)≥0,那么定积分⎠⎛ab f(x)d x表示由直线x=a,x=b,y=0和y=f(x)所围成的曲边梯形的面积.5.定积分的性质(1)⎠⎛ab kf(x)d x=k⎠⎛ab f(x)d x(k为常数);(2)⎠⎛ab[f1(x)±f2(x)]d x=⎠⎛ab f1(x)dx±⎠⎛ab f2(x)d x;(3)⎠⎛ab f(x)d x=⎠⎛ac f(x)d x+⎠⎛cb f(x)d x(其中a<c<b).要点一 求曲边梯形的面积例1 求抛物线f (x )=1+x 2与直线x =0,x =1,y =0所围成的曲边梯形的面积S . 解 (1)分割:把区间[0,1]等分成n 个小区间⎣⎢⎡⎦⎥⎤i -1n ,i n (i =1,2,…,n ),其长度Δx =1n ,把曲边梯形分成n 个小曲边梯形,其面积记为ΔS i (i =1,2,…,n ). (2)近似代替:用小矩形面积近似代替小曲边梯形的面积. ΔS i =f ⎝⎛⎭⎪⎫i -1n ·Δx =⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫i -1n 2·1n (i =1,2,…,n ).(3)求和:∑i =1nΔS i =∑i =1n1n ⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫i -1n 2.(4)取极限:S =li m n →∞∑i =1n 1n ·⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫i -1n 2=1+li m n →∞∑i =1n⎝⎛⎭⎪⎫i -1n 2·1n=1+li m n →∞ 13⎝ ⎛⎭⎪⎫1-1n ⎝ ⎛⎭⎪⎫1-12n=1+13=43.所以所求的曲边梯形的面积为43.规律方法 分割、近似代替、求和、取极限是求曲边梯形面积的四个步骤,求曲边梯形的面积时需理解以下几点:①思想:以直代曲;②步骤:化整为零―→以直代曲―→积零为整―→无限逼近;③关键:以直代曲;④结果:分割越细,面积越精确.跟踪演练1 用定积分的定义求由y =3x ,x =0,x =1,y =0围成的图形的面积. 解 (1)分割:把区间[0,1]等分成n 个小区间⎣⎢⎡⎦⎥⎤i -1n ,i n(i =1,2,…,n ).其长度为Δx =1n,把三角形分成一个小三角形和(n -1)个小梯形,其面积分别记为ΔS i (i =1,2,…,n ).(2)近似代替:用小矩形的面积代替小三角形和小梯形的面积,取ξi =i -1n(i =1,2,…,n ),则ΔS i =f ⎝⎛⎭⎪⎫i -1n Δx =3·i -1n ·1n =3n 2(i -1)(i =1,2,…,n ).(3)作和:∑i =1nΔS i =∑i =1n3n2(i -1)=3n 2[0+1+2+…+(n -1)]=32·n -1n . (4)取极限:S =li m n →∞∑i =1n3n2(i -1)=li m n →∞ 32·n -1n =32.要点二 求变速运动的路程例2 用定积分定义求物体自由落体的下落距离.已知自由落体的运动速度v =gt ,求在时间区间[0,t ]内物体下落的距离.解 (1)分割:将时间区间[0,t ]分成n 等份. 把时间[0,t ]分成n 个小区间⎣⎢⎡⎦⎥⎤i -1n t ,it n (i =1,2,…,n ),每个小区间所表示的时间段Δt =it n -i -1n t =tn,在各小区间物体下落的距离记作Δs i (i =1,2,…,n ).(2)近似代替:在每个小区间上以匀速运动的路程近似代替变速运动的路程. 在⎣⎢⎡⎦⎥⎤i -1n t ,it n 上任取一时刻ξi (i =1,2,…,n ),可取ξi 使v (ξi)=g i -n t 近似代替第i 个小区间上的速度,因此在每个小区间上自由落体Δt =tn内所经过的距离可近似表示为Δs i ≈g ·i -1n t ·tn(i =1,2,…,n ). (3)求和:s n =∑i =1nΔs i=∑i =1ng ·i -1n ·t ·t n=gt 2n2[0+1+2+…+(n -1)] =12gt 2⎝ ⎛⎭⎪⎫1-1n .(4)取极限:s =li m n →∞ 12gt 2⎝ ⎛⎭⎪⎫1-1n =12gt 2.规律方法 求变速直线运动的路程问题,方法和步骤类似于求曲边梯形的面积,仍然利用以直代曲的思想,将变速直线运动问题转化为匀速直线运动问题,求解过程为:分割、近似代替、求和、取极限.跟踪演练2 一辆汽车在直线形公路上做变速行驶,汽车在时刻t 的速度为v (t )=-t 2+5(单位:km/h),试计算这辆汽车在0≤t ≤2(单位:h)这段时间内行驶的路程s (单位:km). 解 (1)分割:在区间[0,2]上等间隔插入n -1个点,将区间分成n 个小区间⎣⎢⎡⎦⎥⎤i -n,2i n .记第i 个小区间为⎣⎢⎡⎦⎥⎤i -n,2i n (i =1,2,…,n ),Δt =2n.则汽车在时间段⎣⎢⎡⎦⎥⎤0,2n ,⎣⎢⎡⎦⎥⎤2n ,4n ,⎣⎢⎡⎦⎥⎤n -n,2n n上行驶的路程分别记为:Δs 1,Δs 2,…,Δs i ,…,Δs n ,有s n =∑i =1nΔs i . (2)近似代替:取ξi =2in(i =1,2,…,n ),Δs i ≈v ⎝ ⎛⎭⎪⎫2i n ·Δt =⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫2i n2+5·2n=-4i 2n 2·2n+10n(i =1,2,…,n ).s n =∑i =1nΔs i =∑i =1n⎝⎛⎭⎪⎫-4i 2n 2·2n +10n=-8·13⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +10.(3)取极限:s =li m n →∞s n=li m n →∞ ⎣⎢⎡⎦⎥⎤-8·13⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +10=223. 要点三 利用定积分定义计算定积分例3 利用定积分定义计算⎠⎛12(1+x )d x 的值.解 (1)分割:∵f (x )=1+x 在区间[1,2]上连续,将区间[1,2]分成n 等份,则每个区间长度为Δx i =1n,(2)近似替代:在[x i -1,x i ]=[1+i -1n ,1+i n ]上取ξi =xi -1=1+i -1n(i =1,2,3,…,n ),于是f (ξi )=f (x i -1)=1+1+i -1n =2+i -1n, (3)求和:从而∑i =1nf (ξ1)Δx i =∑i =1n(2+i -1n )·1n=∑i =1n(2n +i -1n2)=2n ·n +1n2[0+1+2+…+(n -1)]=2+1n2·n n -2=2+n -12n, (4)取极限:⎠⎛12(1+x )d x =li m n →∞ (2+n -12n )=2+12=52. 规律方法 (1)利用定积分的定义计算定积分的值能加深对定积分的概念及其几何意义的理解,用定积分的定义求定积分的步骤是:①分割,②近似代替,③求和,④取极限.(2)在每个小区间[x i -1,x i ]上对ξi 的选取是任意的,为了计算方便,ξi 可都取为每个小区间的左端点(或都取为右端点).跟踪演练3 利用定积分的定义,计算⎠⎛12(3x +2)d x 的值.解 令f (x )=3x +2. (1)分割在区间[1,2]上等间隔地插入n -1个分点,把区间[1,2]等分成n 个小区间[n +i -1n ,n +in](i =1,2,…,n ),每个小区间的长度为Δx =n +i n -n +i -1n =1n. (2)近似代替、求和 取ξi =n +i -1n (i =1,2,…,n ), 则S n =∑i =1nf (n +i -1n)·Δx =∑i =1n[n +i -n +2]·1n=∑i =1n[i -n 2+5n]=5+3n2[0+1+2+…+(n -1)]=32×n 2-n n 2+5=132-32n . (3)取极限⎠⎛12(3x +2)d x =lim n →∞S n =lim n →∞ (132-32n )=132. 要点四 定积分几何意义的应用 例4 用定积分的意义求下列各式的值. (1)⎠⎛3-1(3x +1)d x ; (2)∫32-321-x 2d x . 解 (1)由直线x =-1,x =3,y =0以及y =3x +1所围成的图形,如图所示:⎠⎛3-1(3x +1)d x 表示由直线x =-1,x =3,y =0以及y =3x +1所围成的图形在x 轴上方的面积减去在x 轴下方的面积,∴⎠⎛-13(3x +1)d x =12×⎝ ⎛⎭⎪⎫3+13×(3×3+1)-12⎝ ⎛⎭⎪⎫-13+1·2=503-23=16.(2)由y =1-x 2可知,x 2+y 2=1,(y ≥0)图象如图,由定积分的几何意义知∫32-321-x 2d x 等于圆心角为120°的弓形CED 的面积与矩形ABCD 的面积之和.S 弓形=12×23π×12-2×12×1×1×sin π3cos π3=π3-34, S 矩形=|AB |·|BC |=2×32×12=32,∴∫32-321-x 2d x =π3-34+32=π3+34. 规律方法 (1)用定积分表示曲线围成的平面区域的面积的步骤是: ①准确画出各曲线围成的平面区域;②把平面区域分割成容易表示的几部分,同时要注意x 轴下方有没有区域; ③解曲线组成的方程组,确定积分的上、下限; ④根据积分的性质写出结果.(2)利用几何意义求定积分,关键是准确确定被积函数的图象,以及积分区间,正确利用相关的几何知识求面积,不规则的图形常用分割法求面积,注意分割点的准确确定. 跟踪演练4 利用定积分的几何意义求: (1)⎠⎛2-24-x 2d x ; (2)⎠⎛101-x 2d x .解 (1)被积函数的曲线是圆心在原点,半径为2的半圆周,由定积分的几何意义知此积分计算的是半圆的面积,所以有 ⎠⎛2-24-x 2d x =π·222=2π. (2)∵被积函数为y =1-x 2,其表示的曲线为以原点为圆心,1为半径的四分之一的圆,由定积分的几何意义可知,所求的定积分即为该四分之一圆的面积. ∴⎠⎛101-x 2d x =14π·12=14π.1.把区间[1,3]n 等分,所得n 个小区间的长度均为( ) A.1nB .2nC .3nD .12n答案 B解析 区间[1,3]的长度为2,故n 等分后,每个小区间的长度均为2n.2.定积分⎠⎛ab f (x )d x 的大小( )A .与f (x )和积分区间[a ,b ]有关,与ξi 的取法无关B .与f (x )有关,与区间[a ,b ]以及ξi 的取法无关C .与f (x )以及ξi 的取法有关,与区间[a ,b ]无关D .与f (x )、积分区间[a ,b ]和ξi 的取法都有关 答案 A3.求由曲线y =12x 2与直线x =1,x =2,y =0所围成的平面图形面积时,把区间5等分,则面积的近似值(取每个小区间的左端点)是________. 