聚类算法比较
- 格式:doc
- 大小:199.00 KB
- 文档页数:9
各种聚类算法的比较聚类算法是一种将数据按照相似性分组的无监督学习方法。
在数据分析和机器学习中,聚类算法被广泛应用于数据挖掘、模式识别、图像处理等领域。
本文将介绍几种常见的聚类算法,并对它们进行比较。
1. K-means算法K-means算法是最常见的聚类算法之一,它将数据划分为K个集群,每个集群包含最接近其均值的数据点。
该算法迭代地更新集群的均值,直到满足收敛条件。
K-means算法简单、高效,适用于大型数据集。
然而,它对异常值和噪声敏感,并且对初始聚类中心的选择非常敏感。
2.层次聚类算法层次聚类算法是一种自底向上或自顶向下的聚类方法,它通过计算数据点之间的相似性构建一个聚类层次结构。
这种层次结构可以以树状图的形式表示,称为树状图聚类。
层次聚类算法的优点是不需要指定聚类个数,且能够处理任意形状的聚类。
然而,该算法的计算复杂度较高,并且对输入数据的规模和噪声敏感。
3.密度聚类算法密度聚类算法通过计算数据点周围的密度来确定聚类结构。
DBSCAN是最常见的密度聚类算法之一,它通过指定半径和邻域密度来定义聚类。
DBSCAN能够识别任意形状的聚类,并且对噪声和异常值具有较高的鲁棒性。
然而,密度聚类算法对参数的选择非常敏感,并且对高维数据和不同密度的聚类效果较差。
4.基于概率的聚类算法基于概率的聚类算法假设数据服从其中一种概率分布,并通过最大化似然函数来进行聚类。
GMM (Gaussian Mixture Model) 是一种常见的基于概率的聚类算法,它假设数据由多个高斯分布组成。
GMM算法能够分离具有不同协方差的聚类,适用于高维数据和非球状的聚类。
然而,该算法对初始参数的选择敏感,并且计算复杂度较高。
5.划分聚类算法划分聚类算法将数据划分为互斥的聚类,然后通过迭代地重新分配数据点来优化聚类质量。
PAM (Partitioning Around Medoids) 和CLARA (Clustering Large Applications)是常见的划分聚类算法。
各种聚类算法的优缺点在机器学习领域中,聚类(cluster)是最基本的无监督学习问题之一。
聚类算法是指把具有相似性质的数据对象分组的算法,被广泛应用于数据挖掘、模式识别等领域。
本文将介绍几种常见的聚类算法、它们的优缺点,并与之间做出比较。
一、K-Means聚类算法K-Means算法又称为K均值算法,是最为普及的一种聚类算法。
该算法通过将 n 个对象分到 k 个类的方法来使每个数据对象都与所属类的均值最为接近。
K-Means聚类算法有以下优缺点:优点:1.简单、易于实现。
2.计算速度快。
缺点:1.需要预先设定数据类别数量,且对初始化比较敏感。
2.数据集分布不均匀或聚类类别的数量差别较大时,聚类效果较差。
二、层次聚类算法层次聚类算法是一种基于树形结构的聚类方法,可以得到不同类别的层次结构。
该算法的核心思想就是通过计算每个数据对象间的距离并逐步将他们聚合成层次结构。
层次聚类算法的优缺点如下:优点:1.可以帮助我们发现数据对象之间的内部关系和层次结构。
2.不需要预先设定聚类类别数量。
缺点:1.计算复杂度较高,不适合大规模数据集。
2.聚类的结果可能会很大,难以在可视化方面得到较好的展示效果。
三、DBSCAN聚类算法DBSCAN是基于密度的聚类算法。
该算法将具有密度连接的数据点视为一组,并且可以在其它密度较低的区域中选择单个数据点。
DBSCAN聚类算法的优缺点如下:优点:1.不需要预设聚类类别数量。
2.能够发现任意形态的聚类。
缺点:1.初始化比较敏感,对参数设置等因素较为敏感。
2.难以解决密度分布不均一、噪音点分布不规律的问题。
四、BIRCH聚类算法BIRCH算法是基于描述的聚类方法,是聚类中的层次算法。
BIRCH的全称是Balanced Iterative Reducing and Clustering using Hierarchies,它采用一种合并聚类方式,通过类的层次结构来简化聚类过程。
BIRCH聚类算法的优缺点如下:优点:1.该算法能够处理海量数据。
