当前位置:文档之家› 基于层次与划分方法的聚类算法研究

基于层次与划分方法的聚类算法研究

基于层次与划分方法的聚类算法研究
基于层次与划分方法的聚类算法研究

(完整word版)各种聚类算法介绍及对比

一、层次聚类 1、层次聚类的原理及分类 1)层次法(Hierarchical methods)先计算样本之间的距离。每次将距离最近的点合并到同一个类。然后,再计算类与类之间的距离,将距离最近的类合并为一个大类。不停的合并,直到合成了一个类。其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等。比如最短距离法,将类与类的距离定义为类与类之间样本的最短距离。 层次聚类算法根据层次分解的顺序分为:自下底向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法(agglomerative和divisive),也可以理解为自下而上法(bottom-up)和自上而下法(top-down)。自下而上法就是一开始每个个体(object)都是一个 类,然后根据linkage寻找同类,最后形成一个“类”。自上而下法就是反过来,一开始所有个体都属于一个“类”,然后根据linkage排除异己,最后每个个体都成为一个“类”。这两种路方法没有孰优孰劣之分,只是在实际应用的时候要根据数据特点以及你想要的“类”的个数,来考虑是自上而下更快还是自下而上更快。至于根据Linkage判断“类” 的方法就是最短距离法、最长距离法、中间距离法、类平均法等等(其中类平均法往往被认为是最常用也最好用的方法,一方面因为其良好的单调性,另一方面因为其空间扩张/浓缩的程度适中)。为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位。 2)Hierarchical methods中比较新的算法有BIRCH(Balanced Iterative Reducing and Clustering Using Hierarchies利用层次方法的平衡迭代规约和聚类)主要是在数据量很大的时候使用,而且数据类型是numerical。首先利用树的结构对对象集进行划分,然后再利用其它聚类方法对这些聚类进行优化;ROCK(A Hierarchical Clustering Algorithm for Categorical Attributes)主要用在categorical的数据类型上;Chameleon(A Hierarchical Clustering Algorithm Using Dynamic Modeling)里用到的linkage是kNN(k-nearest-neighbor)算法,并以此构建一个graph,Chameleon的聚类效果被认为非常强大,比BIRCH好用,但运算复杂度很高,O(n^2)。 2、层次聚类的流程 凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同。这里给出采用最小距离的凝聚层次聚类算法流程: (1) 将每个对象看作一类,计算两两之间的最小距离; (2) 将距离最小的两个类合并成一个新类; (3) 重新计算新类与所有类之间的距离; (4) 重复(2)、(3),直到所有类最后合并成一类。

基于划分方法的聚类分析

南京信息工程大学滨江学院实验(实习)报告 实验(实习)名称基于划分方法的聚类分析实验(实习)日期 2011.6.10 指导教师闫雷鸣 专业软工(动画)年级 2008 班次(1)班姓名王圆媛学号 20082358002 得分 一、实验目的 (1)学习聚类分析的基本概念、各种数据类型、聚类方法的分类。 (2)学会典型的划分方法K均值和K中心点算法的基本原理、特点、优缺点。 (3)应用Weka软件,学会导入数据文件,并对数据文件进行预处理。 (4)学会并应用划分方法中K均值和K中心点算法对数据集进行聚类分析。 二、实验准备: Bank-data 三、实验要求: 用划分方法中K均值和K中心点算法对数据集进行聚类分析 四、实验内容: 4.1 相关知识 聚类分析中的“类”(cluster)和前面分类的“类”(class)是不同的,对cluster更加准确的翻译应该是“簇”。聚类的任务是把所有的实例分配到若干的簇,使得同一个簇的实例聚集在一个簇中心的周围,它们之间距离的比较近;而不同簇实例之间的距离比较远。对于由数值型属性刻画的实例来说,这个距离通常指欧氏距离。聚类分析中使用最常见的K均值(K-means)算法。 K均值聚类方法的步骤如下。 (1)K均值算法首先随机的指定K个簇中心。 (2)将每个实例分配到距它最近的簇中心,得到K个簇; (3)计分别计算各簇中所有实例的均值,把它们作为各簇新的簇中心。重复(2)和(3),直到K个簇中心的位置都固定,簇的分配也固定。 上述K均值算法只能处理数值型的属性,遇到分类型的属性时要把它变为若干个取值0和1的属性。WEKA将自动实施这个分类型到数值型的变换,而且Weka会自动对数值型的数据作标准化。 Weka中列出了很多聚类算法。对于EM实现,用户可指定需要产生多少聚类,否则所用的算法可通过交叉验证来决定,在这种情况下,折的数量固定为10(除非训练实例小于10个)。用户可指定循环次数的最大值,并且为正常的密度计算设定可允许的最小标准差。SimpleKMeans使用k均值来聚类数据;聚类的数量通过一个参数设定。Cobweb实现了用于名词属性的Cobweb算法和用于数值性属性的Classit算法。FarthestFirst实现Hochbaum 和Shmoys远端优先遍历算法。MakeDensityBaseCluster是一个元聚类器,它包装一个聚类算法,使其返回一个概率分布和密度。它为每个聚类拟合一个离散分布,或一个对称的正态