答案 1.02解析 将区间5等分所得的小区间为⎣⎢⎡⎦⎥⎤1,65,⎣⎢⎡⎦⎥⎤65,75,⎣⎢⎡⎦⎥⎤75,85,⎣⎢⎡⎦⎥⎤85,95,⎣⎢⎡⎦⎥⎤95,2, 于是所求平面图形的面积近似等于 110⎝ ⎛⎭⎪⎫1+3625+4925+6425+8125=110×25525=1.02. 4.根据定积分的几何意义,用不等号连接下列式子: ①⎠⎛01x d x ________⎠⎛01x 2d x ;②⎠⎛024-x 2d x ________⎠⎛022d x .答案 ①> ②<1.求曲边梯形面积和汽车行驶的路程的步骤: (1)分割:n 等分区间[a ,b ]; (2)近似代替:取点ξi ∈[x i -1,x i ];(3)求和:∑i =1nf (ξi )·b -an; (4)取极限:S =li m n→∞∑i =1nf (ξi )·b -an.“近似代替”也可以用较大的矩形来代替曲边梯形,为了计算方便,可以取区间上的一些特殊点,如区间的端点(或中点).2.定积分⎠⎛abf (x )d x 是一个和式∑i =1nb -anf (ξi )的极限,是一个常数. 3.可以利用“分割、近似代替、求和、取极限”求定积分;对于一些特殊函数,也可以利用几何意义求定积分.4.定积分的几何性质可以帮助简化定积分运算.一、基础达标1.当n 很大时,函数f (x )=x 2在区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上的值,可以近似代替为( )A .f ⎝ ⎛⎭⎪⎫1nB .f ⎝ ⎛⎭⎪⎫2nC .f ⎝ ⎛⎭⎪⎫i n D .f (0)答案 C2.一物体沿直线运动,其速度v (t )=t ,这个物体在t =0到t =1这段时间内所走的路程为( ) A.13 B .12 C .1 D .32答案 B解析 曲线v (t )=t 与直线t =0,t =1,横轴围成的三角形面积S =12即为这段时间内物体所走的路程.3.由直线x =1,y =0,x =0和曲线y =x 3所围成的曲边梯形,将区间4等分,则曲边梯形面积的近似值(取每个区间的右端点)是( ) A.119 B .111256 C .1127 D .2564答案 D解析 将区间[0,1]四等分,得到4个小区间:⎣⎢⎡⎦⎥⎤0,14,⎣⎢⎡⎦⎥⎤14,12,⎣⎢⎡⎦⎥⎤12,34,⎣⎢⎡⎦⎥⎤34,1, 以每个小区间右端点的函数值为高,4个小矩形的面积和为曲边梯形面积的近似值S =⎝ ⎛⎭⎪⎫143×14+⎝ ⎛⎭⎪⎫123×14+⎝ ⎛⎭⎪⎫343×14+13×14=2564.4.下列命题不正确的是( )A .若f (x )是连续的奇函数,则⎠⎛a -a f (x )d x =0B .若f (x )是连续的偶函数,则⎠⎛a -a f (x )d x =2⎠⎛0a f (x )d xC .若f (x )在[a ,b ]上连续且恒正,则⎠⎛ab f (x )d x >0D .若f (x ) 在[a ,b ]上连续且⎠⎛ab f (x )d x >0,则f (x )在[a ,b ]上恒正答案 D解析 对于A ,f (-x )=-f (x ),⎠⎛a -a f (x )d x =⎠⎛0-a f (x )d x +⎠⎛0a f (x )d x =-∫a 0f (x )d x +⎠⎛0a f (x )d x =0,同理B 正确;由定积分的几何意义知,当f (x )>0时,⎠⎛abf (x )d x >0即C 正确;但⎠⎛ab f (x )d x >0,不一定有f (x )恒正,故选D.5.已知⎠⎛0t x d x =2,则⎠⎛0-t x d x 等于________.答案 -2解析 ∵f (x )=x 在[-t ,t ]上是奇函数, ∴⎠⎛t -t x d x =0.而⎠⎛t -t x d x =⎠⎛0-t x d x +⎠⎛0t x d x ,又⎠⎛0t x d x =2,∴⎠⎛0-t x d x =-2.6.由y =sin x ,x =0,x =-π,y =0所围成图形的面积写成定积分的形式是S =________. 答案 -⎠⎛0-πsin x d x解析 由定积分的意义知,由y =sin x ,x =0,x =-π,y =0围成图形的面积为S =-⎠⎛0-π sin x d x .7.求直线x =0,x =2,y =0与曲线y =x 2所围成的曲边梯形的面积. 解 令f (x )=x 2. (1)分割将区间[0,2]n 等分,分点依次为x 0=0,x 1=2n ,x 2=4n,…,x n -1=n -n,x n =2.第i 个区间为⎣⎢⎡⎦⎥⎤2i -2n ,2i n (i =1,2,…,n ),每个区间长度为Δx =2i n -2i -2n =2n .(2)近似代替、求和取ξi =2in(i =1,2,…,n ),S n =∑i =1nf ⎝ ⎛⎭⎪⎫2i n ·Δx =∑i =1n⎝⎛⎭⎪⎫2i n 2·2n =8n 3∑i =1ni 2=8n 3(12+22+…+n 2)=8n3·n n +n +6=43⎝⎛⎭⎪⎫2+3n +1n 2.(3)取极限S =li m n →∞S n =li m n →∞ 43⎝ ⎛⎭⎪⎫2+3n +1n 2=83,即所求曲边梯形的面积为83.二、能力提升8.已知f (x )=x 3-x +sin x ,则⎠⎛2-2f (x )d x 的值为( )A .等于0B .大于0C .小于0D .不确定答案 A解析 易知f (x )为奇函数,由奇函数的性质⎠⎛0-2f (x )d x =-⎠⎛02f (x )d x ,而⎠⎛2-2f (x )d x =⎠⎛0-2f (x )d x +⎠⎛02f (x )d x =0.9.设a =⎠⎛01x 13d x ,b =⎠⎛01x 2 d x ,c =⎠⎛01x 3d x ,则a ,b ,c 的大小关系是( )A .c >a >bB .a >b >cC .a =b >cD .a >c >b答案 B解析 根据定积分的几何意义,易知⎠⎛01x 3d x <⎠⎛01x 2d x <⎠⎛01x 13d x ,a >b >c ,故选B.10.设f (x )是连续函数,若⎠⎛01f (x )d x =1,⎠⎛02f (x )d x =-1,则⎠⎛12f (x )d x =________.答案 -2解析 因为⎠⎛02f (x )d x =⎠⎛01f (x )d x +⎠⎛12f (x )d x ,所以⎠⎛12f (x )d x =⎠⎛02f (x )d x -⎠⎛01f (x )d x =-2.11.已知∫π20sin x d x =错误!sin x d x =1,∫错误!0x 2d x =错误!,求下列定积分:(1)⎠⎛0πsin x d x ;(2)∫π20(sin x +3x 2)d x .解 (1)⎠⎛0πsin x d x =∫π20sin x d x +错误!sin x d x =2.(2)∫π20(sin x +3x 2)d x =∫π20sin x d x +3∫π20x 2d x =1+π38.12.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[-2,2x ,x ∈[2,πcos x ,x ∈[π,2π],求f (x )在区间[-2,2π]上的定积分.解 由定积分的几何意义知⎠⎛2-2x 3d x =0,⎠⎛2π2x d x =π-π+2=π2-4,∫2ππcos x d x =0, 由定积分的性质得⎠⎛-22πf (x )d x =⎠⎛2-2x 3d x +⎠⎛2π2x d x +∫2ππcos x d x =π2-4. 三、探究与创新13.利用定积分的定义计算⎠⎛12(-x 2+2x )d x 的值,并从几何意义上解释这个值表示什么.解 令f (x )=-x 2+2x . (1)分割在区间[1,2]上等间隔地插入n -1个分点,把区间[1,2]等分为n 个小区间⎣⎢⎡⎦⎥⎤1+i -1n ,1+in (i =1,2,…,n ),每个小区间的长度为Δx =i n -i -1n =1n.(2)近似代替、作和取ξi =1+in(i =1,2,…,n ),则S n =∑i =1nf ⎝⎛⎭⎪⎫1+i n ·Δx=∑i =1n ⎣⎢⎡⎦⎥⎤-⎝⎛⎭⎪⎫1+i n 2+2⎝ ⎛⎭⎪⎫1+i n ·1n=-1n3[]n +2+n +2+n +2+…+n2+2n 2[(n +1)+(n +2)+(n +3)+…+2n ] =-1n 3⎣⎢⎡⎦⎥⎤2n n +n +6-n n +n +6+2n 2·n n +1+2n 2 =-13⎝ ⎛⎭⎪⎫2+1n ⎝ ⎛⎭⎪⎫4+1n +16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n +3+1n ,(3)取极限⎠⎛12(-x 2+2x )d x =li m n →∞S n =li m n →∞ ⎣⎢⎡-13⎝ ⎛⎭⎪⎫2+1n ⎝ ⎛⎭⎪⎫4+1n +⎦⎥⎤16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n +3+1n =23,⎠⎛12(-x 2+2x )d x =23的几何意义为由直线x =1,x =2,y =0与曲线f (x )=-x 2+2x 所围成的曲边梯形的面积.。
定积分和微积分要点讲解一、定积分的概念教材上从求曲边梯形的面积和变速运动的路程出发引入了定积分的概念:如果函数()f x 在区间[],a b 上是连续的,用分点011i i n a x x x x x b -=<<<<<<=将区间[],a b 等分成n 个小区间,在每个小区间[]1,i i x x -上任取一点i ξ(1,2,,i n =),作和式()()11nni i i i b af x f nξξ==-∆=∑∑,当n →∞时,上述和式无限接近某个常数,这个常数叫做函数()f x 在区间[],a b 上的定积分,记作()baf x dx ⎰,即()()1li m nbi an i b af x dx f n ξ→∞=-=∑⎰. 对这个概念我们应从如下几个方面进行理解1.对区间[],a b 分割的绝对任意性:在定义中我们将区间[],a b 进行等分是为了计算上的方便,实际上对区间[],a b 的分割是任意的,这时只要这些区间中长度最大的区间的长度趋向于零即可.2.在每个小区间[]1,i i x x -上取点的绝对任意性:在教材上的两个例题是为了计算的方便将点取小区间[]1,i i x x -的端点,实际上我们可以在区间[]1,i i x x -上任意取点,如取中点等.3.当n →∞时,和式()()11nni i i i b af x f nξξ==-∆=∑∑无限接近某个常数的唯一确定性.它不依赖于对区间[],a b 的分割方法,也不依赖于在每个小区间[]1,i i x x -上取点的方式.即()baf x dx ⎰是一个客观上存在的仅仅依赖于积分上下限和被积函数的唯一确定的常数.同时它也与积分变量无关,即()()b baaf x dx f t dt =⎰⎰.4.数学思想上的划时代意义.产生定积分概念的"以直代曲""以匀速代变速"和"无限逼近"的数学思想,使人类在认识数学世界的观念上有了重大突破,在数学的发展史上具有重大意义.我们要仔细理解体会这种思想,可以说这才是我们在高中阶段学习定积分的真正目的.