常见的六大聚类算法六大常见的聚类算法包括K-means聚类算法、层次聚类算法、DBSCAN 算法、OPTICS算法、谱聚类算法和高斯混合模型聚类算法。
1. K-means聚类算法:K-means聚类算法是一种基于距离的聚类算法,它通过最小化数据点与聚类中心之间的欧氏距离来划分数据点。
算法的步骤如下:a.随机选择K个聚类中心。
b.将每个数据点分配到距离最近的聚类中心。
c.更新聚类中心为选定聚类的平均值。
d.重复步骤b和c直到聚类中心不再改变或达到最大迭代次数。
2.层次聚类算法:层次聚类算法是一种自底向上或自顶向下递归地将数据划分成不同的聚类的方法。
它通过计算数据点之间的距离或相似度来判断它们是否应该被合并到同一个聚类中。
算法的步骤如下:a.初始化每个数据点为一个单独的聚类。
b.计算两个最近的聚类之间的距离或相似度。
c.合并两个最近的聚类,形成一个新的聚类。
d.重复步骤b和c直到所有数据点都被合并到一个聚类中。
3.DBSCAN算法:DBSCAN(Density-Based Spatial Clustering of Applicationswith Noise)算法是一种基于密度的聚类算法,它通过寻找具有足够密度的数据点来划分聚类。
算法的步骤如下:a.随机选择一个未被访问的数据点。
b.如果该数据点的密度达到预设的阈值,则将其归为一个聚类,同时将其相邻且密度达到阈值的数据点添加到聚类中。
c.重复步骤a和b直到所有数据点都被访问。
4.OPTICS算法:OPTICS(Ordering Points To Identify the Clustering Structure)算法是一种基于密度的聚类算法,它通过将数据点按照密度排序来划分聚类。
算法的步骤如下:a.计算每个数据点的可达距离和局部可达密度。
b.根据可达距离和局部可达密度排序所有数据点。
c.根据可达距离和阈值划分聚类。
d.重复步骤b和c直到所有数据点都被访问。
时间序列聚类算法的改进与比较时间序列是在时间上进行观察和记录的一系列数据点的集合,它们在许多领域中都扮演着重要角色,如金融、交通、气象等。
时间序列聚类就是将相似的时间序列数据点分组到同一类别中。
在实际应用中,时间序列聚类算法的性能和准确性对于分析和预测同一类时间序列非常重要。
为了改进和比较不同的时间序列聚类算法,研究人员一直在致力于提出新的算法和改进现有算法。
首先,我们来介绍几种常见的时间序列聚类算法。
K-means算法是最经典的聚类算法之一,它通过迭代更新中心点的方式将数据点分配到不同的簇中。
然而,对于时间序列数据来说,K-means算法并不能很好地处理时间序列中的形状相似性。
因此,一些改进的方法被提出,例如K-means++、K-medoids和K-medians等。
这些算法在选择初始中心点或者使用其他距离度量方式上有所不同,以提高聚类结果的准确性。
另一类常见的时间序列聚类算法是层次聚类算法,例如凝聚聚类算法和分裂聚类算法。
凝聚聚类算法从单个数据点开始,逐步将相似的数据点合并到一个簇中,直到满足某个停止准则为止。
分裂聚类算法则从整个数据集开始,逐步将一个簇分裂为多个簇,直到满足某个停止准则为止。
这些算法可以提供不同层次的聚类结构,适用于不同规模和复杂度的时间序列数据。
此外,基于密度的聚类算法也可以用于时间序列的聚类。
DBSCAN算法是其中一种常见的基于密度的聚类算法,它通过定义核心对象、邻域半径和最小邻居数等参数来将数据点分为核心对象、边界点和噪声点。
DBSCAN算法在聚类非球状簇和识别噪声点上具有一定优势,但对于时间序列数据的距离度量和邻域定义需要进行适当调整。
为了改进和比较这些时间序列聚类算法,研究人员提出了许多新的想法和方法。
一种常见的改进方法是结合多种聚类算法的优点,形成混合聚类算法。
例如,将层次聚类算法与K-means算法结合,利用层次聚类算法的多层次结构和K-means算法的迭代优化能力来提高聚类结果。
聚类算法的优缺点分析
一、聚类算法的定义
聚类算法是一种数据挖掘技术,它可以根据数据的相似性将数据分成不同的组。
聚类算法常用于市场分析、生物信息学、搜索引擎优化等领域,研究聚类算法的优缺点有助于更好地理解和应用这一技术。