基于划分的聚类算法

- 文献阅读报告 课程名称:《模式识别》课程编号:题目: 基于划分的聚类算法 研究生: 学号: 论文评语: 成绩: 任课教师: 评阅日期:

基于划分的聚类算法 2016-11-20 摘要: 聚类分析是数据挖掘的一个重要研究分支,已经提出了许多聚类算法,划分方法是其中之一。基于划分的聚类算法就是用统计分析的方法研究分类问题。本文介绍了聚类的定义以及聚类算法的种类,详细阐述了K 均值聚类算法和K中心点聚类算法的基本原理并对他们的性能进行分析,对近年来各学者对基于划分的聚类算法的研究现状进行梳理,对其具体应用实例作简要介绍。 关键字:数据挖掘;聚类;K 均值聚类算法;K 中心点聚类算法;K众数算法;k多层次聚类算法 Partitional clustering algorithms Abstract:Clustering analysis is an important branch of data mining, many clustering algorithms have been proposed, the dividing method is one of them. Based on the clustering algorithm is divided into classification problems using the method of statistical analysis. In this paper,we introduces the definition of clustering and type of clustering algorithm,the basic principle of k-means clustering algorithm and K-center clustering algorithm are expounded in detail,we also analyze their performance,the scholars in recent years the study of the clustering algorithm based on partitioning present situation has carried on the comb,make a brief introduction to its specific application instance. Key words:Data mining;clustering;k-means clustering algorithms;k-medoids clustering algorithms;k-modes clustering algorithms ;k-prototype clustering algorithms 1.引言 把单个的数据对象的集合划分为相类似的样本组成的多个簇或多个类的过程,这就叫聚类[1]。在无监督的情况下,具有独立的学习能力,这就是聚类。将数据空间中的所有数据点分别划分到不同的类中,相近距离的划分到相同类,较远距离的划分到不同类,这就是聚类的目的.聚类分析常作为一种数据的预处理过程被用于许多应用当中,它是更深一步分析数据、处理数据的基础。人们通过聚类分析这一最有效的手段来认识事物、探索事物之间的在联系,而且,关联规则等分析算法的预处理步骤也可以用它。现在,在气象分析中,在图像处理时,在模式识别领域,在食品检验过程中,都有用到它。随着现代科技水平的不断提高、网络的迅猛发展、计算机技术的不断改革和创新,大批量的数据不断涌现。怎样从这些数据中提取有意义的信息成为人们关注的问题。这对聚类分析技术来说无疑是个巨大的挑战。只有具有处理高维的数据的能力的聚类算法才能解决该问题. 研究者们开始设计各种聚类算法,于是,基于划分的聚类算法便应运而生,而且,取得了很好的效果。 2.正文 1 聚类概述

【CN110196907A】一种多层次文本聚类方法和装置【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910297074.9 (22)申请日 2019.04.15 (71)申请人 中国石油大学(华东) 地址 266580 山东省青岛市黄岛区长江西 路66号 (72)发明人 席永轲 白婷婷 王宇辰 白振宇  曹帅 张孝苗 孙玉强 刘昕  (51)Int.Cl. G06F 16/35(2019.01) G06F 17/27(2006.01) (54)发明名称一种多层次文本聚类方法和装置(57)摘要本发明实施例提供了一种多层次文本聚类方法和装置,该方法可以在多个层次对文本数据进行不同粒度的聚类。对所获取的文本数据进行数据预处理操作后根据范化数据的不同特征以及在数据表中所属的不同类别,将规范化后数据分为全部数据即最广义层次、子级分类层次、自定义分类层次等是三个不同层次,然后采用Word2vec进行文本词向量的训练,基于文本词向量训练结果得到一条文本数据的二维坐标作为一个数据节点的坐标,通过计算所有数据节点的相对距离,并根据不同的数据量,动态更新算法截断距离,最终通过计算每个数据节点的局部密度与相对距离确,保存聚类结果并生成数据可视化图聚类中心,并根据各个聚类中心,将不同数 据聚为一类。权利要求书1页 说明书3页 附图2页CN 110196907 A 2019.09.03 C N 110196907 A

