正态分布和对数正态分布精编版
- 格式:pptx
- 大小:152.46 KB
- 文档页数:7
对数正态分布和正态分布均值和方差的关系下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!对数正态分布和正态分布是两种常见的概率分布模型,在统计学和数据分析中经常被使用。
对数正态分布标准正态分布【对数正态分布 vs 标准正态分布:理解两种分布的特点与应用】1. 前言在统计学和概率论中,对数正态分布和标准正态分布是两个重要的概念。
它们在金融、医学、生态学等领域有着广泛的应用,对于理解和分析数据具有重要意义。
本文将深入探讨对数正态分布和标准正态分布的概念、特点和应用,以帮助读者更深入地理解这两种分布。
2. 对数正态分布的概念和特点对数正态分布是指连续随机变量的概率分布,其对数服从正态分布。
如果一个随机变量 X 服从对数正态分布,那么 ln(X) 应该服从正态分布。
对数正态分布通常用来描述生态学中的种群增长、金融市场中的资产价格变动等现象。
其概率密度函数为:f(x) = (1 / (x * σ * √(2 * π))) * exp( -((ln(x) - μ)^2) / (2 * σ^2) )其中,μ和σ是分布的参数,x是随机变量。
对数正态分布的特点包括右偏、非对称以及具有长尾分布的特点。
3. 标准正态分布的概念和特点标准正态分布是统计学中常用的一种连续型概率分布,其概率密度函数为:φ(x) = (1 / √(2 * π)) * exp( -x^2 / 2 )其中,φ(x)表示标准正态分布的概率密度函数,x表示随机变量。
标准正态分布的特点包括均值为0、标准差为1,且其曲线关于y轴对称。
4. 对数正态分布与标准正态分布的联系和区别对数正态分布与标准正态分布之间存在着一定的联系和区别。
对数正态分布的特点之一是右偏,而标准正态分布是对称的。
对数正态分布是描述随机变量的对数服从正态分布,而标准正态分布是描述随机变量本身服从正态分布。
对数正态分布和标准正态分布在应用上也有所不同,对数正态分布常用于描述增长率、金融资产价格的分布,而标准正态分布常用于统计推断和假设检验。
5. 对数正态分布与标准正态分布的应用对数正态分布和标准正态分布在现实生活中有着广泛的应用。
在金融领域,对数正态分布常用于描述股票价格、汇率等金融资产的分布情况,而标准正态分布常用于风险评估和价值-at-risk的计算。
对数正态分布的介绍
对数正态分布(Lognormal Distribution)是一种常见的统计分布,它是基于正态分布的变换,其中变量的对数服从正态分布。
它是一个双峰分布,其峰值位于变量的均值处,并且具有较低的偏度和峰度。
在许多应用中,对数正态分布被用来描述观察到的数据,因为它能够捕捉和描述数据中的双峰结构。
对数正态分布可以用来描述一系列自然现象,如植物的生长率、气候变化、地震活动、经济变化、股票市场价格变动、人群的出生率等。
它也可以用来模拟许多随机过程,如蒙特卡罗模拟、金融模拟、经济模拟等。
对数正态分布在概率论与统计学中,对数正态分布是对数为正态分布的任意随机变量的概率分布。
如果X是正态分布的随机变量,则exp(X) 为对数分布;同样,如果Y 是对数正态分布,则 ln(Y) 为正态分布。
如果一个变量可以看作是许多很小独立因子的乘积,则这个变量可以看作是对数正态分布。
一个典型的例子是股票投资的长期收益率,它可以看作是每天收益率的乘积。
对于,对数正态分布的概率分布函数为其中与分别是变量对数的平均值与標準差。
它的期望值是方差为给定期望值与标准差,也可以用这个关系求与与几何平均值和几何标准差的关系对数正态分布、几何平均数与几何标准差是相互关联的。
在这种情况下,几何平均值等于,几何平均差等于。
如果采样数据来自于对数正态分布,则几何平均值与几何标准差可以用于估计置信区间,就像用算术平均数与标准差估计正态分布的置信区间一样。
置信区间界对数空间几何3σ 下界2σ 下界1σ 下界1σ 上界2σ 上界3σ 上界其中几何平均数,几何标准差[编辑]矩原始矩为:或者更为一般的矩[编辑]局部期望随机变量在阈值上的局部期望定义为其中是概率密度。
对于对数正态概率密度,这个定义可以表示为其中是标准正态部分的累积分布函数。
对数正态分布的局部期望在保险业及经济领域都有应用。
[编辑]参数的最大似然估计为了确定对数正态分布参数μ与σ的最大似然估计,我们可以采用与正态分布参数最大似然估计同样的方法。
我们来看其中用表示对数正态分布的概率密度函数,用—表示正态分布。
因此,用与正态分布同样的指数,我们可以得到对数最大似然函数:由于第一项相对于μ与σ来说是常数,两个对数最大似然函数与在同样的μ与σ处有最大值。
因此,根据正态分布最大似然参数估计器的公式以及上面的方程,我们可以推导出对数正态分布参数的最大似然估计[编辑]相关分布•如果与,则是正态分布。
•如果是有同样μ参数、而σ可能不同的统计独立对数正态分布变量,并且,则Y 也是对数正态分布变量:。
2.4正态分布复习引入:总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 总体密度曲线b 单位O 频率/组距a它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b )内取值的概率等于总体密度曲线,直线x =a ,x =b 及x 轴所围图形的面积.观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示:22()2,1(),(,)2x x e x μσμσϕπσ--=∈-∞+∞ 式中的实数μ、)0(>σσ是参数,分别表示总体的平均数与标准差,,()x μσϕ的图象为正态分布密度曲线,简称正态曲线.