二、优点分析
1. 数据解释性强:聚类算法可以将数据按照相似性进行分组,这有助于对数据进行解释和理解。
2. 发现隐藏模式:聚类算法可以帮助用户发现数据中的隐藏模式和规律,为决策提供支持。
3. 无监督学习:聚类算法是一种无监督学习方法,不需要预先标记的训练数据,适用于大多数数据挖掘场景。
4. 数据预处理:聚类算法可以用于数据预处理,帮助用户减少数据维度,提高数据处理效率。
三、缺点分析
1. 需要选择合适的距离度量:聚类算法的效果与距离度量的选择有关,不同的距离度量会导致不同的聚类结果。
2. 对初始值敏感:聚类算法对初始值敏感,初始值的选择会影响最终的聚类结果,需要谨慎选择。
3. 处理噪声和异常值困难:聚类算法对噪声和异常值比较敏感,这会影响聚类结果的准确性。
4. 难以处理大规模数据:一些聚类算法在处理大规模数据时效率较低,需要耗费大量的计算资源和时间。
四、结论
聚类算法是一种强大的数据挖掘技术,它可以帮助用户发现数据中的隐藏规律和模式,对于无监督学习和数据预处理都有很好的应用前景。
然而,聚类算法也存在一些缺点,比如对初始值敏感、处理噪声和异常值困难等问题,需要在实际应用中充分考虑。
在未来的研究中,可以进一步探讨聚类算法的改进和优化,以提高其在实际应用中的效率和准确性。
各种聚类算法的比较聚类的目标是使同一类对象的相似度尽可能地小;不同类对象之间的相似度尽可能地大。
目前聚类的方法很多,根据基本思想的不同,大致可以将聚类算法分为五大类:层次聚类算法、分割聚类算法、基于约束的聚类算法、机器学习中的聚类算法和用于高维度的聚类算法。
摘自数据挖掘中的聚类分析研究综述这篇论文。
1、层次聚类算法1.1聚合聚类1.1.1相似度依据距离不同:Single-Link:最近距离、Complete-Link:最远距离、Average-Link:平均距离1.1.2最具代表性算法1)CURE算法特点:固定数目有代表性的点共同代表类优点:识别形状复杂,大小不一的聚类,过滤孤立点2)ROCK算法特点:对CURE算法的改进优点:同上,并适用于类别属性的数据3)CHAMELEON算法特点:利用了动态建模技术1.2分解聚类1.3优缺点优点:适用于任意形状和任意属性的数据集;灵活控制不同层次的聚类粒度,强聚类能力缺点:大大延长了算法的执行时间,不能回溯处理2、分割聚类算法2.1基于密度的聚类2.1.1特点将密度足够大的相邻区域连接,能有效处理异常数据,主要用于对空间数据的聚类1)DBSCAN:不断生长足够高密度的区域2)DENCLUE:根据数据点在属性空间中的密度进行聚类,密度和网格与处理的结合3)OPTICS、DBCLASD、CURD:均针对数据在空间中呈现的不同密度分不对DBSCAN作了改进2.2基于网格的聚类2.2.1特点利用属性空间的多维网格数据结构,将空间划分为有限数目的单元以构成网格结构;1)优点:处理时间与数据对象的数目无关,与数据的输入顺序无关,可以处理任意类型的数据2)缺点:处理时间与每维空间所划分的单元数相关,一定程度上降低了聚类的质量和准确性2.2.2典型算法1)STING:基于网格多分辨率,将空间划分为方形单元,对应不同分辨率2)STING+:改进STING,用于处理动态进化的空间数据3)CLIQUE:结合网格和密度聚类的思想,能处理大规模高维度数据4)WaveCluster:以信号处理思想为基础2.3基于图论的聚类2.3.1特点转换为组合优化问题,并利用图论和相关启发式算法来解决,构造数据集的最小生成数,再逐步删除最长边1)优点:不需要进行相似度的计算2.3.2两个主要的应用形式1)基于超图的划分2)基于光谱的图划分2.4基于平方误差的迭代重分配聚类2.4.1思想逐步对聚类结果进行优化、不断将目标数据集向各个聚类中心进行重新分配以获最优解1)概率聚类算法期望最大化、能够处理异构数据、能够处理具有复杂结构的记录、能够连续处理成批的数据、具有在线处理能力、产生的聚类结果易于解释2)最近邻聚类算法——共享最近邻算法SNN特点:结合基于密度方法和ROCK思想,保留K最近邻简化相似矩阵和个数不足:时间复杂度提高到了O(N^2)3)K-Medioids算法特点:用