权 利 要 求 书1/1页CN 110196907 A 1.一种多层次文本聚类方法和装置,包括以下步骤: A.基于所获取的原始数据进行数据预处理操作,主要包括数据分词、去停用词、数据规范化等操作。 B.根据规范化数据的不同特征以及在数据表中所属的不同类别,使用不同的类别判别方式对数据进行划分,可将规范化后数据分为全部数据即最广义层次、子级分类层次、自定义分类层次等是三个不同层次,并根据不同的类别层次执行不同聚类操作。 C.基于不同层次的文本数据,采用Word2vec进行文本词向量的训练,将文本内容处理为二维并在空间标识。 D.基于词向量训练结果,将每条文本数据的关键词抽取结果与词向量结合,将关键词对应的词向量坐标求和,得到一条文本数据的二维坐标作为一个数据节点的坐标。 E.通过计算所有数据节点的相对距离,并根据不同的数据量,动态更新算法截断距离。然后通过计算每个数据节点的局部密度与相对距离确定各个聚类中心,并根据各个聚类中心,将不同数据聚为一类,保存聚类结果并生成数据可视化图。 2.根据权利要求1所述的一种多层次文本聚类方法和装置,其特征在于,所述的步骤A 中,数据分词是把连续的汉字序列划分成一系列单独的词语,之后将词语作为文本数据的基本单位;去停用词就是把分词结果中的一些虚词和禁用词去除;数据规范化是指将数据已有的类别进行标记,便于后期高效多层次聚类。 3.根据权利要求1所述的一种多层次文本聚类方法和装置,其特征在于,所述的步骤B 中,根据不同的数据形式,使用不同的方式对数据进行划分,共有以下几种形式: i.将所有数据归为一个层次,即将所有数据进行最广义聚类。 ii.根据规范化后数据所属的不同类别,可以根据不同类别层次将数据划分为不同类别,并根据不同类别进行聚类。 iii.若想获取自定义类别数据,首先自定义类别标签关键词,然后对所获取规范化数据进行遍历,并通过类别关键词对每一条数据进行类别相似度赋值权重,最终通过权重大小获取到自定义类别数据。 4.根据权利要求1所述的一种多层次文本聚类方法和装置,其特征在于,所述的步骤C 中,Word2vec利用深度学习的思想,通过训练,把对文本内容的处理简化为K维向量空间中的向量运算,最终通过降维算法将K维向量降为2维,从而可以用向量空间上的距离来表示语义上的相似度。 5.根据权利要求1所述的一种多层次文本聚类方法和装置,其特征在于,所述的步骤E 中,通过计算所有数据节点的平均距离并乘以对应权重,从而根据不同数据集的大小动态更新算法截断距离。局部密度描述了一个数据节点周围数据的聚集程度。相对距离描述了一个数据节点与其它具有较大局部密度的数据节点的距离。若一个节点的局部密度值与相对距离值都较大,说明它本身周围有较多数据节点,且距离另一个周围有较多数据节点的数据节点距离较远,则认为其是一个聚类中心。 2

基于划分的聚类算法

文献阅读报告 课程名称:《模式识别》课程编号:题目: 基于划分的聚类算法 研究生姓名: 学号: 论文评语: 成绩: 任课教师: 评阅日期:

基于划分的聚类算法 2016-11-20 摘要: 聚类分析是数据挖掘的一个重要研究分支,已经提出了许多聚类算法,划分方法是其中之一。基于划分的聚类算法就是用统计分析的方法研究分类问题。本文介绍了聚类的定义以及聚类算法的种类,详细阐述了K 均值聚类算法和K中心点聚类算法的基本原理并对他们的性能进行分析,对近年来各学者对基于划分的聚类算法的研究现状进行梳理,对其具体应用实例作简要介绍。 关键字:数据挖掘;聚类;K 均值聚类算法;K 中心点聚类算法;K众数算法;k多层次聚类算法 Partitional clustering algorithms Abstract:Clustering analysis is an important branch of data mining, many clustering algorithms have been proposed, the dividing method is one of them. Based on the clustering algorithm is divided into classification problems using the method of statistical analysis. In this paper,we introduces the definition of clustering and type of clustering algorithm,the basic principle of k-means clustering algorithm and K-center clustering algorithm are expounded in detail,we also analyze their performance,the scholars in recent years the study of the clustering algorithm based on partitioning present situation has carried on the comb,make a brief introduction to its specific application instance. Key words:Data mining;clustering;k-means clustering algorithms;k-medoids clustering algorithms;k-modes clustering algorithms ;k-prototype clustering algorithms 1.引言 把单个的数据对象的集合划分为相类似的样本组成的多个簇或多个类的过程,这就叫聚类[1]。在无监督的情况下,具有独立的学习能力,这就是聚类。将数据空间中的所有数据点分别划分到不同的类中,相近距离的划分到相同类,较远距离的划分到不同类,这就是聚类的目的.聚类分析常作为一种数据的预处理过程被用于许多应用当中,它是更深一步分析数据、处理数据的基础。人们通过聚类分析这一最有效的手段来认识事物、探索事物之间的内在联系,而且,关联规则等分析算法的预处理步骤也可以用它。现在,在气象分析中,在图像处理时,在模式识别领域,在食品检验过程中,都有用到它。随着现代科技水平的不断提高、网络的迅猛发展、计算机技术的不断改革和创新,大批量的数据不断涌现。怎样从这些数据中提取有意义的信息成为人们关注的问题。这对聚类分析技术来说无疑是个巨大的挑战。只有具有处理高维的数据的能力的聚类算法才能解决该问题. 研究者们开始设计各种聚类算法,于是,基于划分的聚类算法便应运而生,而且,取得了很好的效果。 2.正文 1 聚类概述