例如在求曲边梯形的面积的课本例1中,我们把区间[]0,1等分成n 个小区间,在每个小区间上"以直代曲"就将曲边问题转化为直边问题,随着n 的增大这些小区间的宽度越来越小,这时在每个小区间上直边形的面积已经和曲边形的面积非常接近,我们就可以以这些小直边形的面积之和近似代替曲边形的面积,而当n →∞时这些小直边形就几乎变成了线段,这时小直边形的面积几乎就等于小曲边形的面积,这无穷个几乎变成了线段的直边形的面积之和就是所求的曲边形的面积了.我们常说"线动成面",对课本例1,我们也可以这样形象的理解:就将小直边形的宽度变成零,使其成为线段,这时小直边形和小曲边形的就完全重合了,而将这些线段从0到1运动就形成了()2f x x =,1x =, x 轴所围成的曲边形,将这些线段的"面积"积累起来就是所求的曲边形的面积. 二、微积分基本定理的应用作变速直线运动的物体如果其运动方程是()S t ,那么该物体在时间区间[],a b 内通过的路程是()()S b S a -,另一方面由导数的物理意义,该物体在任意时刻的瞬时速度为()()'S t s t =,我们把该物体运动的时间区间[],a b 无限细分,在每个小时间段上,将其速度看作匀速,就能求出该物体在每个小时间段上通过的路程,将这无限个小时间段上的路程加起来,就是该物体在时间区间[],a b 上通过的路程,由定积分的定义可知,这个数值是()bas t dt ⎰.由此可知()()()()'b baaS t dt s t dt S b S a ==-⎰⎰.一般地有如下结论:如果()f x 是[],a b 上的连续函数,并且有()()F x f x '=,则()()()baf x dx F b F a =-⎰.这就是微积分基本定理,是微积分学最为辉煌的定理,是数学发展史的一个重要里程碑,利用这个定理可以很方便的计算定积分,其关键是找到一个函数使其导数等于被积函数,下面举例说明它在计算定积分上的应用.例1 计算定积分()1xx ee dx --⎰分析:()'x x e e =,()'x x e e --=-,故()'x x x x e e e e --+=-.解:()()11'112xxxx xx eedx eedx ee e e---⎡⎤-=+=+=+-⎣⎦⎰⎰.点评:关键是找()F x ,使()'x xF x e e -=-,可以通过求导运算求探求.例2 计算定积分220cos sin 22x x dx π⎛⎫- ⎪⎝⎭⎰.分析:被积函数比较复杂,我们可以先化简,再探求.由于222cos sin cos 2cos sin sin 1sin 222222x x x x x x x ⎛⎫-=-+=- ⎪⎝⎭,而'1x =,()cos 'sin x x =-,故()2cos '1sin cos sin 22x x x x x ⎛⎫+=-=- ⎪⎝⎭.解:()()[]2'2222000cos sin 1sin cos cos 2212x x dx x dx x x dx x x πππππ⎛⎫-=-=+=+ ⎪⎝⎭=-⎰⎰⎰点评:被积函数较为复杂时要先化简在求解. 掌握如下的定积分计算公式对解题是有帮助的.①111bm m ab x dx xa m +=+⎰(,1m Q m ∈≠-),②1ln bab dx x a x =⎰,③b x x a b e dx e a =⎰,④ln x n xm n a a dx ma =⎰,⑤cos sin bab xdx xa=⎰,⑥()sin cos babxdx x a=-⎰.例如 例3 计算定积分()1223x x dx -⎰.分析:先展开再利用上面的定积分公式. 解:()1223xx dx -⎰=()104269xxxdx -⋅+⎰=146920ln 4ln 6ln 9x x x ⎛⎫-⋅+ ⎪⎝⎭ 3108ln 4ln 6ln 9=-+. 点评:根据定积分公式结合定积分的运算性质是计算定积分的根本.从上面不难看出利用微积分基本定理计算定积分比用定义计算要方便的多,在实际解题中要注意对被积函数的化简展开以及有意识的利用定积分的三条运算性质,以起到化难为易的作用.三、定积分的三条性质根据定积分的定义不难得到定积分的三条性质 性质1.常数因子可提到积分号前,即:()()bbaakf x dx k f x dx =⎰⎰(k 为常数);性质2.代数和的积分等于积分的代数和: 即:()()()()bb bx aa a f x g x dx f x d g x dx ±=±⎡⎤⎣⎦⎰⎰⎰;性质3.(定积分的可加性)如果积分区间[],a b 被点c 分成两个小区间[],a c 与[],c b , 则:()()()bc daacf x dx f x dx f x dx =+⎰⎰⎰。
1.5.1 曲边梯形的面积 1.5.2 汽车行驶的路程学习目标 1.了解“以直代曲”、“以不变代变”的思想方法.2.会求曲边梯形的面积和汽车行驶的路程.知识点一曲边梯形的面积思考1 如何计算下列两图形的面积?答案①直接利用梯形面积公式求解.②转化为三角形和梯形求解.思考2 如图所示的图形与我们熟悉的“直边图形”有什么区别?答案已知图形是由直线x=1,y=0和曲线y=x2所围成的,可称为曲边梯形,曲边梯形的一条边为曲线段,而“直边图形”的所有边都是直线段.梳理曲边梯形的概念及面积求法(1)曲边梯形:由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的图形称为曲边梯形(如图①所示).(2)求曲边梯形面积的方法把区间[a,b]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形.对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值(如图②所示).(3)求曲边梯形面积的步骤:①分割;②近似代替;③求和;④取极限.知识点二 求变速直线运动的(位移)路程一般地,如果物体做变速直线运动,速度函数为v =v (t ),那么也可以采用分割、近似代替、求和、取极限的方法,求出它在a ≤t ≤b 内所作的位移s .1.求汽车行驶的路程时,分割的区间表示汽车行驶的路程.( × ) 2.当n 很大时,函数f (x )=x 2在区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上的值,只能用⎝ ⎛⎭⎪⎫i n 2近似代替.( × )3.利用求和符号计算∑i =14i (i +1)=40.( √ )类型一 求曲边梯形的面积例1 求由直线x =0,x =2,y =0与曲线y =x 2+1所围成的曲边梯形的面积.⎣⎢⎡⎦⎥⎤参考公式12+22+…+n 2=16n (n +1)(2n +1)考点 求曲边梯形的面积问题 题点 求曲线梯形的面积问题 解 令f (x )=x 2+1. (1)分割将区间[0,2]n 等分,分点依次为x 0=0,x 1=2n ,x 2=4n,…,x n -1=2(n -1)n,x n =2.第i 个区间为⎣⎢⎡⎦⎥⎤2i -2n ,2i n (i =1,2,…,n ),每个区间长度为Δx =2i n -2i -2n =2n .(2)近似代替、求和取ξi =2in(i =1,2,…,n ),S n =∑i =1nf ⎝ ⎛⎭⎪⎫2i n ·Δx =∑i =1n⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2i n 2+1·2n =8n 3∑i =1ni 2+2=8n3(12+22+…+n 2)+2=8n 3·n (n +1)(2n +1)6+2 =43⎝ ⎛⎭⎪⎫2+3n +1n 2+2.(3)取极限S =lim n →∞S n =lim n →∞ ⎣⎢⎡⎦⎥⎤43⎝ ⎛⎭⎪⎫2+3n +1n 2+2=143,即所求曲边梯形的面积为143.反思与感悟 求曲边梯形的面积 (1)思想:以直代曲.(2)步骤:分割→近似代替→求和→取极限. (3)关键:近似代替.(4)结果:分割越细,面积越精确. (5)求和时可用一些常见的求和公式,如 1+2+3+…+n =n (n +1)2,12+22+32+…+n 2=n (n +1)(2n +1)6,13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤n (n +1)22.跟踪训练1 求由直线x =0,x =1,y =0和曲线y =x 2所围成的图形的面积. 考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 解 (1)分割将区间[0,1]等分为n 个小区间:⎣⎢⎡⎦⎥⎤0,1n ,⎣⎢⎡⎦⎥⎤1n ,2n ,⎣⎢⎡⎦⎥⎤2n ,3n ,…,⎣⎢⎡⎦⎥⎤i -1n ,i n ,…,⎣⎢⎡⎦⎥⎤n -1n ,1,其中i =1,2,…,n ,每个小区间的长度为 Δx =i n -i -1n =1n.过各分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,它们的面积分别记作ΔS 1,ΔS 2,…,ΔS n . (2)近似代替 在区间⎣⎢⎡⎦⎥⎤i -1n ,i n (i =1,2,…,n )上,以i -1n 处的函数值⎝ ⎛⎭⎪⎫i -1n 2为高,小区间的长度Δx =1n 为底边的小矩形的面积作为第i 个小曲边梯形的面积,即ΔS i ≈⎝⎛⎭⎪⎫i -1n 2·1n.(3)求和∑i =1nΔS i ≈∑i =1n⎝⎛⎭⎪⎫i -1n 2·1n =0·1n +⎝ ⎛⎭⎪⎫1n 2·1n +⎝ ⎛⎭⎪⎫2n 2·1n +…+⎝ ⎛⎭⎪⎫n -1n 2·1n =1n 3[12+22+…+(n -1)2]=13-12n +16n 2. (4)取极限曲边梯形的面积S =lim n →∞ ⎝ ⎛⎭⎪⎫13-12n +16n 2=13.类型二 求变速运动的路程例2 当汽车以速度v 做匀速直线运动时,经过时间t 所行驶的路程s =vt .如果汽车做变速直线运动,在时刻t 的速度为v (t )=t 2+2(单位:km/h),那么它在1≤t ≤2(单位:h)这段时间行驶的路程是多少? 考点 变速运动的路程问题 题点 变速运动的路程问题解 将区间[1,2]等分成n 个小区间, 第i 个小区间为⎣⎢⎡⎦⎥⎤1+i -1n ,1+in . 所以Δs i =v ⎝⎛⎭⎪⎫1+i -1n ·1n. s n =∑ni =1v ⎝ ⎛⎭⎪⎫1+i -1n 1n =1n ∑n i =1 ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+i -1n 2+2 =1n ∑ni =1 ⎣⎢⎡⎦⎥⎤(i -1)2n 2+2(i -1)n +3 =1n ⎩⎨⎧ 3n +1n2[02+12+22+…+(n -1)2]+⎭⎬⎫1n[0+2+4+6+…+2(n -1)]=3+(n -1)(2n -1)6n 2+n -1n. s =lim n →∞ s n =lim n →∞ ⎣⎢⎡⎦⎥⎤3+(n -1)(2n -1)6n 2+n -1n =133. 所以这段时间行驶的路程为133km. 引申探究本例中求小曲边梯形面积时若用另一端点值作为高,试求出行驶路程,比较两次求出的结果是否一样?解 将区间[1,2]等分成n 个小区间,第i 个小区间为⎣⎢⎡⎦⎥⎤1+i -1n ,1+in . 