类中的某个点来代表该聚类优点:能处理任意类型的属性;对异常数据不敏感4)K-Means算法1》特点:聚类中心用各类别中所有数据的平均值表示2》原始K-Means算法的缺陷:结果好坏依赖于对初始聚类中心的选择、容易陷入局部最优解、对K值的选择没有准则可依循、对异常数据较为敏感、只能处理数值属性的数据、聚类结构可能不平衡3》K-Means的变体Bradley和Fayyad等:降低对中心的依赖,能适用于大规模数据集Dhillon等:调整迭代过程中重新计算中心方法,提高性能Zhang等:权值软分配调整迭代优化过程Sarafis:将遗传算法应用于目标函数构建中Berkh in等:应用扩展到了分布式聚类还有:采用图论的划分思想,平衡聚类结果,将原始算法中的目标函数对应于一个各向同性的高斯混合模型5)优缺点优点:应用最为广泛;收敛速度快;能扩展以用于大规模的数据集缺点:倾向于识别凸形分布、大小相近、密度相近的聚类;中心选择和噪声聚类对结果影响大3、基于约束的聚类算法3.1约束对个体对象的约束、对聚类参数的约束;均来自相关领域的经验知识3.2重要应用对存在障碍数据的二维空间按数据进行聚类,如COD(Clustering with Obstructed Distance):用两点之间的障碍距离取代了一般的欧式距离3.3不足通常只能处理特定应用领域中的特定需求4、用于高维数据的聚类算法4.1困难来源因素1)无关属性的出现使数据失去了聚类的趋势2)区分界限变得模糊4.2解决方法1)对原始数据降维2)子空间聚类CACTUS:对原始空间在二维平面上的投影CLIQUE:结合基于密度和网格的聚类思想,借鉴Apriori算法3)联合聚类技术特点:对数据点和属性同时进行聚类文本:基于双向划分图及其最小分割的代数学方法4.3不足:不可避免地带来了原始数据信息的损失和聚类准确性的降低5、机器学习中的聚类算法5.1两个方法1)人工神经网络方法自组织映射:向量化方法,递增逐一处理;映射至二维平面,实现可视化基于投影自适应谐振理论的人工神经网络聚类2)基于进化理论的方法缺陷:依赖于一些经验参数的选取,并具有较高的计算复杂度模拟退火:微扰因子;遗传算法(选择、交叉、变异)5.2优缺点优点:利用相应的启发式算法获得较高质量的聚类结果缺点:计算复杂度较高,结果依赖于对某些经验参数的选择。
各种聚类算法的比较聚类算法是一种无监督学习方法,用于将样本划分为具有相似特征的不同组别。
在机器学习和数据挖掘中被广泛应用。
有许多不同的聚类算法可供选择,每个算法有其独特的优点和适用范围。
在本文中,我们将比较几种常用的聚类算法,以帮助选择最适合特定问题和数据集的算法。
1.K均值聚类算法:K均值算法是一种经典的聚类算法。
它将数据点分为K个不同的簇,使得同一簇内的数据点之间的距离尽可能小,不同簇之间的距离尽可能大。
该算法计算复杂度较低,适用于大数据集。
然而,该算法对初始聚类中心的选择非常敏感,并且只能处理数值型数据。
2.层次聚类算法:层次聚类算法通过计算数据点之间的相似性将它们逐步聚类成树状结构。
该算法不需要事先指定聚类个数,并且可以处理各种数据类型。
然而,该算法在处理大数据集时计算复杂度较高,并且结果的质量受到相似性度量的影响。
3.密度聚类算法:密度聚类算法使用数据点密度来识别簇。
该算法可以处理不规则形状的簇,并且对初始聚类中心的选择不敏感。
DBSCAN是一种常用的密度聚类算法。
然而,该算法对密度参数的选择敏感,并且在处理高维数据时效果可能不好。
4.基于模型的聚类算法:基于模型的聚类算法将数据点建模为一些概率分布的样本。
该算法可以处理不同形状和大小的簇,并且能够进行概率推断。
高斯混合模型(GMM)是一种常用的基于模型的聚类算法。
然而,该算法对模型的选择和参数估计比较困难。
5.谱聚类算法:谱聚类算法通过矩阵分解来对数据进行聚类。
该算法可以处理非线性可分的数据,并且不需要事先指定聚类个数。
然而,该算法在处理大数据集时计算开销较大,并且对相似度矩阵的构建方法敏感。
以上只是一些常见的聚类算法,实际上还有许多其他聚类算法可供选择,如affinity propagation、BIRCH、OPTICS等。