聚类算法比较

聚类算法: 1. 划分法:K-MEANS算法、K-M EDOIDS算法、CLARANS算法; 1)K-means 算法: 基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇。然后按平均法重新计算各个簇的质心,从而确定新的簇心。一直迭代,直到簇心的移动距离小于某个给定的值。 K-Means聚类算法主要分为三个步骤: (1)第一步是为待聚类的点寻找聚类中心 (2)第二步是计算每个点到聚类中心的距离,将每个点聚类到离该点最近的聚类中去 (3)第三步是计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心 反复执行(2)、(3),直到聚类中心不再进行大范围移动或者聚类次数达到要求为止 下图展示了对n个样本点进行K-means聚类的效果,这里k取2: (a)未聚类的初始点集 (b)随机选取两个点作为聚类中心 (c)计算每个点到聚类中心的距离,并聚类到离该点最近的聚类中去 (d)计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心 (e)重复(c),计算每个点到聚类中心的距离,并聚类到离该点最近的聚类中去 (f)重复(d),计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心 优点: 1.算法快速、简单; 2.对大数据集有较高的效率并且是可伸缩性的; 3.时间复杂度近于线性,而且适合挖掘大规模数据集。 缺点: 1. 在 K-means 算法中 K 是事先给定的,这个 K 值的选定是非常难以估计的。 2. 在 K-means 算法中,首先需要根据初始聚类中心来确定一个初始划分,然后对初始划分进行优化。这个初始聚类中心的选择对聚类结果有较大的影响。

一种基于密度的快速聚类算法

第37卷第11期 2000年11月计算机研究与发展JOU RNAL O F COM PU T ER R ESEA RCH &D EV ELO PM EN T V o l 137,N o 111N ov .2000 原稿收到日期:1999209220;修改稿收到日期:1999212209.本课题得到国家自然科学基金项目(项目编号69743001)和国家教委博士点教育基金的资助.周水庚,男,1966年生,博士研究生,高级工程师,主要从事数据库、数据仓库和数据挖掘以及信息检索等的研究.周傲英,男,1965年生,教授,博士生导师,主要从事数据库、数据挖掘和W eb 信息管理等研究.曹晶,女,1976年生,硕士研究生,主要从事数据库、数据挖掘等研究.胡运发,男,1940年生,教授,博士生导师,主要从事知识工程、数字图书馆、信息检索等研究. 一种基于密度的快速聚类算法 周水庚 周傲英 曹 晶 胡运发 (复旦大学计算机科学系 上海 200433) 摘 要 聚类是数据挖掘领域中的一个重要研究方向.聚类技术在统计数据分析、模式识别、图像处理等领域有广泛应用.迄今为止人们提出了许多用于大规模数据库的聚类算法.基于密度的聚类算法DBSCAN 就是一个典型代表.以DBSCAN 为基础,提出了一种基于密度的快速聚类算法.新算法以核心对象邻域中所有对象的代表对象为种子对象来扩展类,从而减少区域查询次数,降低I O 开销,实现快速聚类.对二维空间数据测试表明:快速算法能够有效地对大规模数据库进行聚类,速度上数倍于已有DBSCAN 算法. 关键词 空间数据库,数据挖掘,聚类,密度,快速算法,代表对象 中图法分类号 T P 311.13;T P 391 A FAST D ENSIT Y -BASED CL USTER ING AL G OR ITH M ZHOU Shu i 2Geng ,ZHOU A o 2Y ing ,CAO J ing ,and HU Yun 2Fa (D ep a rt m en t of Co mp u ter S cience ,F ud an U n iversity ,S hang ha i 200433) Abstract C lu stering is a p rom ising app licati on area fo r m any fields including data m in ing ,statistical data analysis ,p attern recogn iti on ,i m age p rocessing ,etc .In th is paper ,a fast den sity 2based clu stering algo rithm is developed ,w h ich con siderab ly speeds up the o riginal DB SCAN algo rithm .U n like DB SCAN ,the new DB SCAN u ses on ly a s m all num ber of rep resen tative ob jects in a co re ob ject’s neighbo rhood as seeds to exp and the clu ster so that the execu ti on frequency of regi on query can be decreased ,and con sequen tly the I O co st is reduced .Experi m en tal resu lts show that the new algo rithm is effective and efficien t in clu stering large 2scale databases ,and it is faster than the o riginal DB SCAN by several ti m es . Key words spatial database ,data m in ing ,clu stering ,den sity ,fast algo rithm ,rep resen tative ob jects 1 概 述 近10多年来,数据挖掘逐渐成为数据库研究领域的一个热点[1].其中,聚类分析就是广为研究的问题之一.所谓聚类,就是将数据库中的数据进行分组,使得每一组内的数据尽可能相似而不同组内的数据尽可能不同.聚类技术在统计数据分析、模式识别、图像处理等领域都有广泛的应用前景.迄今为止,人们已经提出了许多聚类算法[2~7].所有这些算法都试图解决大规模数据的聚类问题.以基于密度的聚类算法DB SCAN [4]为基础,本文提出一种基于密度的快速聚类算法.通过选用核心对象附近区域包含的所有对象的代表对象作为种子对象来扩展类,快速算法减少了区域查询的次数,从而减低了聚类时间和I O 开销 .本文内容安排如下:首先在第2节中介绍基于密度的聚类算法DB SCAN 的基本思想,并分析它的局限

