回归正交试验设计PPT精品文档
- 格式:ppt
- 大小:643.00 KB
- 文档页数:10
8回归正交试验设计本章要点:主要讲述了一次回归正交试验设计、二次回归正交试验设计的原理、基本方法和统计分析步骤,并针对不同类型的回归正交试验给出了相应的计算案例。
重点:回归正交试验设计的方法,统计过程中方程的建立以及显著性分析检验。
难点:二次回归组合设计正交性的实现及其统计分析。
8.1 回归正交试验设计简介产品质量通常受多因素的综合影响,试验效应既包括因素的主效应,也包括因素间的交互作用,因此,在产品研究中总希望安排足够多的研究因素以使试验效应有充分的试验论据。
但因素和水平的增加造成试验规模庞大,特别是对于多指标分析的试验往往由于分析困难而无法实施。
线性反应试验一般是研究一个因素多水平的试验设计,面体反应试验是研究两个因素多水平的的试验设计。
当试验因素超过3个的多水平试验时,由于采用组合处理,处理数目等于因素水平间的乘积,它随因素的增加呈几何级数增加。
例如,一个3因素4水平的试验,总共有43=64个试验处理,而4因素5水平的试验就有54=625个处理,由于处理数目太大,不仅增加了试验误差,而且由于受试材和条件的限制,这对产品研究来说是难以实施的。
正交试验设计方法在产品工艺改进、新产品的试制中得到了广泛的应用,它能够利用较少的处理安排较多的试验因素,获得较佳的试验结果。
但是正交设计不能在一定的试验范围内,根据数据样本,去确定变量间的相关关系及相应的回归方程。
如果试验传统的回归分析,又只能被动地去处理由试验所得到的数据,而对试验的设计安排几乎不提出任何要求。
这样不仅盲目地增加了试验次数,而且由数据所分析出的结果还往往不能提供充分的信息,造成在多因素试验的分析中,由于设计的缺陷而达不到预期的试验目的。
因而回归正交试验设计应运而生。
回归正交试验设计是将试验安排与数据的回归分析结合起来考虑。
在试验中,通过适当地安排试验点,使得在每个试验点上获得的数据含有最大的信息,并且各自变量(因素)向量间满足正交性以便于回归分析。