每种算法都有其独特的特点和适用范围。
在选择聚类算法时,需要考虑数据集的规模、维度、特征类型以及问题的特殊需求等因素。
用于客户细分的不同聚类算法的比较分析。
客户细分是指将客户群体按照特定的标准或属性划分为若干个具有相似特征的子群体,目的是更好地了解客户需求、优化营销策略和提升客户满意度。
聚类算法是一种常用的客户细分方法,它能够根据客户的行为、购买偏好、地理位置等特征将客户分为不同的群组。
本文将对以下几种常见的聚类算法进行比较分析:K-means聚类算法、层次聚类算法、DBSCAN聚类算法和高斯混合模型聚类算法。
1. K-means聚类算法:K-means是一种常见的迭代聚类算法,其主要思想是通过计算样本之间的距离将样本划分为K个不重叠的簇。
该算法的步骤包括初始化簇中心、计算样本与簇中心的距离、将样本分配到最近的簇以及更新簇中心。
K-means算法具有较高的效率和可扩展性,适用于大规模数据集的聚类。
2. 层次聚类算法:层次聚类算法是一种自底向上或自顶向下的聚类方法,它通过计算样本之间的相似度或距离来构建一个层次化的聚类结构。
该算法能够生成完整的聚类层次,并且不需要预先指定聚类簇的个数。
层次聚类算法的优点是能够发现数据中的潜在结构和异类样本,但计算复杂度较高,不适用于大规模数据集。
3. DBSCAN聚类算法:DBSCAN是一种基于密度的聚类算法,它通过定义样本的领域密度来划分簇。
该算法能够发现任意形状和大小的聚类,并能够识别噪声点。
DBSCAN的优点是不需要预先指定聚类簇的个数,适用于大规模数据集和高维数据。
但在处理样本密度差异较大的数据集时,可能会产生较多的噪声点。
4. 高斯混合模型聚类算法:高斯混合模型(GMM)聚类算法假设样本属于多个高斯分布的混合,并通过最大似然估计来估计每个簇的参数。
该算法能够发现潜在的数据生成过程,并能够处理样本存在重叠的情况。
GMM聚类算法的优点是能够生成软聚类结果,且对异常值不敏感。
但计算复杂度较高,对参数的初始化敏感。
根据以上分析,可以看出不同的聚类算法在客户细分中具有不同的优缺点。
算法学习的聚类和分类方法比较随着人工智能技术的不断发展,算法学习已经成为了许多领域的重要研究方向。
在算法学习中,聚类和分类是两种常用的方法。
本文将对这两种方法进行比较,探讨它们的优劣势以及适用场景。
一、聚类方法聚类方法是一种无监督学习的方法,它通过将数据集中的样本分成不同的簇来发现数据集中的内在结构。
聚类方法的核心思想是通过计算样本之间的相似度或距离来确定样本之间的关系,并将相似的样本归为一类。
常见的聚类方法有K-means算法、层次聚类算法等。
K-means算法是一种常用的聚类算法,它将样本划分为K个簇,每个簇的中心点代表了该簇的特征。
K-means算法通过迭代计算样本与簇中心点之间的距离,并将样本归类到距离最近的簇中。
该算法简单易懂,计算效率高,适用于大规模数据集。
层次聚类算法是一种自底向上或自顶向下的聚类方法,它通过计算样本之间的相似度或距离来构建一个层次结构。
该算法可以根据需求选择不同的相似度或距离度量方法,并且可以根据需要确定聚类的层次数。
层次聚类算法适用于数据集中存在多个层次结构的情况。
二、分类方法分类方法是一种有监督学习的方法,它通过已知的样本标签来训练模型,并将新的样本分类到已知类别中。
分类方法的核心思想是通过构建分类器来学习样本的特征和类别之间的关系。
常见的分类方法有决策树算法、支持向量机算法等。
决策树算法是一种常用的分类算法,它通过构建一棵树来表示样本特征和类别之间的关系。
决策树算法通过选择合适的特征和设置适当的划分条件来将样本分到不同的类别中。
该算法易于理解和解释,适用于处理具有离散特征的数据。
支持向量机算法是一种基于统计学习理论的分类算法,它通过在特征空间中构建一个最优超平面来实现分类。
支持向量机算法通过最大化样本间的间隔来提高分类的准确性,并且可以通过核函数将非线性问题映射到高维空间中。
该算法适用于处理具有连续特征的数据。
三、方法比较聚类和分类方法在算法学习中都有各自的优势和适用场景。
聚类算法的优缺点分析聚类算法是一种用于将数据集中的样本分组成若干类别的无监督学习方法。
