高中数学导数及其应用

  • 格式:doc
  • 大小:1.86 MB
  • 文档页数:39

下载文档原格式

  / 39
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学导数及其应用一、知识网络

二、高考考点

1、导数定义的认知与应用;

2、求导公式与运算法则的运用;

3、导数的几何意义;

4、导数在研究函数单调性上的应用;

5、导数在寻求函数的极值或最值的应用;

6、导数在解决实际问题中的应用。

三、知识要点

(一)导数

1、导数的概念

(1)导数的定义

(Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可正可负),则函数y相应地有增量,这两个增量的比

,叫做函数在点到这间的平均变化率。如果时,有极限,则说函数在点处可导,并把这个极限叫做在点处的导数(或变化率),记作,即

(Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间()内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间()内的导函数(简称导数),记作或,即

认知:

(Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数是一个数值;在点处的导数是的导函数当时的函数值。

(Ⅱ)求函数在点处的导数的三部曲:

①求函数的增量;

②求平均变化率;

③求极限

上述三部曲可简记为一差、二比、三极限。

(2)导数的几何意义:

函数在点处的导数,是曲线在点处的切线的斜率。

(3)函数的可导与连续的关系

函数的可导与连续既有联系又有区别:

(Ⅰ)若函数在点处可导,则在点处连续;

若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。

事实上,若函数在点处可导,则有此时,

记 ,则有即在点处连续。

(Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。

反例:在点处连续,但在点处无导数。

事实上,在点处的增量

当时,,;当时,,

由此可知,不存在,故在点处不可导。

2、求导公式与求导运算法则

(1)基本函数的导数(求导公式)

公式1 常数的导数:(c为常数),即常数的导数等于0。公式2 幂函数的导数:。

公式3 正弦函数的导数:。

公式4 余弦函数的导数:

公式5 对数函数的导数:

(Ⅰ);

(Ⅱ)

公式6 指数函数的导数:

(Ⅰ);

(Ⅱ)。

(2)可导函数四则运算的求导法则

设为可导函数,则有

法则1 ;

法则2 ;

法则3 。

3、复合函数的导数

(1)复合函数的求导法则

设,复合成以x为自变量的函数,则复合函数

对自变量x的导数,等于已知函数对中间变量的导数,乘以中间变量u对自变量x的导数,

即。

引申:设,复合成函数,则有

(2)认知

(Ⅰ)认知复合函数的复合关系循着“由表及里”的顺序,即从外向内分析:首先由最外层的主体函数结构设出,由第一层中间变量的函数结构设出,由第二层中间变量的函数结构设出,由此一层一层分析,一直到最里层的中间变量为自变量x的简单函数为止。于是所给函数便“分解”为若干相互联系的简单函数的链条:

(Ⅱ)运用上述法则求复合函数导数的解题思路

①分解:分析所给函数的复合关系,适当选定中间变量,将所给函数“分解”为相互联系的若干简单函数;

②求导:明确每一步是哪一变量对哪一变量求导之后,运用上述求导法则和基本公式求;

③还原:将上述求导后所得结果中的中间变量还原为自变量的函数,并作以适当化简或整理。

1、函数的单调性

(1)导数的符号与函数的单调性:

一般地,设函数在某个区间内可导,则若为增函数;若

为减函数;若在某个区间内恒有,则在这一区间上为常函数。

(2)利用导数求函数单调性的步骤

(Ⅰ)确定函数的定义域;

(Ⅱ)求导数;

(Ⅲ)令,解出相应的x的范围

当时,在相应区间上为增函数;当时在相应区间上为减函数。

(3)强调与认知

(Ⅰ)利用导数讨论函数的单调区间,首先要确定函数的定义域D,并且解决问题的过程中始终立足于定义域D。若由不等式确定的x的取值集合为A,由确定的x 的取值范围为B,则应用;

(Ⅱ)在某一区间内(或)是函数在这一区间上为增(或减)函数的充分(不必要)条件。因此方程的根不一定是增、减区间的分界点,并且在对函数划分单调区间时,除去确定的根之外,还要注意在定义域内的不连续点和不可导点,它们也可能是增、减区间的分界点。

举例:

(1)是R上的可导函数,也是R上的单调函数,但是当x=0时,。

(2)在点x=0处连续,点x=0处不可导,但在(-∞,0)内递减,在(0,+∞)内递增。

(1)函数的极值的定义

设函数在点附近有定义,如果对附近的所有点,都有,则说是函数的一个极大值,记作;

如果对附近的所有点,都有,则说是函数的一个极小值,记作。

极大值与极小值统称极值

认知:由函数的极值定义可知:

(Ⅰ)函数的极值点是区间内部的点,并且函数的极值只有在区间内的连续点处取得;

(Ⅱ)极值是一个局部性概念;一个函数在其定义域内可以有多个极大值和极小值,并且在某一点的极小值有可能大于另一点处的极大值;

(Ⅲ)当函数在区间上连续且有有限个极值点时,函数在内的极大值点,极小值点交替出现。

(2)函数的极值的判定

设函数可导,且在点处连续,判定是极大(小)值的方法是

(Ⅰ)如果在点附近的左侧,右侧,则为极大值;

(Ⅱ)如果在点附近的左侧,右侧,则为极小值;

注意:导数为0的不一定是极值点,我们不难从函数的导数研究中悟出这一点。

(3)探求函数极值的步骤:

(Ⅰ)求导数;

(Ⅱ)求方程的实根及不存在的点;