第3章3-1时域分析法
- 格式:ppt
- 大小:1.01 MB
- 文档页数:32
第3章 线性系统的时域分析法所谓时域分析法,就是对系统外施一个给定输入信号,通过研究控制系统的时间响应来评价系统的性能。
由于系统的输出量取的是时间t 的函数,故称这种响应为时域响应,它是一种直接在时间域中对系统进行分析的方法,具有直观、准确、物理概念清楚的特点,尤其适用于二阶系统。
3.1 时域响应及典型输入信号首先我们给出瞬态响应和稳态响应的定义。
瞬态响应——系统在某一输入信号的作用下其输出量从初始状态到稳定状态的响应过程称为瞬态响应,瞬态响应过程也称为过渡过程。
稳态响应——当某一信号输入时,系统在时间趋于无穷大时的输出状态称为稳态响应,稳态也称为静态。
在分析瞬态响应时,我们往往选择典型输入信号。
所谓典型输入信号,是指很接近实际控制系统,经常遇到的输入信号,并在数学描述上经过理想化处理后,用简单的函数形式表达出来的信号。
选择某些典型函数作为系统输入信号,不仅使问题的数学处理系统化,而且典型输入信号的响应往往可以作为分析复杂输入时系统性能的基础。
常见的典型输入信号如下。
1、 阶跃信号这是指输入变量有一个突然的定量变化,例如输入量的突然加入或突然停止等等,如图3-1所示,其数学表达式为⎪⎩⎪⎨⎧<≥=0,00,)(t t a t r (3-1)其中,a 为常数,当a =1时,该信号称为单位阶跃信号。
2、 斜坡信号这是指输入变量是等速度变化的,如图3-2所示,其数学表达式为⎪⎩⎪⎨⎧<≥=0,00,)(t t at t r (3-2)其中,a 为常数,当a =1时,该信号称为单位斜坡信号。
图3-1 阶跃信号 图3-2 斜坡信号3、 脉冲信号脉冲信号的数学表达式可表示为⎪⎩⎪⎨⎧><<<=→000/0,00,lim )(0t t t t t t a t r t (3-3)其中,a 为常数,因此当00t t <<时,该信号值为无穷大。
脉冲信号可以表示为如图3-3所示,其脉冲高度为无穷大;持续时间为无穷小;脉冲面积为a ,因此,通常脉冲强度是以其面积a 衡量的。
第3章时域分析法基本要求3-1 时域分析基础3-2 一、二阶系统分析与计算3-3 系统稳定性分析3-4 稳态误差分析计算返回主目录基本要求1熟练掌握一、二阶系统的数学模型和阶跃响应的特点。
熟练计算性能指标和结构参数,特别是一阶系统和典型欠阻尼二阶系统动态性能的计算方法。
2了解一阶系统的脉冲响应和斜坡响应的特点。
3正确理解系统稳定性的概念,能熟练运用稳定性判据判定系统的稳定性并进行有关的参数计算、分析。
4正确理解稳态误差的概念,明确终值定理的应用条件。
5熟练掌握计算稳态误差的方法。
6掌握系统的型次和静态误差系数的概念。
控制系统的数学模型是分析、研究和设计控制系统的基础,经典控制论中三种分析(时域,根轨迹,频域)、研究和设计控制系统的方法,都是建立在这个基础上的。
3-1 时域分析基础一、时域分析法的特点它根据系统微分方程,通过拉氏变换,直接求出系统的时间响应。
依据响应的表达式及时间响应曲线来分析系统控制性能,并找出系统结构、参数与这些性能之间的关系。
这是一种直接方法,而且比较准确,可以提供系统时间响应的全部信息。
二、典型初始状态,典型外作用1. 典型初始状态通常规定控制系统的初始状态为零状态。
即在外作用加于系统之前,被控量及其各阶导数相对于平衡工作点的增量为零,系统处于相对平衡状态。
2. 典型外作用①单位阶跃函数1(t)tf(t)⎩⎨⎧<≥==0t 00t 1)t (1)t (f 其拉氏变换为:s 1dt e 1)s (F )]t (f [L 0st===⎰∞-其数学表达式为:t②单位斜坡函数0t 0t 0t)t (1t )t (f <≥⎩⎨⎧=.=其拉氏变换为:2sts 1dt e t )s (F )]t (f [L ===⎰∞-f(t)其数学表达式为:③单位脉冲函数000)()(=≠⎩⎨⎧∞==t t t t f d 其数学表达式为:其拉氏变换为:1)()]([==s F t f L ⎰+∞∞-=1)(dt t d 定义:图中1代表了脉冲强度。
第3章线性系统的时域分析与校正3.1 概述系统的数学模型建立后,便可对系统进行分析和校正。
分析和校正是自动控制原理课程的两大任务。
系统分析是由已知的系统模型确定系统的性能指标;校正是根据需要在系统中加入一些机构和装置并确定相应的参数,用以改善系统性能,使其满足所要求的性能指标。
系统分析的目的在于“认识”系统,系统校正的目的在于“改造”系统。
系统的分析校正方法一般有时域法、根轨迹法和频域法,本章介绍时域法。
3.1.1 时域法的作用和特点时域法是一种直接在时间域中对系统进行分析校正的方法,具有直观,准确的优点,它可以提供系统时间响应的全部信息,但在研究系统参数改变引起系统性能指标变化的趋势这一类问题,以及对系统进行校正设计时,时域法不是非常方便。
时域法是最基本的分析方法,该方法引出的概念、方法和结论是以后学习复域法、频域法等其他方法的基础。
3.1.2 时域法常用的典型输入信号要确定系统性能的优劣,就要在同样的输入条件激励下比较系统的行为。
为了在符合实际情况的基础上便于实现和分析计算,时域分析法中一般采用如表3-1中的典型输入信号。
3.1.3 系统的时域性能指标如第一章所述,对控制系统的一般要求归纳为稳、准、快。
工程上为了定量评价系统性能好坏,必须给出控制系统的性能指标的准确定义和定量计算方法。
稳定是控制系统正常运行的基本条件。
系统稳定,其响应过程才能收敛,研究系统的性能(包括动态性能和稳态性能)才有意义。
实际物理系统都存在惯性,输出量的改变是与系统所储有的能量有关的。
系统所储有的能量的改变需要有一个过程。
在外作用激励下系统从一种稳定状态转换到另一种稳定状态需要一定的时间。
一个稳定系统的典型阶跃响应如图3-1所示。
响应过程分为动态过程(也称为过渡过程)和稳态过程,系统的动态性能指标和稳态性能指标就是分别针对这两个阶段定义的。
表3-1 时域分析法中的典型输入信号名称)(tr时域关系时域图形)(sR复域关系例单位脉冲函数⎩⎨⎧≠=∞=)(tttδ⎰=1)(dttδdtd1s⨯撞击作用后坐力电脉冲单位阶跃函数⎩⎨⎧<≥=1)(1ttts1开关输入单位斜坡函数⎩⎨⎧<≤=)(ttttf21s等速跟踪信号单位加速度函数⎪⎩⎪⎨⎧<≥=21)(2ttttf31s1 动态性能系统动态性能是以系统阶跃响应为基础来衡量的。