所以Δs i =v ⎝⎛⎭⎪⎫1+i n ·1n.s n =∑ni =1v ⎝ ⎛⎭⎪⎫1+i n 1n=3+1n 3[12+22+…+(n -1)2+n 2]+1n2[2+4+6+…+2(n -1)+2n ]=3+(n +1)(2n +1)6n 2+n +1n. s =lim n →∞ s n =lim n →∞⎣⎢⎡⎦⎥⎤3+(n +1)(2n +1)6n 2+(n +1)n =133. 所以这段时间行驶的路程为133km. 所以分别用小区间的两个端点求出的行驶路程是相同的.反思与感悟 求变速直线运动路程的问题,方法和步骤类似于求曲边梯形的面积,用“以直代曲”“逼近”的思想求解.求解过程为:分割、近似代替、求和、取极限.应特别注意变速直线运动的时间区间.跟踪训练2 一辆汽车在直线形公路上做变速行驶,汽车在时刻t 的速度为v (t )=-t 2+5(单位:km/h),试计算这辆汽车在0≤t ≤2(单位:h)这段时间内行驶的路程s (单位:km). 考点 变速运动的路程问题 题点 变速运动的路程问题解 (1)分割:在区间[0,2]上等间隔插入n -1个点,将区间分成n 个小区间,记第i 个小区间为⎣⎢⎡⎦⎥⎤2(i -1)n ,2i n (i =1,2,…,n ),Δt =2n .则汽车在时间段⎣⎢⎡⎦⎥⎤0,2n ,⎣⎢⎡⎦⎥⎤2n ,4n ,⎣⎢⎡⎦⎥⎤2(n -1)n ,2n n 上行驶的路程分别记为:Δs 1,Δs 2,…,Δs i ,…,Δs n ,有s n =∑i =1nΔs i .(2)近似代替:取ξi =2in(i =1,2,…,n ),Δs i ≈v ⎝ ⎛⎭⎪⎫2i n ·Δt =⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫2i n2+5·2n=-4i 2n 2·2n+10n(i =1,2,…,n ).(3)求和:s n =∑i =1nΔs i =∑i =1n⎝⎛⎭⎪⎫-4i 2n 2·2n +10n=-8·13⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +10.(4)取极限:s =lim n →∞s n =lim n →∞ ⎣⎢⎡⎦⎥⎤-8·13⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +10=223.1.把区间[1,3] n 等分,所得n 个小区间的长度均为( ) A.1n B.2n C.3n D.12n 考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 B解析 区间[1,3]的长度为2,故n 等分后,每个小区间的长度均为2n.2.在“近似代替”中,函数f (x )在区间[x i ,x i +1]上的近似值等于( ) A .只能是左端点的函数值f (x i ) B .只能是右端点的函数值f (x i +1)C .可以是该区间内任一点的函数值f (ξi )(ξi ∈[x i ,x i +1])D .以上答案均正确考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 C3.一物体沿直线运动,其速度v (t )=t ,这个物体在t =0到t =1这段时间内所走的路程为( )A.13B.12 C .1 D.32 考点 变速运动的路程问题 题点 变速运动的路程问题 答案 B4.∑i =1ni n=________.考点 求曲边梯形的面积问题 题点 求和符号的表示答案n +12解析∑i =1ni n =1n (1+2+…+n )=1n ·n (n +1)2=n +12. 5.求由曲线y =12x 2与直线x =1,x =2,y =0所围成的平面图形面积时,把区间5等分,则面积的近似值(取每个小区间的左端点)是________. 考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 1.02解析 将区间5等分所得的小区间为⎣⎢⎡⎦⎥⎤1,65,⎣⎢⎡⎦⎥⎤65,75,⎣⎢⎡⎦⎥⎤75,85,⎣⎢⎡⎦⎥⎤85,95,⎣⎢⎡⎦⎥⎤95,2, 于是所求平面图形的面积近似等于110⎝ ⎛⎭⎪⎫1+3625+4925+6425+8125=110×25525=1.02.求曲边梯形面积和汽车行驶的路程的步骤 (1)分割:n 等分区间[a ,b ]; (2)近似代替:取点ξi ∈[x i -1,x i ];(3)求和:∑i =1nf (ξi )·b -an; (4)取极限:s =lim n →∞∑i =1nf (ξi )·b -an. “近似代替”也可以用较大的矩形来代替曲边梯形,为了计算方便,可以取区间上的一些特殊点,如区间的端点(或中点).一、选择题1.和式∑i =15(x i +1)可表示为( )A .(x 1+1)+(x 5+1)B .x 1+x 2+x 3+x 4+x 5+1C .x 1+x 2+x 3+x 4+x 5+5D .(x 1+1)(x 2+1)…(x 5+1) 考点 求曲边梯形的面积问题 题点 求和符号的表示 答案 C解析∑i =15(x i +1)=(x 1+1)+(x 2+1)+(x 3+1)+(x 4+1)+(x 5+1)=x 1+x 2+x 3+x 4+x 5+5.2.在求由x =a ,x =b (a <b ),y =f (x ) (f (x )≥0)及y =0围成的曲边梯形的面积S 时,在区间[a ,b ]上等间隔地插入(n -1)个分点,分别过这些分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,下列说法中正确的个数是( ) ①n 个小曲边梯形的面积和等于S ; ②n 个小曲边梯形的面积和小于S ; ③n 个小曲边梯形的面积和大于S ;④n 个小曲边梯形的面积和与S 之间的大小关系无法确定. A .1 B .2 C .3D .4考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 A解析 n 个小曲边梯形是所给曲边梯形等距离分割得到的,因此其面积和为S . ∴①正确,②③④错误.3.在求由直线x =0,x =2,y =0与曲线y =x 2所围成的曲边三角形的面积时,把区间[0,2]等分成n 个小区间,则第i 个小区间是( ) A.⎣⎢⎡⎦⎥⎤i -1n ,i nB.⎣⎢⎡⎦⎥⎤i n ,i +1n C.⎣⎢⎡⎦⎥⎤2(i -1)n ,2i n D.⎣⎢⎡⎦⎥⎤2i n,2(i +1)n考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 C解析 将区间[0,2]等分为n 个小区间后,每个小区间的长度为2n,第i 个小区间为⎣⎢⎡⎦⎥⎤2(i -1)n ,2i n .4.在求由曲线y =1x与直线x =1,x =3,y =0所围成图形的面积时,若将区间n 等分,并用每个区间的右端点的函数值近似代替每个小曲边梯形的高,则第i 个小曲边梯形的面积ΔS i 约等于( ) A.2n +2i B.2n +2i -2C.2n (n +2i )D.1n +2i考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 A解析 每个小区间的长度为2n,第i 个小曲边梯形的高为11+2i n, ∴第i 个小曲边梯形的面积为2n ×11+2i n=2n +2i .5.在等分区间的情况下f (x )=11+x 2(x ∈[0,2])及x 轴所围成的曲边梯形面积和式的极限形式正确的是( )A.lim n →∞ ∑ni =1 ⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫i n 2·2n B.lim n →∞ ∑n i =1 ⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫2i n 2·2n C.lim n →∞ ∑ni =1⎝ ⎛⎭⎪⎫11+i 2·1nD.lim n →∞ ∑ni =1 ⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫i n 2·n 考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 B解析 ∵Δx =2-0n =2n,∴和式为∑ni =1⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫2i n 2·2n .故选B.6.对于由直线x =1,y =0和曲线y =x 3所围成的曲边三角形,把区间3等分,则曲边三角形面积的近似值(取每个区间的左端点)是( ) A.130 B.125 C.127D.19考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 D解析 将区间[0,1]三等分为⎣⎢⎡⎦⎥⎤0,13,⎣⎢⎡⎦⎥⎤13,23,⎣⎢⎡⎦⎥⎤23,1,各小矩形的面积和为S =03×13+⎝ ⎛⎭⎪⎫133×13+⎝ ⎛⎭⎪⎫233×13=19. 7.设函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,把区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式S n =∑i =1nf(ξi )Δx (其中Δx 为小区间的长度),那么S n 的大小( ) A .与f (x )和区间[a ,b ]有关,与分点的个数n 和ξi 的取法无关 B .与f (x )和区间[a ,b ]的分点的个数n 有关,与ξi 的取法无关 C .与f (x )和区间[a ,b ]的分点的个数n ,ξi 的取法都有关 D .与f (x )和区间[a ,b ]的ξi 的取法有关,与分点的个数n 无关 考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 C解析 用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 把区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式S n =∑i =1nf (ξi )·Δx .若对和式求极限,则可以得到函数y =f (x )的图象与直线x =a ,x =b ,y =0围成的区域的面积,在求极限之前,和式的大小与函数式、分点的个数和变量的取法都有关.8.lim n →∞∑ni =1⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫15i n ·⎝ ⎛⎭⎪⎫5n 的含义可以是( )A .求由直线x =1,x =5,y =0,y =3x 围成的图形的面积B .求由直线x =0,x =1,y =0,y =15x 围成的图形的面积C .求由直线x =0,x =5,y =0,y =3x 围成的图形的面积D .