讲解新课:一般地,如果对于任何实数a b <,随机变量X 满足,()()b aP a X B x dx μσϕ<≤=⎰, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN .经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位.说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计.2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布.2.正态分布),(2σμN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响3.通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称 正态曲线的作图,书中没有做要求,教师也不必补上 讲课时教师可以应用几何画板,形象、美观地画出三条正态曲线的图形,结合前面均值与标准差对图形的影响,引导学生观察总结正态曲线的性质4.正态曲线的性质:(1)曲线在x 轴的上方,与x 轴不相交(2)曲线关于直线x=μ对称(3)当x=μ时,曲线位于最高点(4)当x <μ时,曲线上升(增函数);当x >μ时,曲线下降(减函数) 并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近(5)μ一定时,曲线的形状由σ确定σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中:五条性质中前三条学生较易掌握,后两条较难理解,因此在讲授时应运用数形结合的原则,采用对比教学5.标准正态曲线:当μ=0、σ=l 时,正态总体称为标准正态总体,其相应的函数表示式是2221)(x e x f -=π,(-∞<x <+∞)其相应的曲线称为标准正态曲线标准正态总体N (0,1)在正态总体的研究中占有重要的地位 任何正态分布的概率问题均可转化成标准正态分布的概率问题讲解范例:例1.给出下列三个正态总体的函数表达式,请找出其均值μ和标准差σ (1)),(,21)(22+∞-∞∈=-x e x f x π(2)),(,221)(8)1(2+∞-∞∈=--x e x f x π (3)22(1)2(),(,)2x f x e x π-+=∈-∞+∞ 答案:(1)0,1;(2)1,2;(3)-1,0.5例2求标准正态总体在(-1,2)内取值的概率.解:利用等式)()(12x x p Φ-Φ=有)([]}{11)2()1()2(--Φ--Φ=-Φ-Φ=p=1)1()2(-Φ+Φ=0.9772+0.8413-1=0.8151.1.标准正态总体的概率问题: xy对于标准正态总体N (0,1),)(0x Φ是总体取值小于0x 的概率,即 )()(00x x P x <=Φ, 其中00>x ,图中阴影部分的面积表示为概率0()P x x < 只要有标准正态分布表即可查表解决.从图中不难发现:当00<x 时,)(1)(00x x -Φ-=Φ;而当00=x 时,Φ(0)=0.5 2.标准正态分布表标准正态总体)1,0(N 在正态总体的研究中有非常重要的地位,为此专门制作了“标准正态分布表”.在这个表中,对应于0x 的值)(0x Φ是指总体取值小于0x 的概率,即)()(00x x P x <=Φ,)0(0≥x .若00<x ,则)(1)(00x x -Φ-=Φ.利用标准正态分布表,可以求出标准正态总体在任意区间),(21x x 内取值的概率,即直线1x x =,2x x =与正态曲线、x 轴所围成的曲边梯形的面积1221()()()P x x x x x <<=Φ-Φ. 3.非标准正态总体在某区间内取值的概率:可以通过)()(σμ-Φ=x x F 转化成标准正态总体,然后查标准正态分布表即可 在这里重点掌握如何转化 首先要掌握正态总体的均值和标准差,然后进行相应的转化4.小概率事件的含义发生概率一般不超过5%的事件,即事件在一次试验中几乎不可能发生假设检验方法的基本思想:首先,假设总体应是或近似为正态总体,然后,依照小概率事件几乎不可能在一次试验中发生的原理对试验结果进行分析假设检验方法的操作程序,即“三步曲”一是提出统计假设,教科书中的统计假设总体是正态总体;二是确定一次试验中的a 值是否落入(μ-3σ,μ+3σ);三是作出判断讲解范例:例1. 若x ~N (0,1),求(l)P (-2.32<x <1.2);(2)P (x >2).解:(1)P (-2.32<x <1.2)=Φ(1.2)-Φ(-2.32)=Φ(1.2)-[1-Φ(2.32)]=0.8849-(1-0.9898)=0.8747.(2)P (x >2)=1-P (x <2)=1-Φ(2)=l-0.9772=0.0228.例2.利用标准正态分布表,求标准正态总体在下面区间取值的概率:(1)在N(1,4)下,求)3(F(2)在N (μ,σ2)下,求F(μ-σ,μ+σ);F(μ-1.84σ,μ+1.84σ);F(μ-2σ,μ+2σ);F(μ-3σ,μ+3σ) 解:(1))3(F =)213(-Φ=Φ(1)=0.8413 (2)F(μ+σ)=)(σμσμ-+Φ=Φ(1)=0.8413 F(μ-σ)=)(σμσμ--Φ=Φ(-1)=1-Φ(1)=1-0.8413=0.1587 F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=0.8413-0.1587=0.6826F(μ-1.84σ,μ+1.84σ)=F(μ+1.84σ)-F(μ-1.84σ)=0.9342F(μ-2σ,μ+2σ)=F(μ+2σ)-F(μ-2σ)=0.954F(μ-3σ,μ+3σ)=F(μ+3σ)-F(μ-3σ)=0.997对于正态总体),(2σμN 取值的概率:68.3%2σx 95.4%4σx 99.7%6σx在区间(μ-σ,μ+σ)、(μ-2σ,μ+2σ)、(μ-3σ,μ+3σ)内取值的概率分别为68.3%、95.4%、99.7% 因此我们时常只在区间(μ-3σ,μ+3σ)内研究正态总体分布情况,而忽略其中很小的一部分 例3.