它在许多领域中都有着广泛的应用,比如:数据挖掘、模式识别、图像分割等。
在本文中,我们将分析聚类算法的优缺点,并探讨其在实际应用中的局限性和改进空间。
优点首先,聚类算法具有较高的灵活性。
它可以根据不同的数据集和需求选择不同的算法进行聚类分析,因此适用性较广。
其次,聚类算法对于处理大规模数据集有着较好的效果。
在处理大规模数据集时,传统的人工分类要求大量的时间和人力,而聚类算法能够快速而准确地完成这一任务。
此外,聚类算法还可以发现数据集中的隐藏模式和规律,帮助人们更好地理解数据。
再次,聚类算法的结果易于解释和可视化。
通过聚类分析,我们可以将数据集中的样本划分为若干个类别,从而更直观地理解数据的内在结构。
这种可视化的结果对于决策制定和问题解决具有重要的意义。
最后,聚类算法具有较好的鲁棒性。
即使在数据出现噪声或者缺失值的情况下,聚类算法仍然能够给出较为合理的结果。
缺点然而,聚类算法也存在一些缺点。
首先,聚类算法对于数据分布的假设较为苛刻。
在现实应用中,很多数据集的分布可能是复杂和非线性的,这就给聚类算法的准确性带来了一定的挑战。
其次,聚类算法对于初始值敏感。
不同的初始值可能导致不同的聚类结果,这就需要在使用聚类算法时进行多次实验,以及对结果进行稳定性分析。
再次,聚类算法需要事先确定类别的个数。
这在实际应用中是很难做到的,因为很多时候我们并不清楚数据集中到底有多少个类别。
这就需要我们在使用聚类算法时进行多次尝试,从而找到最合适的类别个数。
最后,聚类算法在处理高维数据时存在维度灾难问题。
随着数据维度的增加,样本空间的大小呈指数增长,这就给聚类算法的计算带来了巨大的挑战。
改进空间为了克服上述缺点,我们可以采取一些改进策略。
首先,可以利用特征选择和降维技术来减少数据的维度,从而避免维度灾难问题。
其次,可以结合聚类算法和密度估计技术,以克服对数据分布的假设。
聚类算法:1. 划分法:K-MEANS算法、K-M EDOIDS算法、CLARANS算法;1)K-means 算法:基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇。
然后按平均法重新计算各个簇的质心,从而确定新的簇心。
一直迭代,直到簇心的移动距离小于某个给定的值。
K-Means聚类算法主要分为三个步骤:(1)第一步是为待聚类的点寻找聚类中心(2)第二步是计算每个点到聚类中心的距离,将每个点聚类到离该点最近的聚类中去(3)第三步是计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心反复执行(2)、(3),直到聚类中心不再进行大范围移动或者聚类次数达到要求为止下图展示了对n个样本点进行K-means聚类的效果,这里k取2:(a)未聚类的初始点集(b)随机选取两个点作为聚类中心(c)计算每个点到聚类中心的距离,并聚类到离该点最近的聚类中去(d)计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心(e)重复(c),计算每个点到聚类中心的距离,并聚类到离该点最近的聚类中去(f)重复(d),计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心优点:1.算法快速、简单;2.对大数据集有较高的效率并且是可伸缩性的;3.时间复杂度近于线性,而且适合挖掘大规模数据集。
缺点:1. 在 K-means 算法中 K 是事先给定的,这个 K 值的选定是非常难以估计的。
2. 在 K-means 算法中,首先需要根据初始聚类中心来确定一个初始划分,然后对初始划分进行优化。
这个初始聚类中心的选择对聚类结果有较大的影响。
3. 从 K-means 算法框架可以看出,该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大的。
4. 产生类的大小相差不会很大,对于脏数据很敏感。