5聚类之层次聚类基于划分的聚类(k

5 聚类之层次聚类基于划分的聚类(k 、层次聚类 1、层次聚类的原理及分类1)层次法(Hierarchicalmethods )先计算样本之间的距离。 每次将距离最近的点合并到同一个类。然后,再计算类与类之间的距离,将距离最近的类合并为一个大类。不停的合并, 直到合成了一个类。其中类与类的距离的计算方法有:最短 距离法,最长距离法,中间距离法,类平均法等。比如最短 距离法,将类与类的距离定义为类与类之间样本的最短距离。 层次聚类算法根据层次分解的顺序分为:自下底向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法 agglomerative 和divisive ),也可以理解为自下而上法 bottom-up )和自上而下法(top-down )。自下而上法就是 开始每个个体(object )都是一个类,然后根据linkage 寻找同类,最后形成一个“类” 。自上而下法就是反过来, 开始所有个体都属于一个“类”,然后根据linkage 排除异己,劣之分,只是在实际应用的时候要根据数据特点以及你想要的“类”的个数,来考虑是自上而下更快还是自下而上更快。 最后每个个体都成为一个“类” 。这两种路方法没有孰优孰 至于根据Linkage 判断“类”的方法就是最短距离法、最长

距离法、中间距离法、类平均法等等(其中类平均法往往被 认为是最常用也最好用的方法,一方面因为其良好的单调性,另一方面因为其空间扩张/浓缩的程度适中)。为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位。 2)Hierarchical methods 中比较新的算法有BIRCH( Balanced Iterative Reducingand Clustering Using Hierarchies 利用层次方 法的平衡迭代规约和聚类)主要是在数据量很大的时候使用,而且数据类型是numerical 。首先利用树的结构对对象集进行划分,然后再利用其它聚类方法对这些聚类进行优化; ROCK ( A Hierarchical ClusteringAlgorithm for Categorical Attributes )主要用在categorical 的数据类型上;Chameleon(A Hierarchical Clustering AlgorithmUsing Dynamic Modeling )里用到的linkage 是kNN (k-nearest-neighbor)算法,并以此构建一个graph,Chameleon 的聚类效果被认为非常强大,比BIRCH 好用,但运算复杂度很高,0(22)。 2、层次聚类的流程 凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。绝大多数层次聚类属于凝聚

数据挖掘层次聚类算法研究综述

数据挖掘层次聚类算法研究综述 摘要聚类问题是数据挖掘中的重要问题之一,是一种非监督的学习方法。分层聚类技 术在图像处理、入侵检测和生物信息学等方面有着极为重要的应用,是数据挖掘领域的研究热点之一。本文总结了分层聚类算法技术的研究现状,分析算法性能的主要差异,并指出其今后的发展趋势。 关键词层次聚类,数据挖掘,聚类算法 Review of hierarchical clustering algorithm in Data Mining Abstract Clustering problem of data mining is one of important issues, it is a kind of unsupervised learning methods. Stratified cluster technology in image processing, intrusion detection and bioinformatics has extremely important application and is data mining area of research one of the hotspots. This paper summarizes the layered clustering algorithm technology research, analyzes the main difference arithmetic performance, and pointed out the future development trend. Keywords Hierarchical clustering,Data mining,Clustering algorithm 1引言 随着计算机技术的发展,信息数据越来越多,如何从海量数据中提取对人们有价值的信息已经成为一个非常迫切的问题。由此产生了数据挖掘技术,它是一门新兴的交叉学科,汇集了来自机器学习、模式识别、数据库、统计学、人工智能等各领域的研究成果。聚类分析是数据挖掘中的一个重要研究领域。它在图像处理、入侵检测和生物信息学等方面有着极为重要的应用。数据挖掘是从大量数据中提取出可信、新颖、有效并能被人理解的模式的高级处理过程。其目标是从数据库中发现隐含的、有意义的知识。聚类分析作为一个独立的工具来获得数据分布的情况,是数据挖掘的一个重要研究分支。 在数据挖掘领域,研究工作己经集中在为大型数据库的有效和实际的聚类分析寻找适当的方法。活跃的主题集中在聚类方法的可伸缩性,方法对聚类复杂形状和类型的数据的有效性,高维聚类分析技术,以及针对大型数据库中混合数值和分类数据的聚类方法。迄今为止,人们己经提出了很多聚类算法,它们可以分为如下几类:划分方法、层次方法、基于密度的方法、基于网格的方法和基于模型的方法,这些算法对于不同的研究对象各有优缺点。在聚类算法当中,划分方法和层次方法是最常见的两类聚类技术,其中划分方法具有较高的执行效率,而层次方法在算法上比较符合数据的特性,所以相对于划分方法聚类的效果比较好。[1] 层次聚类算法和基于划分的K-Means聚类算法是实际应用中聚类分析的支柱,算法简单、快速而且能有效地处理大数据集。层次聚类方法是通过将数据组织为若干组并形成一个相应的树来进行聚类的。根据层是自底而上还是自顶而下形成。一个完全层次聚类的质量由于无法对己经做的合并或分解进行调整而受到影响。但是层次聚类算法没有使用准则函数,它所潜含的对数据结构的假设更少,所以它的通用性更强。 2 基于层次的聚类算法 2.1 凝聚的和分裂的层次聚类 层次聚类是聚类问题研究中一个重要的组成部分。分层聚类的基本原则可以表述为:如