求由直线x =0,x =5,y =0及曲线y =5x围成的图形的面积 考点 求曲边梯形的面积问题题点 求曲边梯形的面积问题答案 C解析 将区间[0,5]n 等分,则每一区间的长度为5n ,各区间右端点对应函数值为y =15i n, 因此∑i =1n⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫15i n ·⎝ ⎛⎭⎪⎫5n 可以表示由直线x =0,x =5,y =0和y =3x 围成的图形的面积的近似值.9.若直线y =2x +1与直线x =0,x =m ,y =0围成图形的面积为6,则正数m 等于( )A .1B .3C .2D .4 考点 求曲边梯形的面积问题题点 由曲边梯形的面积求参数答案 C解析 将区间[0,m ]n 等分,每个区间长为m n ,区间左端点函数值y =2·mi n +1=2mi +n n, 作和S n =∑i =1n ⎝⎛⎭⎪⎫2mi +n n ·m n=m +m n ·2m n(1+2+3+…+n ) =m +2m 2n 2·n (n +1)2 =m +m 2(n +1)n, ∵S =lim n →∞ ⎣⎢⎡⎦⎥⎤m +m 2(n +1)n =6, ∴m =2.故选C.二、填空题10.在区间[0,8]上插入9个等分点后,则所分的小区间长度为________,第5个小区间是________.考点 求曲边梯形的面积问题题点 求曲边梯形的面积问题答案 45 ⎣⎢⎡⎦⎥⎤165,4 解析 在区间[0,8]上插入9个等分点后,把区间[0,8]10等分,每个小区间的长度为810=45,第5个小区间为⎣⎢⎡⎦⎥⎤165,4. 11.已知某物体运动的速度v =t ,t ∈[0,10],若把区间10等分,取每个小区间右端点处的函数值为近似小矩形的高,则物体运动的路程近似值为________.考点 变速运动的路程问题题点 变速运动的路程问题答案 55解析 ∵把区间[0,10]10等分后,每个小区间右端点处的函数值为n (n =1,2,…,10),每个小区间的长度为1.∴物体运动的路程近似值s =1×(1+2+…+10)=55.12.当n 很大时,下列可以代替函数f (x )=x 2在区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上的值有________个. ①f ⎝ ⎛⎭⎪⎫1n ;②f ⎝ ⎛⎭⎪⎫i n ;③f ⎝ ⎛⎭⎪⎫i -1n ;④f ⎝ ⎛⎭⎪⎫i n -12n . 考点 求曲边梯形的面积问题题点 求曲边梯形的面积问题答案 3解析 因为当n 很大时,区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上的任意的取值都可以代替,又因为1n ∉⎣⎢⎡⎦⎥⎤i -1n ,i n ,i -1n ∈⎣⎢⎡⎦⎥⎤i -1n,i n ,i n ∈⎣⎢⎡⎦⎥⎤i -1n ,i n ,i n -12n ∈⎣⎢⎡⎦⎥⎤i -1n ,i n ,故能代替的有②③④. 三、解答题13.求由直线x =0,x =1,y =0和曲线y =x 2+2x 围成的图形的面积.考点 求曲边梯形的面积问题题点 求曲边梯形的面积问题解 将区间[0,1]n 等分,每个区间长度为1n ,区间右端点函数值y =⎝ ⎛⎭⎪⎫i n 2+2·i n =i 2n 2+2i n. 作和S n =∑i =1n ⎝ ⎛⎭⎪⎫i 2n 2+2i n 1n =∑i =1n ⎝ ⎛⎭⎪⎫i 2n 3+2i n 2 =1n 3∑i =1n i 2+2n 2∑i =1n i =1n 3·16n (n +1)(2n +1)+2n 2·n (n +1)2=(n +1)(2n +1)6n 2+n +1n =8n 2+9n +16n 2,∴所求面积S =lim n →∞ 8n 2+9n +16n 2 =lim n →∞ ⎝ ⎛⎭⎪⎫43+32n +16n 2=43. 四、探究与拓展14.设函数f (x )的图象与直线x =a ,x =b 及x 轴所围成图形的面积称为函数f (x )在[a ,b ]上的面积.已知函数y =sin nx 在⎣⎢⎡⎦⎥⎤0,πn (n ∈N *)上的面积为2n ,则y =sin 3x 在⎣⎢⎡⎦⎥⎤0,2π3上的面积为________.考点 求曲边梯形的面积问题题点 求曲边梯形的面积问题答案 43解析 由于y =sin nx 在⎣⎢⎡⎦⎥⎤0,πn (n ∈N *)上的面积为2n, 则y =sin 3x 在⎣⎢⎡⎦⎥⎤0,π3上的面积为23. 而y =sin 3x 的周期为2π3, 所以y =sin 3x 在⎣⎢⎡⎦⎥⎤0,2π3上的面积为23×2=43. 15.有一辆汽车在笔直的公路上变速行驶,在时刻t 的速度为v (t )=3t 2+2(单位:km/h),那么该汽车在0≤t ≤2(单位:h)这段时间内行驶的路程s (单位:km)是多少?考点 变速运动的路程问题题点 变速运动的路程问题解 (1)分割在时间区间[0,2]上等间隔地插入n -1个分点,将它分成n 个小区间,记第i 个小区间为⎣⎢⎡⎦⎥⎤2(i -1)n ,2i n (i =1,2,…,n ),其长度为Δt =2i n -2(i -1)n =2n .每个时间段上行驶的路程记为Δs i (i =1,2,…,n ),则显然有s =∑i =1nΔs i .(2)近似代替取ξi =2i n(i =1,2,…,n ),用小矩形的面积Δs ′i 近似地代替Δs i ,于是 Δs i ≈Δs ′i =v ⎝ ⎛⎭⎪⎫2i n ·Δt =⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫2i n 2+2·2n=24i 2n 3+4n (i =1,2,…,n ).(3)求和s n =∑i =1n Δs ′i =∑i =1n ⎝ ⎛⎭⎪⎫24i 2n 3+4n =24n 3(12+22+…+n 2)+4=24n 3·n (n +1)(2n +1)6+4=8⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +4.(4)取极限s =lim n →∞ s n =lim n →∞ ⎣⎢⎡⎦⎥⎤8⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +4=8+4=12. 所以这段时间内行驶的路程为12 km.。
1.5.1~1.5.2 曲边梯形的面积汽车行驶的路程问题1:曲边梯形与“直边图形”的主要区别是什么?提示:前者有一边是曲线段,而“直边图形”的所有边都是直线段.问题2:能否用求直边图形面积的方法求曲边梯形的面积?提示:不能.问题3:当曲边梯形的高很小时,是否可用“直边图形”的面积近似代替曲边梯形的面积?提示:可以.1.连续函数如果函数y=f(x)在某个区间I上的图象是一条连续不断的曲线,那么就把它称为区间I上的连续函数.2.曲边梯形的面积(1)曲边梯形:由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的图形称为曲边梯形(如图甲).(2)求曲边梯形面积的方法与步骤:①分割:把区间分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形(如图乙);②近似代替:对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值;③求和:把以近似代替得到的每个小曲边梯形面积的近似值求和;④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积.“以直代曲”的思想曲边梯形的边中有曲线,不方便直接求出其面积,把曲边梯形分割成一系列的小曲边梯形,再用小矩形近似代替之,“以直代曲”求和,无限“细分”去“逼近”面积的精确值,这种极限的思想是学习定积分的一种很重要的思想.问题:利用“以直代曲”的思想可以求物体做变速直线运动的路程吗? 提示:可以.求变速直线运动的路程如果物体做变速直线运动,速度函数为v =v (t ),那么它在时间t 所在的区间内的路程(或位移)也可以运用①分割;②近似代替;③求和;④取极限的方法求得.变速直线运动的路程与曲边梯形的面积间的关系与求曲边梯形面积类似,我们采取“以不变代变”的方法,把求变速直线运动的路程问题化归为求匀速直线运动的路程问题.求由直线⎝ ⎛⎭⎪⎫提示:13+23+…+n 3=⎣⎢⎡⎦⎥⎤12n n +2(1)分割如右图所示,用分点n +1n ,n +2n ,…,n +n -n,把区间等分成n 个小区间⎣⎢⎡⎦⎥⎤1,n +1n ,⎣⎢⎡⎦⎥⎤n +1n ,n +2n ,…,n +i -1n ,n +in,…, ⎣⎢⎡⎦⎥⎤n +n -n ,2,每个小区间的长度为Δx =n +i n -n +i -1n =1n(i =1,2,3,…,n ).过各分点作x 轴的垂线,把曲边梯形ABCD 分割成n 个小曲边梯形,它们的面积分别记作ΔS 1,ΔS 2,…,ΔS n .(2)近似代替各小区间的左端点为ξi ,取以点ξi 的纵坐标ξ3i 为一边,以小区间长Δx =1n为其邻边的小矩形面积,近似代替小曲边梯形面积.第i 个小曲边梯形面积,可以近似地表示为ΔS i ≈ξ3i ·Δx =⎝⎛⎭⎪⎫n +i -1n 3·1n(i =1,2,3,…,n ).(3)求和因为每一个小矩形的面积都可以作为相应的小曲边梯形面积的近似值,所以n 个小矩形面积的和就是曲边梯形ABCD 面积S 的近似值,即S =∑i =1nΔS i ≈∑i =1n⎝⎛⎭⎪⎫n +i -1n 3 ·1n .(4)取极限当分点数目越多,即Δx 越小时,和式的值就越接近曲边梯形ABCD 的面积S .因此n →∞,即Δx →0时,和式的极限就是所求的曲边梯形ABCD 的面积.因为∑i =1n⎝⎛⎭⎪⎫n +i -1n 3·1n=1n 4∑i =1n(n +i -1)3=1n 4∑i =1n[(n -1)3+3(n -1)2i +3(n -1)i 2+i 3] =1n4,所以S =li m n →∞∑i =1n⎝⎛⎭⎪⎫n +i -1n 3·1n=1+32+1+14=154.求曲边梯形的面积应关注两点(1)根据步骤“分割、近似代替、求和、取极限”求曲边梯形的面积S ,实质是用n 个小矩形面积的和S n 来逼近,S n 的极限即为所求曲边梯形的面积S .求小矩形面积时,一般选取函数在相应小区间的左端点值.(2)分割实现了把求不规则的图形的面积化归为计算矩形面积,但这是近似值,为逼近精确值,分割得越细,近似程度就会越好,无限细分就无限逼近精确值.求由直线x =1,x =2,y =0与曲线y =2x 2所围成的曲边梯形的面积. 解:(1)分割在区间上等间隔地插入n -1个分点,把区间等分成n 个小区间⎣⎢⎡⎦⎥⎤n +i -1n ,n +i n (i =1,2,…,n ),每个小区间的长度为Δx =1n,每个小区间内曲边梯形的面积记为ΔS i (i =1,2,…,n ),显然S =∑i =1nΔS i .(2)近似代替 记f (x )=2x 2,取ξi =n +i -1n (i =1,2,…,n ),于是ΔS i ≈ΔS i ′=f ⎝ ⎛⎭⎪⎫n +i -1n ·Δx=2⎝⎛⎭⎪⎫n +i -1n 2·1n(i =1,2,…,n ).