2)K-M EDOIDS(k-medoids)算法与k-means很像,不一样的地方在于中心点的选取,在K-means中,我们将中心点取为当前cluster中所有数据点的平均值,在 K-medoids算法中,我们将从当前cluster 中选取这样一个点——它到其他所有(当前cluster中的)点的距离之和最小——作为中心点。
选取一个对象叫做mediod来代替上面的中心的作用,这样的一个medoid就标识了这个类。
K-MEDODIS的具体流程如下:1)任意选取K个对象作为medoids(O1,O2,…Oi…Ok)。
2)将余下的对象分到各个类中去(根据与medoid最相近的原则);3)对于每个类,顺序选取一个对象,计算用这个对象代替原中心点的方差。
选择方差最小的那个对象来代替原中心点。
这样K个medoids就改变了。
4)重复2、3步直到K个medoids固定下来。
优点:不容易受到那些由于误差之类的原因产生的脏数据的影响缺点:计算量显然要比K-means要大,一般只适合小数据量3)CLARANS (A Clustering Algorithm based on Randomized Search,基于随机选择的聚类算法):将采样技术(CLARA[Clara算法的思想就是用实际数据的抽样来代替整个数据,然后再在这些抽样的数据上利用K-medoids算法得到最佳的medoids。
Clara算法从实际数据中抽取多个采样,在每个采样上都用K-medoids算法得到相应的(O1,O2…Oi…Ok),然后在这当中选取E 最小的一个作为最终的结果])和PAM(找出中心点)结合起来。
CLARA的主要思想是:不考虑整个数据集合,而是选择实际数据的一小部分作为数据的代表。
然后用PAM方法从样本中选择中心点。
如果样本是以非常随机的方式选取的,那么它应当接近代表原来的数据集。
从中选出代表对象(中心点)很可能和从整个数据集合中选出的代表对象相似。
CLARA抽取数据集合的多个样本,对每个样本应用PAM算法,并返回最好的聚类结果作为输出。
CLARA的有效性主要取决于样本的大小。
如果任何一个最佳抽样中心点不在最佳的K 个中心之中,则CLARA将永远不能找到数据集合的最佳聚类。
同时这也是为了聚类效率做付出的代价。
CLARANS聚类则是将CLARA和PAM有效的结合起来,CLARANS在任何时候都不把自身局限于任何样本,CLARANS在搜素的每一步都以某种随机性选取样本。
算法步骤如下(算法步骤摘自百度文库):1、输入参数numlocal和maxneighbor。
numlocal 表示抽样的次数,maxneighbor 表示一个节点可以与任意特定邻居进行比较的数目令:i=1,i用来表示已经选样的次数mincost 为最小代价,初始时设为大数。
2、设置当前节点current为Gn中的任意一个节点。
3、令j =1。
(j用来表示已经与current进行比较的邻居的个数)4、考虑当前点的一个随机的邻居S,并计算两个节点的代价差。
5、如果S的代价较低,则current:=S,转到步骤3。
6、否则,令j=j+1。
如果j<=maxneighbor,则转到步骤4。
7、否则,当j>maxneighbor,当前节点为本次选样最小代价节点. 如果其代价小于mincost,令mincost为当前节点的代价,bestnode为当前的节点。
8、令i= i+1,如果i〉numlocal,输出bestnode,运算中止.否则,转到步骤2。
对上面出现一些概念进行说明:(1)代价值,主要描述一个对象被分到一个类别中的代价值,该代价值由每个对象与其簇中心点间的相异度(距离或者相似度)的总和来定义。
代价差则是两次随机领域的代价差值。
(2)更新邻接点,CLARANS不会把搜索限制在局部区域,如果发现一个更好的近邻,CLARANS就移到该近邻节点,处理过程从新开始;否则,当前的聚类则产生了一个局部最小。
如果找到一个局部最小,CLARANS从随机选择的新节点开始,搜索新的局部最小。
当搜索的局部最小解达到用户指定的数目时,最好的局部最小作为算法的输出。
从上面的算法步骤也可以看出这一思想。
在第5步中更新节点current。
2. 层次法:自顶向下,自底向上。
BIRCH算法、CURE算法、CHAMELEON算法等;BIRCH算法(最大的特点是能利用有限的内存资源完成对大数据集的高质量的聚类,同时通过单遍扫描数据集能最小化I/O代价。