一种基于K-Means局部最优性的高效聚类算法

ISSN 1000-9825, CODEN RUXUEW E-mail: jos@https://www.doczj.com/doc/1d15331717.html, Journal of Software, Vol.19, No.7, July 2008, pp.1683?1692 https://www.doczj.com/doc/1d15331717.html, DOI: 10.3724/SP.J.1001.2008.01683 Tel/Fax: +86-10-62562563 ? 2008 by Journal of Software. All rights reserved. ? 一种基于K-Means局部最优性的高效聚类算法 雷小锋1,2+, 谢昆青1, 林帆1, 夏征义3 1(北京大学信息科学技术学院智能科学系/视觉与听觉国家重点实验室,北京 100871) 2(中国矿业大学计算机学院,江苏徐州 221116) 3(中国人民解放军总后勤部后勤科学研究所,北京 100071) An Efficient Clustering Algorithm Based on Local Optimality of K-Means LEI Xiao-Feng1,2+, XIE Kun-Qing1, LIN Fan1, XIA Zheng-Yi3 1(Department of Intelligence Science/National Laboratory on Machine Perception, Peking University, Beijing 100871, China) 2(School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China) 3(Logistics Science and Technology Institute, P.L.A. Chief Logistics Department, Beijing 100071, China) + Corresponding author: E-mail: leiyunhui@https://www.doczj.com/doc/1d15331717.html, Lei XF, Xie KQ, Lin F, Xia ZY. An efficient clustering algorithm based on local optimality of K-Means. Journal of Software, 2008,19(7):1683?1692. https://www.doczj.com/doc/1d15331717.html,/1000-9825/19/1683.htm Abstract: K-Means is the most popular clustering algorithm with the convergence to one of numerous local minima, which results in much sensitivity to initial representatives. Many researches are made to overcome the sensitivity of K-Means algorithm. However, this paper proposes a novel clustering algorithm called K-MeanSCAN by means of the local optimality and sensitivity of K-Means. The core idea is to build the connectivity between sub-clusters based on the multiple clustering results of K-Means, where these clustering results are distinct because of local optimality and sensitivity of K-Means. Then a weighted connected graph of the sub-clusters is constructed using the connectivity, and the sub-clusters are merged by the graph search algorithm. Theoretic analysis and experimental demonstrations show that K-MeanSCAN outperforms existing algorithms in clustering quality and efficiency. Key words: K-MeanSCAN; density-based; K-Means; clustering; connectivity 摘要: K-Means聚类算法只能保证收敛到局部最优,从而导致聚类结果对初始代表点的选择非常敏感.许多研究 工作都着力于降低这种敏感性.然而,K-Means的局部最优和结果敏感性却构成了K-MeanSCAN聚类算法的基 础.K-MeanSCAN算法对数据集进行多次采样和K-Means预聚类以产生多组不同的聚类结果,来自不同聚类结果的 子簇之间必然会存在交集.算法的核心思想是,利用这些交集构造出关于子簇的加权连通图,并根据连通性合并子 簇.理论和实验证明,K-MeanScan算法可以在很大程度上提高聚类结果的质量和算法的效率. 关键词: K-MeanSCAN;基于密度;K-Means;聚类;连通性 中图法分类号: TP18文献标识码: A ? Supported by the National High-Tech Research and Development Plan of China under Grant No.2006AA12Z217 (国家高技术研究发 展计划(863)); the Foundation of China University of Mining and Technology under Grant No.OD080313 (中国矿业大学科技基金) Received 2006-10-09; Accepted 2007-07-17

