当前位置:文档之家› 2020年中考数学试题(及答案)

2020年中考数学试题(及答案)

2020年中考数学试题(及答案)
2020年中考数学试题(及答案)

2020年中考数学试题(及答案)

一、选择题

1.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据

0.000000007用科学记数法表示为( ). A .7710?﹣ B .8

0.710?﹣

C .8710?﹣

D .9710?﹣

2.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为

( ) A .94.610?

B .74610?

C .84.610?

D .90.4610?

3.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ) A .众数

B .方差

C .平均数

D .中位数

4.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是( ) A .

1

9

B .

16

C .

13

D .

23

5.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( ) A .(0,﹣2)

B .(0,﹣4)

C .(4,0)

D .(2,0)

6.如图,直线l 1∥l 2,将一直角三角尺按如图所示放置,使得直角顶点在直线l 1上,两直角边分别与直线l 1、l 2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为( )

A .25°

B .75°

C .65°

D .55°

7.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为() A .

()1

1362

x x -= B .

()1

1362

x x += C .()136x x -= D .()136x x +=

8.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( ) A .甲 B .乙

C .丙

D .一样

9.下列计算错误的是( )

A .a 2÷

a 0?a 2=a 4 B .a 2÷(a 0?a 2)=1 C .(﹣1.5)8÷(﹣1.5)7=﹣1.5

D .﹣1.58÷(﹣1.5)7=﹣1.5

10.下列长度的三根小木棒能构成三角形的是( )

A .2cm ,3cm ,5cm

B .7cm ,4cm ,2cm

C .3cm ,4cm ,8cm

D .3cm ,3cm ,4cm 11.二次函数2

y ax bx c =++的图象如图所示,则一次函数2

4y bx b ac =+-与反比例函数a b c

y x

++=

在同一坐标系内的图象大致为( )

A .

B .

C .

D .

12.an30°的值为( ) A .

B .

C .

D .

二、填空题

13.已知关于x 的方程

3x n

22x 1

+=+的解是负数,则n 的取值范围为 . 14.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =

k

x

的图象上,则k 的值为________.

15.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____. 16.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.

17.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .

18.如图,一张三角形纸片ABC ,∠C=90°,AC=8cm ,BC=6cm .现将纸片折叠:使点A 与

点B 重合,那么折痕长等于 cm

19.若式子3

x+在实数范围内有意义,则x的取值范围是_____.

20.分式方程32x

x2

-

-

+

2

2x

-

=1的解为________.

三、解答题

21.如图,某地修建高速公路,要从A地向B地修一座隧道(A

、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升100米到达C处,在C处观察A地的俯角为39°,求A、B两地之间的距离.(结果精确到1米)(参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81)

22.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.

23.如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;

(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.

24.解不等式组

341

51

2

2

x x

x

x

≥-

?

?

?-

-

??>

,并把它的解集在数轴上表示出来

25.距离中考体育考试时间越来越近,某校想了解初三年级1500名学生跳绳情况,从中随机抽查了20名男生和20名女生的跳绳成绩,收集到了以下数据:

男生:192、166,189,186,184,182,178,177,174,170,188,168,205,165,

158,150,188,172,180,188

女生:186,198,162,192,188,186,185,184,180,180,186,193,178,175,172,166,155,183,187,184. 根据统计数据制作了如下统计表:

两组数据的极差、平均数、中位数、众数如表所示:

(1)请将上面两个表格补充完整:a =____,b =_____,c =_____;

(2)请根据抽样调查的数据估计该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有多少人?

(3)体育组的江老师看了表格数据后认为初三年级的女生跳绳成绩比男生好,请你结合统计数据,写出支持江老师观点的理由.

【参考答案】***试卷处理标记,请不要删除

一、选择题 1.D 解析:D 【解析】 【分析】

由科学记数法知90.000000007710-=?; 【详解】

解:90.000000007710-=?; 故选:D . 【点睛】

本题考查科学记数法;熟练掌握科学记数法10n a ?中a 与n 的意义是解题的关键.

2.C

解析:C

【解析】

【分析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.

【详解】

460 000 000=4.6×108.

故选C.

【点睛】

此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

3.D

解析:D

【解析】

【分析】

根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.

【详解】

由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.

故本题选:D.

【点睛】

本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键. 4.C

解析:C

【解析】

【分析】

画出树状图即可求解.

【详解】

解:画树状图得:

∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,

∴两张卡片上的数字恰好都小于3概率=1

3

故选:C.

【点睛】

本题考查的是概率,熟练掌握树状图是解题的关键.

5.D

解析:D

【解析】

【分析】

根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】

解:因为点P(m + 3,m + 1)在x轴上,

所以m+1=0,解得:m=-1,

所以m+3=2,

所以P点坐标为(2,0).

故选D.

【点睛】

本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征. 6.C

解析:C

【解析】

【分析】

依据∠1=25°,∠BAC=90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°.

【详解】

如图,∵∠1=25°,∠BAC=90°,

∴∠3=180°-90°-25°=65°,

∵l1∥l2,

∴∠2=∠3=65°,

故选C.

【点睛】

本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.

7.A

解析:A

【解析】

【分析】

共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.

【详解】

解:设有x个队参赛,根据题意,可列方程为:

1

x(x﹣1)=36,

2

故选:A.

【点睛】

此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系. 8.C

解析:C

【解析】

试题分析:设商品原价为x,表示出三家超市降价后的价格,然后比较即可得出答案.解:设商品原价为x,

甲超市的售价为:x(1﹣20%)(1﹣10%)=0.72x;

乙超市售价为:x(1﹣15%)2=0.7225x;

丙超市售价为:x(1﹣30%)=70%x=0.7x;

故到丙超市合算.