如果簇不是球形的,BIRCH不能很好的工作,因为它用了半径或直径的概念来控制聚类的边界。
):算法的核心:通过扫描数据库,建立一个初始存放于内存中的聚类特征树,然后对聚类特征树的叶结点进行聚类。
它的核心是聚类特征(CF)和聚类特征树(CF Tree)CURE算法:CURE(Clustering Using Representatives)是一种针对大型数据库的高效的聚类算法。
基于划分的传统的聚类算法得到的是球状的,相等大小的聚类,对异常数据比较脆弱。
CURE采用了用多个点代表一个簇的方法,可以较好的处理以上问题。
并且在处理大数据量的时候采用了随机取样,分区的方法,来提高其效率,使得其可以高效的处理大量数据。
基本目标聚类算法CURE的算法实现。
对图形进行聚类,在时间,结果方面对其性能进行评估。
算法流程CURE的算法在开始时,每个点都是一个簇,然后将距离最近的簇结合,一直到簇的个数为要求的K。
它是一种分裂的层次聚类。
算法分为以下6步: 1)从源数据对象中抽取一个随机样本S。
2)将样本S分割为一组划分。
3)对划分局部的聚类。
4)通过随机取样提出孤立点。
如果一个簇增长得太慢,就去掉它。
5)对局部的簇进行聚类。
6)用相应的簇标签标记数据。
算法设计(1)基本聚类算法procedure cluster(S, k) /*将数据集S聚类成为k个簇*/ begin1. T := build_kd_tree(S) /*对应数据集S建立一个K-DTree T*/2. Q := build_heap(S) /*对应数据集S建立一个堆 Q*/3. while size(Q) > k do { /*聚类直至簇的个数为k */4. u := extract_min(Q) /*找到最近的两个簇u,v */5. v := u.cloest6. delete(Q, v)7. w := merge(u, v) /*将u,v合并为簇w */ 8. delete_rep(T, u);delete_rep(T, v);insert_rep(T, w)9. w.cloest := x /* x is an arbitrary cluster in Q*/ 10. for each x∈Q do{ /*调节因合并带来的T和Q的变化*/ 11. if (dist(w,x) < dist(w,w.cloest)) 12. w.cloest := x13. if x.cloest is either u or v {14. if dist(x, x.cloest) < dist(x.w)15. x.cloest := cloest_cluster(T, x, dist(x,w)) 16. else 17. x.cloest := w 18. relocate(Q, x) 19. } 20. else if dist(x, x.cloest) > dist(x, w) { 21. x.cloest := w 22. relocate(Q, x) 23. } 24. }25. insert(Q, w) 26. } end此程序段用到的数据结构有Heap,和K-DTree。
为了合并距离最短的两个聚类,需要构建一个K-DTree来找到空间中的一聚类最近的一个聚类,之后把K-DTree 中的聚类按照其与最近的聚类的距离进行排序(用的是堆排序),找到最近的两个的聚类,将它们合并(对应函数merge())。
CHAMELEON是一种两阶段聚类法。
第一阶段把点分成很多小的簇;第二阶段根据相近程度合并这些小的簇。
第一阶段采用K最邻近法,即把一个点和它最邻近的K个点连接起来。
第二阶段计算任意两个簇的互连性RI和紧密性RC,当两个指标都比较大时才合并这两个簇。
下图是第一阶段后形成的几个小的子簇:把子簇合并后形成的最终簇划分:3. 密度算法:DBSCAN算法、OPTICS算法、DENCLUE算法等DBSCAN算法:DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种基于密度的空间聚类算法。