(完整版)聚类算法总结.doc

1.聚类定义 “聚类是把相似的对象通过静态分类的方法分成不同的组别或者 更多的子集( subset),这样让在同一个子集中的成员对象都有一 些相似的属性”—— wikipedia “聚类分析指将物理或抽象对象 的集合分组成为由类似的对象组 成的多个类的分析过程。它是一种重要的人类行为。聚类是将数 据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对 象有很大的相似性,而不同簇间的对象有很大的相异性。”——百度百科 说白了,聚类( clustering)是完全可以按字面意思来理解的——将相同、相似、相近、相关的对象实例聚成一类的过程。简单理 解,如果一个数据集合包含 N 个实例,根据某种准则可以将这 N 个 实例划分为 m 个类别,每个类别中的实例都是相关的,而不同类别 之间是区别的也就是不相关的,这个过程就叫聚类了。 2.聚类过程 : 1)数据准备 :包括特征标准化和降维 . 2)特征选择 :从最初的特征中选择最有效的特征 ,并将其存储于向量 中 . 3)特征提取 :通过对所选择的特征进行转换形成新的突出特征.

4)聚类 (或分组 ):首先选择合适特征类型的某种距离函数 (或构造新的距离函数 )进行接近程度的度量 ;而后执行聚类或分组 . 5)聚类结果评估 :是指对聚类结果进行评估 .评估主要有 3 种 :外部有效性评估、内部有效性评估和相关性测试评估. 3聚类算法的类别 没有任何一种聚类技术(聚类算法 )可以普遍适用于揭示各种多维数据集所呈现出来的多种多样的结构,根据数据在聚类中的积聚规则以及应用这些规则的方法,有多种聚类算法.聚类算法有多种分类方法将聚类算法大致分成层次化聚类算法、划分式聚类算 法、基于密度和网格的聚类算法和其他聚类算法,如图1 所示的4 个类别.

聚类比较

聚类的目标是使同一类对象的相似度尽可能地大;不同类对象之间的相似度尽可能地小。目前聚类的方法很多,根据基本思想的不同,大致可以将聚类算法分为五大类:层次聚类算法、分割聚类算法、基于约束的聚类算法、机器学习中的聚类算法和用于高维度的聚类算法。摘自数据挖掘中的聚类分析研究综述这篇论文。 1、层次聚类算法 1.1聚合聚类 1.1.1相似度依据距离不同:Single-Link:最近距离、Complete-Link:最远距离、Average-Link:平均距离 1.1.2最具代表性算法 1)CURE算法 特点:固定数目有代表性的点共同代表类 优点:识别形状复杂,大小不一的聚类,过滤孤立点 2)ROCK算法 特点:对CURE算法的改进 优点:同上,并适用于类别属性的数据 3)CHAMELEON算法 特点:利用了动态建模技术 1.2分解聚类 1.3优缺点

优点:适用于任意形状和任意属性的数据集;灵活控制不同层次的聚类粒度,强聚类能力缺点:大大延长了算法的执行时间,不能回溯处理 2、分割聚类算法 2.1基于密度的聚类 2.1.1特点 将密度足够大的相邻区域连接,能有效处理异常数据,主要用于对空间数据的聚类 2.1.2典型算法 1)DBSCAN:不断生长足够高密度的区域 2)DENCLUE:根据数据点在属性空间中的密度进行聚类,密度和网格与处理的结合 3)OPTICS、DBCLASD、CURD:均针对数据在空间中呈现的不同密度分不对DBSCAN作了改进 2.2基于网格的聚类 2.2.1特点 利用属性空间的多维网格数据结构,将空间划分为有限数目的单元以构成网格结构; 1)优点:处理时间与数据对象的数目无关,与数据的输入顺序无关,可以处理任意类型的数据 2)缺点:处理时间与每维空间所划分的单元数相关,一定程度上降低了聚类的质量和准确性 2.2.2典型算法 1)STING:基于网格多分辨率,将空间划分为方形单元,对应不同分辨率 2)STING+:改进STING,用于处理动态进化的空间数据 3)CLIQUE:结合网格和密度聚类的思想,能处理大规模高维度数据 4)WaveCluster:以信号处理思想为基础 2.3基于图论的聚类 2.3.1特点 转换为组合优化问题,并利用图论和相关启发式算法来解决,构造数据集的最小生成数,再逐步删除最长边 1)优点:不需要进行相似度的计算 2.3.2两个主要的应用形式 1)基于超图的划分 2)基于光谱的图划分 2.4基于平方误差的迭代重分配聚类 2.4.1思想 逐步对聚类结果进行优化、不断将目标数据集向各个聚类中心进行重新分配以获最优解2.4.2具体算法 1)概率聚类算法 期望最大化、能够处理异构数据、能够处理具有复杂结构的记录、能够连续处理成批的数据、具有在线处理能力、产生的聚类结果易于解释 2)最近邻聚类算法——共享最近邻算法SNN 特点:结合基于密度方法和ROCK思想,保留K最近邻简化相似矩阵和个数 不足:时间复杂度提高到了O(N^2) 3)K-Medioids算法 特点:用类中的某个点来代表该聚类