(3)求和S n =∑i =1nΔS i ′=∑i =1n2⎝⎛⎭⎪⎫n +i -1n 2·1n=2n 1+⎝ ⎛⎭⎪⎫1+1n 2+⎝ ⎛⎭⎪⎫1+2n 2+…+1+n -1n2=2nn +2n +1n 2=2n ⎣⎢⎡⎦⎥⎤n +2n·n n -2+1n2·n -nn -6=2+2⎝ ⎛⎭⎪⎫1-1n +13⎝ ⎛⎭⎪⎫1-1n ⎝ ⎛⎭⎪⎫2-1n . 从而得到S 的近似值S ≈S n . (4)取极限S =li m n →∞ S n =li m n →∞ 2+2⎝ ⎛⎭⎪⎫1-1n +131-1n ·⎝ ⎛⎭⎪⎫2-1n =143.3t 2+2(单位:km/h),那么该汽车在0≤t ≤2(单位:h)这段时间内行驶的路程s (单位:km)是多少?(1)分割在时间区间上等间隔地插入n -1个分点,将它等分成n 个小区间.记第i 个小区间为⎣⎢⎡⎦⎥⎤i -n,2i n (i =1,2,…,n ),其长度为Δt =2i n-i -n=2n.每个时间段上行驶的路程记为Δs i (i =1,2,…,n ),则显然有s =∑i =1nΔs i .(2)近似代替取ξi =2i n(i =1,2,…,n ).于是Δs i ≈Δs i ′=v ⎝ ⎛⎭⎪⎫2i n ·Δt =⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫2i n 2+2·2n=24i 2n3+4n(i =1,2,…,n ). (3)求和s n =∑i =1nΔs i ′=∑i =1n⎝⎛⎭⎪⎫24i 2n 3+4n =24n 3(12+22+…+n 2)+4=24n3·nn +n +6+4=8⎝ ⎛⎭⎪⎫1+1n 1+12n+4.从而得到s 的近似值s n =8⎝ ⎛⎭⎪⎫1+1n 1+12n +4.(4)取极限s =li m n →∞ s n =li m n →∞ ⎣⎢⎡⎦⎥⎤8⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +4=8+4=12,所以这段时间内行驶的路程为12 km.变速运动的路程的求法求变速直线运动路程的问题,方法和步骤类似于求曲边梯形的面积,用“以直代曲”“逼近”的思想求解.求解过程为分割、近似代替、求和、取极限.应特别注意变速直线运动的时间区间.已知自由落体的运动速度v =gt ,求在时间区间内物体下落的距离. 解:(1)分割将时间区间分成n 等份. 把时间分成n 个小区间⎣⎢⎡⎦⎥⎤i -1n t ,it n (i =1,2,…,n ),每个小区间所表示的时间段Δt=it n -i -1n t =tn,在各小区间物体下落的距离记作Δs i (i =1,2,…,n ).(2)近似代替在每个小区间上以匀速运动的路程近似代替变速运动的路程. 在⎣⎢⎡⎦⎥⎤i -1n t ,it n 上任取一时刻ξi (i =1,2,…,n ),可取ξi 使v (ξi)=g ·i -n t近似代替第i 个小区间上的速度,因此在每个小区间上自由落体Δt =t n内所经过的距离可近似表示为Δs i =g ·i -1n t ·tn(i =1,2,…,n ). (3)求和s n =∑i =1n Δs i =∑i =1ng ·i -1n t ·tn=gt 2n2 =12gt 2⎝ ⎛⎭⎪⎫1-1n . (4)取极限s =lim n →∞ 12gt 2⎝ ⎛⎭⎪⎫1-1n =12gt 2.4.搞错区间端点致误求由抛物线y =2x 2与直线x =0,x =t (t >0),y =0所围成的曲边梯形的面积时,将区间等分成n 个小区间,则第i -1个区间为( )A.⎣⎢⎡⎦⎥⎤i -1n ,i nB.⎣⎢⎡⎦⎥⎤i n ,i +1n C.⎣⎢⎡⎦⎥⎤t i -n ,tin D.⎣⎢⎡⎦⎥⎤t i -n ,t i -n每个小区间长度为tn,故第i -1个区间的左端点为0+(i -2)×t n =t i -n,右端点为t i -n+t n =t i -n.D1.解决本题易错误地认为区间左端为t i -n,从而误选C.2.在将区间等分成n 个小区间时,其第1个小区间的左端点为0,第2个小区间的左端点为1n ,…,依次类推,第i 个小区间的左端点为i -1n.在求直线x =0,x =2,y =0与曲线y =x 2所围成的曲边三角形的面积时,把区间等分成n 个小区间,则第i 个小区间是( )A.⎣⎢⎡⎦⎥⎤i -1n ,i nB.⎣⎢⎡⎦⎥⎤i n ,i +1n C.⎣⎢⎡⎦⎥⎤i -n,2i nD.⎣⎢⎡⎦⎥⎤2i n,i +n解析:选C 将区间等分为n 个小区间后,每个小区间的长度为2n,第i 个小区间为⎣⎢⎡⎦⎥⎤i -n,2i n.1.在“近似代替”中,函数f (x )在区间上的近似值( ) A .只能是左端点的函数值f (x i ) B .只能是右端点的函数值f (x i +1)C .可以是该区间内任一点的函数值f (ξi )(ξi ∈)D .以上答案均正确解析:选C 作近似计算时,Δx =x i +1-x i 很小,误差可忽略,所以f (x )可以是上任一值f (ξi ).2.已知汽车在时间内以速度v =v (t )做直线运动,则下列说法不正确的是( ) A .当v =a (常数)时,汽车做匀速直线运动,这时路程s =vt 1B .当v =at +b (a ,b 为常数)时,汽车做匀速直线运动,这时路程s =bt 1+12at 21C .当v =at +b (a ≠0,a ,b 为常数)时,汽车做匀变速直线运动,这时路程s =bt 1+12at 21D .当v =at 2+bt +c (a ≠0,a ,b ,c 为常数)时,汽车做变速直线运动,这时路程s =li m n →∞s n =li m n →∞∑i =1n v (ξi )Δt解析:选B 对于v =at +b ,当a =0时为匀速直线运动,当a ≠0时为匀变速直线运动,其中a >0时为匀加速直线运动,a <0时为匀减速直线运动.对于v =at 2+bt +c (a ≠0)及v =v (t )是t 的三次、四次函数时,汽车做的都是变速(即变加速或变减速)直线运动,故B 是错误的.3.在计算由曲线y =-x 2以及直线x =-1,x =1,y =0所围成的图形面积时,若将区间 n 等分,则每个小区间的长度为________.解析:每个小区间长度为1--n=2n.答案:2n4.求由抛物线f (x )=x 2,直线x =1以及x 轴所围成的平面图形的面积时,若将区间等分成5个区间,如右图所示,以小区间中点的纵坐标为高,所有小矩形的面积之和为________.解析:由题意得S =(0.12+0.32+0.52+0.72+0.92)×0.2=0.33.答案:0.335.利用分割、近似代替、求和、取极限的办法求函数y =1+x ,x =1,x =2的图象与x 轴围成梯形的面积,并用梯形的面积公式加以验证.解:f (x )=1+x 在区间上连续,将区间分成n 等份,则每个区间的长度为Δx i =1n,在=⎣⎢⎡⎦⎥⎤1+i -1n ,1+i n 上取ξi =x i -1=1+i -1n(i =1,2,3,…,n ),于是f (ξi )=f (x i -1)=1+1+i -1n =2+i -1n, 从而S n =∑i =1nf (ξi )Δx i =∑i =1n⎝ ⎛⎭⎪⎫2+i -1n ·1n =∑i =1n⎝ ⎛⎭⎪⎫2n +i -1n 2=2n ·n +1n 2=2+1n2·n n -2=2+n -2n =52-12n.则S =li m n →∞S n=li m n →∞ ⎝ ⎛⎭⎪⎫52-12n =52.如下进行验证:如右图所示,由梯形的面积公式得S =12×(2+3)×1=52.一、选择题1.下列函数在其定义域上不是连续函数的是( ) A .y =x 2B .y =|x |C .y =xD .y =1x解析:选D 由于函数y =1x的定义域为(-∞,0)∪(0,+∞),故其图象不是连续不断的曲线.2.在求由x =a ,x =b (a <b ),y =f (x )(f (x )≥0)及y =0围成的曲边梯形的面积S 时,在区间上等间隔地插入n -1个分点,分别过这些分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,下列说法中正确的是( )A .n 个小曲边梯形的面积和等于SB .n 个小曲边梯形的面积和小于SC .n 个小曲边梯形的面积和大于SD .n 个小曲边梯形的面积和与S 之间的大小关系无法确定解析:选A n 个小曲边梯形是所给曲边梯形等距离分割得到的,因此其面积和为S .3.和式∑i =15(y i +1)可表示为( )A .(y 1+1)+(y 5+1)B .y 1+y 2+y 3+y 4+y 5+1C .y 1+y 2+y 3+y 4+y 5+5D .(y 1+1)(y 2+1)…(y 5+1)解析:选C ∑i =15(y i +1)=(y 1+1)+(y 2+1)+(y 3+1)+(y 4+1)+(y 5+1)=y 1+y 2+y 3+y 4+y 5+5.4.对于由直线x =1,y =0和曲线y =x 3所围成的曲边三角形,把区间3等分,则曲边三角形面积的近似值(取每个区间的左端点)是( )A.19B.125C.127 D.130解析:选A 将区间三等分为⎣⎢⎡⎦⎥⎤0,13,⎣⎢⎡⎦⎥⎤13,23,⎣⎢⎡⎦⎥⎤23,1,各小矩形的面积和为s 1=03·13+⎝ ⎛⎭⎪⎫133·13+⎝ ⎛⎭⎪⎫233·13=19. 5.若做变速直线运动的物体v (t )=t 2在0≤t ≤a 内经过的路程为9,则a 的值为( ) A .1 B .2 C .3 D .4解析:选C 将区间 n 等分,记第i 个区间为⎣⎢⎡⎦⎥⎤a i -n ,ain (i =1,2,…,n ),此区间长为a n ,用小矩形面积⎝ ⎛⎭⎪⎫ai n 2·a n 近似代替相应的小曲边梯形的面积,则S n =∑i =1n⎝⎛⎭⎪⎫ai n 2·an =a 3n 3·(12+22+…+n 2)=a 33·⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n ,依题意得lim n →∞ a 33⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n =9,∴a 33=9,解得a =3.二、填空题6.已知某物体运动的速度为v =t ,t ∈,若把区间10等分,取每个小区间右端点处的函数值为近似小矩形的高,则物体运动的路程近似值为________.解析:∵把区间10等分后,每个小区间右端点处的函数值为n (n =1,2,…,10),每个小区间的长度为1,∴物体运动的路程近似值s =1×(1+2+…+10)=55. 答案:557.物体运动的速度和时间的函数关系式为v (t )=2t (t 的单位:h ;v 的单位:km/h),近似计算在区间内物体运动的路程时,把区间6等分,则过剩近似值(每个ξi 均取值为小区间的右端点)为________km.解析:以小区间右端点时的速度作为小区间的平均速度,可得过剩近似值为s =(2×3+2×4+2×5+2×6+2×7+2×8)×1=66 (km).答案:668.直线x =0,x =2,y =0与曲线y =x 2+1围成的曲边梯形,将区间5等分,按照区间左端点和右端点估计梯形面积分别为________、________.