某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为π21,求总体落入区间(-1.2,0.2)之间的概率解:正态分布的概率密度函数是),(,21)(222)(+∞-∞∈=--x e x f x σμσπ,它是偶函数,说明μ=0,)(x f 的最大值为)(μf =σπ21,所以σ=1,这个正态分布就是标准正态分布( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ- 教学反思:1.在实际遇到的许多随机现象都服从或近似服从正态分布 在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布 但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口 正态分布在统计学中是最基本、最重要的一种分布 2.正态分布是可以用函数形式来表述的 其密度函数可写成:22()21(),(,)2x f x e x μσπσ--=∈-∞+∞, (σ>0)由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的 常把它记为),(2σμN 3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值 从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x 轴,但永不与x 轴相交,因此说曲线在正负两个方向都是以x 轴为渐近线的4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征。
对数正态分布随机数对数正态分布是一种常见的概率分布,它在许多领域中都有广泛的应用。
本文将介绍对数正态分布的定义、性质以及它在实际问题中的应用。
对数正态分布是指随机变量的对数服从正态分布的情况。
正态分布是一个重要的概率分布,其特点是呈钟形曲线且对称。
而对数正态分布则是通过对正态分布的随机变量取对数得到的分布,其特点是呈现出右偏的形态。
对数正态分布常用于描述具有指数增长特征的数据,比如金融市场的收益率、生物学中的细胞增长速率等等。
对数正态分布的概率密度函数可以表示为:$$f(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}$$其中,$x$为随机变量,$\mu$为分布的均值,$\sigma$为分布的标准差。
对数正态分布的均值和方差可以通过以下公式计算:$$E(x) = e^{\mu + \frac{\sigma^2}{2}}$$$$Var(x) = (e^{\sigma^2} - 1)e^{2\mu + \sigma^2}$$对数正态分布的性质包括以下几点:1. 对数正态分布的均值和方差不同于正态分布,均值和方差的计算需要通过对数进行转换。
2. 对数正态分布的分布形态呈现出右偏的特征,即分布的尾部向右延伸。
3. 对数正态分布的随机变量取值范围为正数。
对数正态分布在许多领域中都有重要的应用。
下面将介绍一些具体的应用场景。
1. 金融领域:对数正态分布广泛应用于金融市场的收益率的建模和分析。
由于金融市场的收益率往往呈现出右偏的分布特征,因此使用对数正态分布能更好地描述和预测收益率的分布情况。
2. 生物学领域:对数正态分布常用于描述生物学中的细胞增长速率。
生物学中的细胞增长往往呈现出指数增长的特征,因此使用对数正态分布能更好地刻画细胞增长速率的分布情况。
3. 环境科学领域:对数正态分布可以用来描述环境中的污染物浓度分布。
正态散布、指数散布、对数正态散布和威布尔散布函数及其在工程剖析中的应用071330225张洋洋目录正态散布函数.................................................3 正态散布应用领域..............................................4 正态散布事例剖析..............................................5 指数散布函数.................................................5 指数散布的应用领域..............................................6指数散布事例剖析..............................................7 对数正态散布函数. (7)对数正态散布的应用领域.......................................9 对数正态散布事例剖析...........................................9威布尔散布函数................................................10 威布尔散布的应用领域..........................................16威布尔散布事例剖析.............................................16附录.......................................................18 参照文件. (21)正态散布函数【1】105510正态散布概率密度函数 f ( t)蓝线:μ=-1 σ=2 红线:μ=1 σ=2 棕线:μ=-1 σ=3 绿线:μ=1 σ=3均数μ决定正态曲线的中心地点;标准差σ决定正态曲线的峻峭或扁平程度。