基于密度峰和划分的快速聚类算法

计算机与现代化 2018年第8期 JISUANJI YU XIANDAIHUA 总第276期 文章编号:1006-2475(2018)08-0016-05收稿日期:2018-06-25 基金项目:国家科技支撑计划项目(2014BAD 10B 05-02);国家星火计划项目(2014GA 710001);安徽省科技攻关项目(1804A 07020124) 作者简介:琚书存(1971-),男,安徽桐城人,安徽省农村综合经济信息中心、安徽省农业气象中心高级工程师,硕士,研究方向:农业农村信息化,数据挖掘;程文杰(1978-),男,工程师,本科,研究方向:农村信息化;徐建鹏(1977-),男,高级工程师,本科,研究方向:数据挖掘。基于密度峰和划分的快速聚类算法 琚书存1,2,程文杰1,2,徐建鹏2,徐 祥2,徐 阳2 (1.安徽省农村综合经济信息中心,安徽合肥230001;2.安徽省农业气象中心,安徽合肥230001) 摘要:传统基于划分的聚类算法需要人工给定聚类数,且由于算法采取刚性划分,可能会导致将较大或延伸状的聚类簇分割的现象,导致错误的聚类结果。密度峰聚类是近年提出的一种新的基于密度的聚类算法,该算法不需要预先指定聚类数目,且能够发现非球形簇。将密度峰思想引入基于划分的聚类算法,提出一种基于密度峰和划分的快速聚类算法(DDBSCAN ),该算法首先获取一组簇的核心对象(密度峰),用于描述簇的“骨骼”,而后将周围的点划分到最近的核心对象,最后通过判断划分边界处的密度情况合并簇。实验证明,该算法能有效地适应任意形状、大小不一的数据集,与传统基于密度的聚类算法相比收敛速度更快。 关键词:密度峰聚类;核心对象;基于划分;边界密度;任意形状 中图分类号:TP 301.6 文献标识码:A doi :10.3969/j .issn .1006-2475.2018.08.004 A Fast Clustering Algorithm Based on Cluster -centers and Partition JU Shu -cun 1,2,CHENG Wen -jie 1,2,XU Jian -peng 2,XU Xiang 2,XU Yang 2 (1.Rural Comprehensive Economic Information Center of Anhui Province ,Hefei 230001,China ; 2.Anhui Agrometeorological Center ,Hefei 230001,China ) Abstract :The clustering algorithm based on traditional partition needs to give the number of clustering artificially ,and due to the rigid partition of the algorithm ,it may lead to the segmentation of large or extended clusters ,leading to the wrong clustering re -sults .Clustering by density peak is a new clustering algorithm based on density proposed in recent years .The algorithm does not need to specify the number of clusters in advance ,and can detect nonspherical clusters .A fast clustering algorithm based on den -sity peak and partition (DDBSCAN )is proposed in this paper .The algorithm first obtains the cluster center (density peak )of a group of clusters ,which describes the “skeleton ”of the cluster ,then divides the surrounding points into the nearest core object ,and finally the clusters is merged by judging the density at the dividing edge .Experiments show that the algorithm can effectively adapt to data sets of arbitrary shape and size ,and converges faster than traditional clustering algorithms based on density .Key words :clustering by density peak ;cluster center ;partition -based ;boundary density ;irregular shape 0 引 言 数据挖掘的目的是从已有的数据中发现未知的、 有价值的信息。聚类分析作为数据挖掘中最重要的 技术之一,广泛应用于生物学、市场分析、信息分析、 模式识别、图像检测、字符检测、统计学等领域。面对 无法预测的聚类对象,很难找到一种万能的算法进行 聚类分析,但是,人们已经提出的聚类算法针对某一 特点的数据对象是十分有效的,聚类时可以根据数据对象的类型、聚类目的和应用领域作出相应的选择。现有的聚类算法主要分为以下几种:基于划分的方法(如K -means 、K -MEDOIDS 等)、基于层次的方法(如BIRCH 、CURE 等)、基于密度的方法(如DB -SCAN 、OPTICS )、基于网格的方法(如STING 、CLIQUE 等)以及基于模型的方法等[1]。分析这些方法,各有自身的特点,总体而言,基于划分的聚类方法具有简单、易于理解、收敛速度快但无法适应非球状簇。基于密度的聚类方法可以发现任意形状的类簇,但对参 万方数据

相关主题
文本预览
相关文档 最新文档