解析:将区间5等分为⎣⎢⎡⎦⎥⎤0,25,⎣⎢⎡⎦⎥⎤25,45,⎣⎢⎡⎦⎥⎤45,65,⎣⎢⎡⎦⎥⎤65,85,⎣⎢⎡⎦⎥⎤85,2,以小区间左端点对应的函数值为高,得S 1=1+⎝ ⎛⎭⎪⎫252+1+⎝ ⎛⎭⎪⎫452+1+⎝ ⎛⎭⎪⎫652+1+⎝ ⎛⎭⎪⎫852+1×25=3.92,同理S 2=⎝ ⎛⎭⎪⎫252+1+⎝ ⎛⎭⎪⎫452+1+⎝ ⎛⎭⎪⎫652+1+⎝ ⎛⎭⎪⎫852+1+22+1×25=5.52.答案:3.92 5.52 三、解答题9.汽车行驶的速度为v =t 2,求汽车在0≤t ≤1这段时间内行驶的路程s . 解:(1)分割将区间等分为n 个小区间⎣⎢⎡⎦⎥⎤0,1n ,⎣⎢⎡⎦⎥⎤1n ,2n ,…,⎣⎢⎡⎦⎥⎤i -1n ,i n ,…,⎣⎢⎡⎦⎥⎤n -1n ,1,每个小区间的长度为Δt =i n -i -1n =1n . (2)近似代替在区间⎣⎢⎡⎦⎥⎤i -1n ,i n (i =1,2,…,n )上,汽车近似地看作以时刻i -1n 处的速度v ⎝ ⎛⎭⎪⎫i -1n =⎝ ⎛⎭⎪⎫i -1n 2做匀速行驶,则在此区间上汽车行驶的路程为⎝ ⎛⎭⎪⎫i -1n 2·1n . (3)求和在所有小区间上,汽车行驶的路程和为sn =02×1n +⎝ ⎛⎭⎪⎫1n 2×1n +⎝ ⎛⎭⎪⎫2n 2×1n +…+⎝ ⎛⎭⎪⎫n -1n 2×1n =1n 3=1n 3×n -n n -6=13⎝⎛⎭⎪⎫1-1n ⎝ ⎛⎭⎪⎫1-12n . (4)取极限汽车行驶的路程 s =li m n →∞s n =li m n →∞13⎝ ⎛⎭⎪⎫1-1n ⎝ ⎛⎭⎪⎫1-12n =13.10.求由直线x =0,x =1,y =0和曲线y =x (x -1)围成的图形的面积.解:(1)分割将曲边梯形分割成n 个小曲边梯形,在区间上等间隔地插入n -1个点,将区间等分成n 个小区间:⎣⎢⎡⎦⎥⎤0,1n ,⎣⎢⎡⎦⎥⎤1n ,2n ,…,⎣⎢⎡⎦⎥⎤n -1n ,1, 记第i 个区间为⎣⎢⎡⎦⎥⎤i -1n ,i n (i =1,2,…,n ),其长度为 Δx =i n -i -n =1n. 把每个小曲边梯形的面积记为ΔS 1,ΔS 2,…,ΔS n .(2)近似代替把每个小曲边梯形近似地看作矩形,可得第i 个小曲边梯形的面积的近似值 ΔS i ≈⎪⎪⎪⎪⎪⎪f ⎝⎛⎭⎪⎫i -1n ·Δx =⎪⎪⎪⎪⎪⎪⎣⎢⎡⎦⎥⎤i -n ·⎝ ⎛⎭⎪⎫i -1n -1·1n=i -1n 2·⎝ ⎛⎭⎪⎫1-i -1n (i =1,2,…,n ).(3)求和求出这n 个小矩形的面积的和S n =∑i =1n⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫i -1n ·Δx=∑i =1ni -1n 2·⎝ ⎛⎭⎪⎫1-i -1n=16·⎝ ⎛⎭⎪⎫1-1n 2,从而得到所求图形面积的近似值S ≈16⎝ ⎛⎭⎪⎫1-1n 2.(4)取极限S =lim n →∞ 16·⎝ ⎛⎭⎪⎫1-1n 2=16.所以由直线x =0,x =1,y =0和曲线y =x (x -1)围成的图形的面积为16.。
1.5.1~1.5.2 曲边梯形的面积汽车行驶的路程问题1:曲边梯形与“直边图形”的主要区别是什么?提示:前者有一边是曲线段,而“直边图形”的所有边都是直线段.问题2:能否用求直边图形面积的方法求曲边梯形的面积?提示:不能.问题3:当曲边梯形的高很小时,是否可用“直边图形”的面积近似代替曲边梯形的面积?提示:可以.1.连续函数如果函数y=f(x)在某个区间I上的图象是一条连续不断的曲线,那么就把它称为区间I上的连续函数.2.曲边梯形的面积(1)曲边梯形:由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的图形称为曲边梯形(如图甲).(2)求曲边梯形面积的方法与步骤:①分割:把区间分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形(如图乙);②近似代替:对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值;③求和:把以近似代替得到的每个小曲边梯形面积的近似值求和;④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积.“以直代曲”的思想曲边梯形的边中有曲线,不方便直接求出其面积,把曲边梯形分割成一系列的小曲边梯形,再用小矩形近似代替之,“以直代曲”求和,无限“细分”去“逼近”面积的精确值,这种极限的思想是学习定积分的一种很重要的思想.问题:利用“以直代曲”的思想可以求物体做变速直线运动的路程吗? 提示:可以.求变速直线运动的路程如果物体做变速直线运动,速度函数为v =v (t ),那么它在时间t 所在的区间内的路程(或位移)也可以运用①分割;②近似代替;③求和;④取极限的方法求得.变速直线运动的路程与曲边梯形的面积间的关系与求曲边梯形面积类似,我们采取“以不变代变”的方法,把求变速直线运动的路程问题化归为求匀速直线运动的路程问题.求由直线⎝ ⎛⎭⎪⎫提示:13+23+…+n 3=⎣⎢⎡⎦⎥⎤12n n +2(1)分割如右图所示,用分点n +1n ,n +2n ,…,n +n -n,把区间等分成n 个小区间⎣⎢⎡⎦⎥⎤1,n +1n ,⎣⎢⎡⎦⎥⎤n +1n ,n +2n ,…,n +i -1n ,n +in,…, ⎣⎢⎡⎦⎥⎤n +n -n ,2,每个小区间的长度为Δx =n +i n -n +i -1n =1n(i =1,2,3,…,n ).过各分点作x 轴的垂线,把曲边梯形ABCD 分割成n 个小曲边梯形,它们的面积分别记作ΔS 1,ΔS 2,…,ΔS n .(2)近似代替各小区间的左端点为ξi ,取以点ξi 的纵坐标ξ3i 为一边,以小区间长Δx =1n为其邻边的小矩形面积,近似代替小曲边梯形面积.第i 个小曲边梯形面积,可以近似地表示为ΔS i ≈ξ3i ·Δx =⎝⎛⎭⎪⎫n +i -1n 3·1n(i =1,2,3,…,n ).(3)求和因为每一个小矩形的面积都可以作为相应的小曲边梯形面积的近似值,所以n 个小矩形面积的和就是曲边梯形ABCD 面积S 的近似值,即S =∑i =1nΔS i ≈∑i =1n⎝⎛⎭⎪⎫n +i -1n 3 ·1n .(4)取极限当分点数目越多,即Δx 越小时,和式的值就越接近曲边梯形ABCD 的面积S .因此n →∞,即Δx →0时,和式的极限就是所求的曲边梯形ABCD 的面积.因为∑i =1n⎝⎛⎭⎪⎫n +i -1n 3·1n=1n 4∑i =1n(n +i -1)3=1n 4∑i =1n[(n -1)3+3(n -1)2i +3(n -1)i 2+i 3] =1n4,所以S =li m n →∞∑i =1n⎝⎛⎭⎪⎫n +i -1n 3·1n=1+32+1+14=154.求曲边梯形的面积应关注两点(1)根据步骤“分割、近似代替、求和、取极限”求曲边梯形的面积S ,实质是用n 个小矩形面积的和S n 来逼近,S n 的极限即为所求曲边梯形的面积S .求小矩形面积时,一般选取函数在相应小区间的左端点值.(2)分割实现了把求不规则的图形的面积化归为计算矩形面积,但这是近似值,为逼近精确值,分割得越细,近似程度就会越好,无限细分就无限逼近精确值.求由直线x =1,x =2,y =0与曲线y =2x 2所围成的曲边梯形的面积. 解:(1)分割在区间上等间隔地插入n -1个分点,把区间等分成n 个小区间⎣⎢⎡⎦⎥⎤n +i -1n ,n +i n (i =1,2,…,n ),每个小区间的长度为Δx =1n,每个小区间内曲边梯形的面积记为ΔS i (i =1,2,…,n ),显然S =∑i =1nΔS i .(2)近似代替 记f (x )=2x 2,取ξi =n +i -1n (i =1,2,…,n ),于是ΔS i ≈ΔS i ′=f ⎝ ⎛⎭⎪⎫n +i -1n ·Δx=2⎝⎛⎭⎪⎫n +i -1n 2·1n(i =1,2,…,n ).(3)求和S n =∑i =1nΔS i ′=∑i =1n2⎝⎛⎭⎪⎫n +i -1n 2·1n=2n 1+⎝ ⎛⎭⎪⎫1+1n 2+⎝ ⎛⎭⎪⎫1+2n 2+…+1+n -1n2=2nn +2n +1n 2=2n ⎣⎢⎡⎦⎥⎤n +2n·n n -2+1n2·n -nn -6=2+2⎝ ⎛⎭⎪⎫1-1n +13⎝ ⎛⎭⎪⎫1-1n ⎝ ⎛⎭⎪⎫2-1n . 从而得到S 的近似值S ≈S n . (4)取极限S =li m n →∞ S n =li m n →∞ 2+2⎝ ⎛⎭⎪⎫1-1n +131-1n ·⎝ ⎛⎭⎪⎫2-1n =143.3t 2+2(单位:km/h),那么该汽车在0≤t ≤2(单位:h)这段时间内行驶的路程s (单位:km)是多少?(1)分割在时间区间上等间隔地插入n -1个分点,将它等分成n 个小区间.记第i 个小区间为⎣⎢⎡⎦⎥⎤i -n,2i n (i =1,2,…,n ),其长度为Δt =2i n-i -n=2n.每个时间段上行驶的路程记为Δs i (i =1,2,…,n ),则显然有s =∑i =1nΔs i .(2)近似代替取ξi =2i n(i =1,2,…,n ).于是Δs i ≈Δs i ′=v ⎝ ⎛⎭⎪⎫2i n ·Δt =⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫2i n 2+2·2n=24i 2n3+4n(i =1,2,…,n ). (3)求和s n =∑i =1nΔs i ′=∑i =1n⎝⎛⎭⎪⎫24i 2n 3+4n =24n 3(12+22+…+n 2)+4=24n3·nn +n +6+4=8⎝ ⎛⎭⎪⎫1+1n 1+12n+4.从而得到s 的近似值s n =8⎝ ⎛⎭⎪⎫1+1n 1+12n +4.(4)取极限s =li m n →∞ s n =li m n →∞ ⎣⎢⎡⎦⎥⎤8⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +4=8+4=12,所以这段时间内行驶的路程为12 km.变速运动的路程的求法求变速直线运动路程的问题,方法和步骤类似于求曲边梯形的面积,用“以直代曲”“逼近”的思想求解.求解过程为分割、近似代替、求和、取极限.应特别注意变速直线运动的时间区间.已知自由落体的运动速度v =gt ,求在时间区间内物体下落的距离. 解:(1)分割将时间区间分成n 等份. 把时间分成n 个小区间⎣⎢⎡⎦⎥⎤i -1n t ,it n (i =1,2,…,n ),每个小区间所表示的时间段Δt=it n -i -1n t =tn,在各小区间物体下落的距离记作Δs i (i =1,2,…,n ).(2)近似代替在每个小区间上以匀速运动的路程近似代替变速运动的路程. 在⎣⎢⎡⎦⎥⎤i -1n t ,it n 上任取一时刻ξi (i =1,2,…,n ),可取ξi 使v (ξi)=g ·i -n t近似代替第i 个小区间上的速度,因此在每个小区间上自由落体Δt =t n内所经过的距离可近似表示为Δs i =g ·i -1n t ·tn(i =1,2,…,n ). (3)求和s n =∑i =1n Δs i =∑i =1ng ·i -1n t ·tn=gt 2n2 =12gt 2⎝ ⎛⎭⎪⎫1-1n . (4)取极限s =lim n →∞ 12gt 2⎝ ⎛⎭⎪⎫1-1n =12gt 2.4.搞错区间端点致误求由抛物线y =2x 2与直线x =0,x =t (t >0),y =0所围成的曲边梯形的面积时,将区间等分成n 个小区间,则第i -1个区间为( )A.⎣⎢⎡⎦⎥⎤i -1n ,i nB.⎣⎢⎡⎦⎥⎤i n ,i +1n C.⎣⎢⎡⎦⎥⎤t i -n ,tin D.⎣⎢⎡⎦⎥⎤t i -n ,t i -n每个小区间长度为tn,故第i -1个区间的左端点为0+(i -2)×t n =t i -n,右端点为t i -n+t n =t i -n.D1.解决本题易错误地认为区间左端为t i -n,从而误选C.2.在将区间等分成n 个小区间时,其第1个小区间的左端点为0,第2个小区间的左端点为1n ,…,依次类推,第i 个小区间的左端点为i -1n.在求直线x =0,x =2,y =0与曲线y =x 2所围成的曲边三角形的面积时,把区间等分成n 个小区间,则第i 个小区间是( )A.⎣⎢⎡⎦⎥⎤i -1n ,i nB.⎣⎢⎡⎦⎥⎤i n ,i +1n C.⎣⎢⎡⎦⎥⎤i -n,2i nD.⎣⎢⎡⎦⎥⎤2i n,i +n解析:选C 将区间等分为n 个小区间后,每个小区间的长度为2n,第i 个小区间为⎣⎢⎡⎦⎥⎤i -n,2i n.1.在“近似代替”中,函数f (x )在区间上的近似值( ) A .只能是左端点的函数值f (x i ) B .只能是右端点的函数值f (x i +1)C .可以是该区间内任一点的函数值f (ξi )(ξi ∈)D .以上答案均正确解析:选C 作近似计算时,Δx =x i +1-x i 很小,误差可忽略,所以f (x )可以是上任一值f (ξi ).2.已知汽车在时间内以速度v =v (t )做直线运动,则下列说法不正确的是( ) A .当v =a (常数)时,汽车做匀速直线运动,这时路程s =vt 1B .当v =at +b (a ,b 为常数)时,汽车做匀速直线运动,这时路程s =bt 1+12at 21C .当v =at +b (a ≠0,a ,b 为常数)时,汽车做匀变速直线运动,这时路程s =bt 1+12at 21D .当v =at 2+bt +c (a ≠0,a ,b ,c 为常数)时,汽车做变速直线运动,这时路程s =li m n →∞s n =li m n →∞∑i =1n v (ξi )Δt解析:选B 对于v =at +b ,当a =0时为匀速直线运动,当a ≠0时为匀变速直线运动,其中a >0时为匀加速直线运动,a <0时为匀减速直线运动.对于v =at 2+bt +c (a ≠0)及v =v (t )是t 的三次、四次函数时,汽车做的都是变速(即变加速或变减速)直线运动,故B 是错误的.3.在计算由曲线y =-x 2以及直线x =-1,x =1,y =0所围成的图形面积时,若将区间 n 等分,则每个小区间的长度为________.解析:每个小区间长度为1--n=2n.答案:2n4.求由抛物线f (x )=x 2,直线x =1以及x 轴所围成的平面图形的面积时,若将区间等分成5个区间,如右图所示,以小区间中点的纵坐标为高,所有小矩形的面积之和为________.解析:由题意得S =(0.12+0.32+0.52+0.72+0.92)×0.2=0.33.答案:0.335.利用分割、近似代替、求和、取极限的办法求函数y =1+x ,x =1,x =2的图象与x 轴围成梯形的面积,并用梯形的面积公式加以验证.解:f (x )=1+x 在区间上连续,将区间分成n 等份,则每个区间的长度为Δx i =1n,在=⎣⎢⎡⎦⎥⎤1+i -1n ,1+i n 上取ξi =x i -1=1+i -1n(i =1,2,3,…,n ),于是f (ξi )=f (x i -1)=1+1+i -1n =2+i -1n, 从而S n =∑i =1nf (ξi )Δx i =∑i =1n⎝ ⎛⎭⎪⎫2+i -1n ·1n =∑i =1n⎝ ⎛⎭⎪⎫2n +i -1n 2=2n ·n +1n 2=2+1n2·n n -2=2+n -2n =52-12n.则S =li m n →∞S n=li m n →∞ ⎝ ⎛⎭⎪⎫52-12n =52.如下进行验证:如右图所示,由梯形的面积公式得S =12×(2+3)×1=52.一、选择题1.下列函数在其定义域上不是连续函数的是( ) A .y =x 2B .y =|x |C .y =xD .y =1x解析:选D 由于函数y =1x的定义域为(-∞,0)∪(0,+∞),故其图象不是连续不断的曲线.2.在求由x =a ,x =b (a <b ),y =f (x )(f (x )≥0)及y =0围成的曲边梯形的面积S 时,在区间上等间隔地插入n -1个分点,分别过这些分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,下列说法中正确的是( )A .n 个小曲边梯形的面积和等于SB .n 个小曲边梯形的面积和小于SC .n 个小曲边梯形的面积和大于SD .n 个小曲边梯形的面积和与S 之间的大小关系无法确定解析:选A n 个小曲边梯形是所给曲边梯形等距离分割得到的,因此其面积和为S .3.和式∑i =15(y i +1)可表示为( )A .(y 1+1)+(y 5+1)B .y 1+y 2+y 3+y 4+y 5+1C .y 1+y 2+y 3+y 4+y 5+5D .(y 1+1)(y 2+1)…(y 5+1)解析:选C ∑i =15(y i +1)=(y 1+1)+(y 2+1)+(y 3+1)+(y 4+1)+(y 5+1)=y 1+y 2+y 3+y 4+y 5+5.4.对于由直线x =1,y =0和曲线y =x 3所围成的曲边三角形,把区间3等分,则曲边三角形面积的近似值(取每个区间的左端点)是( )A.19B.125C.127 D.130解析:选A 将区间三等分为⎣⎢⎡⎦⎥⎤0,13,⎣⎢⎡⎦⎥⎤13,23,⎣⎢⎡⎦⎥⎤23,1,各小矩形的面积和为s 1=03·13+⎝ ⎛⎭⎪⎫133·13+⎝ ⎛⎭⎪⎫233·13=19. 5.若做变速直线运动的物体v (t )=t 2在0≤t ≤a 内经过的路程为9,则a 的值为( ) A .1 B .2 C .3 D .4解析:选C 将区间 n 等分,记第i 个区间为⎣⎢⎡⎦⎥⎤a i -n ,ain (i =1,2,…,n ),此区间长为a n ,用小矩形面积⎝ ⎛⎭⎪⎫ai n 2·a n 近似代替相应的小曲边梯形的面积,则S n =∑i =1n⎝⎛⎭⎪⎫ai n 2·an =a 3n 3·(12+22+…+n 2)=a 33·⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n ,依题意得lim n →∞ a 33⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n =9,∴a 33=9,解得a =3.二、填空题6.已知某物体运动的速度为v =t ,t ∈,若把区间10等分,取每个小区间右端点处的函数值为近似小矩形的高,则物体运动的路程近似值为________.解析:∵把区间10等分后,每个小区间右端点处的函数值为n (n =1,2,…,10),每个小区间的长度为1,∴物体运动的路程近似值s =1×(1+2+…+10)=55. 答案:557.物体运动的速度和时间的函数关系式为v (t )=2t (t 的单位:h ;v 的单位:km/h),近似计算在区间内物体运动的路程时,把区间6等分,则过剩近似值(每个ξi 均取值为小区间的右端点)为________km.解析:以小区间右端点时的速度作为小区间的平均速度,可得过剩近似值为s =(2×3+2×4+2×5+2×6+2×7+2×8)×1=66 (km).答案:668.直线x =0,x =2,y =0与曲线y =x 2+1围成的曲边梯形,将区间5等分,按照区间左端点和右端点估计梯形面积分别为________、________.解析:将区间5等分为⎣⎢⎡⎦⎥⎤0,25,⎣⎢⎡⎦⎥⎤25,45,⎣⎢⎡⎦⎥⎤45,65,⎣⎢⎡⎦⎥⎤65,85,⎣⎢⎡⎦⎥⎤85,2,以小区间左端点对应的函数值为高,得S 1=1+⎝ ⎛⎭⎪⎫252+1+⎝ ⎛⎭⎪⎫452+1+⎝ ⎛⎭⎪⎫652+1+⎝ ⎛⎭⎪⎫852+1×25=3.92,同理S 2=⎝ ⎛⎭⎪⎫252+1+⎝ ⎛⎭⎪⎫452+1+⎝ ⎛⎭⎪⎫652+1+⎝ ⎛⎭⎪⎫852+1+22+1×25=5.52.答案:3.92 5.52 三、解答题9.汽车行驶的速度为v =t 2,求汽车在0≤t ≤1这段时间内行驶的路程s . 解:(1)分割将区间等分为n 个小区间⎣⎢⎡⎦⎥⎤0,1n ,⎣⎢⎡⎦⎥⎤1n ,2n ,…,⎣⎢⎡⎦⎥⎤i -1n ,i n ,…,⎣⎢⎡⎦⎥⎤n -1n ,1,每个小区间的长度为Δt =i n -i -1n =1n . (2)近似代替在区间⎣⎢⎡⎦⎥⎤i -1n ,i n (i =1,2,…,n )上,汽车近似地看作以时刻i -1n 处的速度v ⎝ ⎛⎭⎪⎫i -1n =⎝ ⎛⎭⎪⎫i -1n 2做匀速行驶,则在此区间上汽车行驶的路程为⎝ ⎛⎭⎪⎫i -1n 2·1n . (3)求和在所有小区间上,汽车行驶的路程和为sn =02×1n +⎝ ⎛⎭⎪⎫1n 2×1n +⎝ ⎛⎭⎪⎫2n 2×1n +…+⎝ ⎛⎭⎪⎫n -1n 2×1n =1n 3=1n 3×n -n n -6=13⎝⎛⎭⎪⎫1-1n ⎝ ⎛⎭⎪⎫1-12n . (4)取极限汽车行驶的路程 s =li m n →∞s n =li m n →∞13⎝ ⎛⎭⎪⎫1-1n ⎝ ⎛⎭⎪⎫1-12n =13.10.求由直线x =0,x =1,y =0和曲线y =x (x -1)围成的图形的面积.解:(1)分割将曲边梯形分割成n 个小曲边梯形,在区间上等间隔地插入n -1个点,将区间等分成n 个小区间:⎣⎢⎡⎦⎥⎤0,1n ,⎣⎢⎡⎦⎥⎤1n ,2n ,…,⎣⎢⎡⎦⎥⎤n -1n ,1, 记第i 个区间为⎣⎢⎡⎦⎥⎤i -1n ,i n (i =1,2,…,n ),其长度为 Δx =i n -i -n =1n. 把每个小曲边梯形的面积记为ΔS 1,ΔS 2,…,ΔS n .(2)近似代替把每个小曲边梯形近似地看作矩形,可得第i 个小曲边梯形的面积的近似值 ΔS i ≈⎪⎪⎪⎪⎪⎪f ⎝⎛⎭⎪⎫i -1n ·Δx =⎪⎪⎪⎪⎪⎪⎣⎢⎡⎦⎥⎤i -n ·⎝ ⎛⎭⎪⎫i -1n -1·1n=i -1n 2·⎝ ⎛⎭⎪⎫1-i -1n (i =1,2,…,n ). (3)求和求出这n 个小矩形的面积的和S n =∑i =1n⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫i -1n ·Δx =∑i =1ni -1n 2·⎝ ⎛⎭⎪⎫1-i -1n =16·⎝ ⎛⎭⎪⎫1-1n 2, 从而得到所求图形面积的近似值S ≈16⎝ ⎛⎭⎪⎫1-1n 2. (4)取极限S =lim n →∞ 16·⎝ ⎛⎭⎪⎫1-1n 2=16. 所以由直线x =0,x =1,y =0和曲线y =x (x -1)围成的图形的面积为16.。