故选C.

考点:列代数式.

9.D

解析:D

【解析】

分析:根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可.

详解:∵a2÷a0?a2=a4,

∴选项A不符合题意;

∵a2÷(a0?a2)=1,

∴选项B不符合题意;

∵(-1.5)8÷(-1.5)7=-1.5,

∴选项C不符合题意;

∵-1.58÷(-1.5)7=1.5,

∴选项D符合题意.

故选D.

点睛:此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.

10.D

解析:D 【解析】 【详解】

A .因为2+3=5,所以不能构成三角形,故A 错误;

B .因为2+4<6,所以不能构成三角形,故B 错误;

C .因为3+4<8,所以不能构成三角形,故C 错误;

D .因为3+3>4,所以能构成三角形,故D 正确. 故选D .

11.D

解析:D 【解析】 【分析】

根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解. 【详解】

∵二次函数图象开口方向向上, ∴a >0,

∵对称轴为直线02b

x a

=->,

∴b <0,

二次函数图形与x 轴有两个交点,则24b ac ->0, ∵当x =1时y =a +b +c <0,

∴2

4y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交,

反比例函数a b c

y x

++=

图象在第二、四象限, 只有D 选项图象符合. 故选:D. 【点睛】

考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.

12.D

解析:D 【解析】 【分析】

直接利用特殊角的三角函数值求解即可. 【详解】

tan30°=,故选:D .

【点睛】

本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.

二、填空题

13.n <2且【解析】分析:解方程得:x=n ﹣2∵关于x 的方程的解是负数∴n ﹣2<0解得:n <2又∵原方程有意义的条件为:∴即∴n 的取值范围为n <2且

解析:n <2且3

n 2

≠- 【解析】 分析:解方程

3x n

22x 1

+=+得:x=n ﹣2, ∵关于x 的方程

3x n

22x 1

+=+的解是负数,∴n ﹣2<0,解得:n <2. 又∵原方程有意义的条件为:1x 2≠-,∴1n 22-≠-,即3n 2

≠-. ∴n 的取值范围为n <2且3n 2

≠-

. 14.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等

解析:-6 【解析】

因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x

),因此AC=-2x,OB=

2K

X

,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k

S x x

=?-?=菱形,解得 6.k =-

15.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键

解析:13k <<. 【解析】 【分析】

根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,

30k -<,即可求解;

【详解】

()223y k x k =-+-经过第二、三、四象限,

∴220k -<,30k -<, ∴1k >,3k <, ∴13k <<, 故答案为:13k <<. 【点睛】

本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.

16.5【解析】【分析】连接CC1根据M 是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM

解析:5 【解析】 【分析】

连接CC 1,根据M 是AC 、A 1C 1的中点,AC=A 1C 1,得出CM=A 1M=C 1M=

1

2

AC=5,再根据∠A 1=∠A 1CM=30°,得出∠CMC 1=60°,△MCC 1为等边三角形,从而证出CC 1=CM ,即可得出答案. 【详解】

解:如图,连接CC 1,

∵两块三角板重叠在一起,较长直角边的中点为M , ∴M 是AC 、A 1C 1的中点,AC=A 1C 1, ∴CM=A 1M=C 1M=

1

2

AC=5, ∴∠A 1=∠A 1CM=30°, ∴∠CMC 1=60°, ∴△CMC 1为等边三角形, ∴CC 1=CM=5, ∴CC 1长为5. 故答案为5.

考点:等边三角形的判定与性质.

17.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式

解析:3.

【解析】

试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.

考点:概率公式.

18.cm【解析】试题解析:如图折痕为GH由勾股定理得:AB==10cm由折叠得:

AG=BG=AB=×10=5cmGH⊥AB∴∠AGH=90°∵∠A=∠A∠AGH=∠C=90°∴△ACB∽△AGH∴∴∴G

解析:cm.

【解析】

试题解析:如图,折痕为GH,

由勾股定理得:AB==10cm,

由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,

∴∠AGH=90°,

∵∠A=∠A,∠AGH=∠C=90°,

∴△ACB∽△AGH,

∴,

∴,

∴GH=cm .

考点:翻折变换

19.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x 的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x 的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式

解析:x ≥﹣3

【解析】 【分析】

直接利用二次根式的定义求出x 的取值范围. 【详解】

.3x +在实数范围内有意义, 则x +3≥0, 解得:x ≥﹣3,

则x 的取值范围是:x ≥﹣3. 故答案为:x ≥﹣3. 【点睛】

此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.

20.【解析】【分析】根据解分式方程的步骤即可解答【详解】方程两边都乘以得:解得:检验:当时所以分式方程的解为故答案为【点睛】考查了解分式方程解分式方程的基本思想是转化思想把分式方程转化为整式方程求解解分 解析:x 1=

【解析】 【分析】

根据解分式方程的步骤,即可解答. 【详解】

方程两边都乘以x 2-,得:32x 2x 2--=-, 解得:x 1=,

检验:当x 1=时,x 21210-=-=-≠, 所以分式方程的解为x 1=, 故答案为x 1=. 【点睛】

考查了解分式方程,()1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解().2解分式方程一定注意要验根.

三、解答题

21.123米.

【解析】【分析】

在Rt△ABC中,利用tan

BC CAB

AB

∠=即可求解.

【详解】

解:∵CD∥AB,

∴∠CAB=∠DCA=39°.

在Rt△ABC中,∠ABC=90°,

tan

BC CAB

AB

∠=.

100

123

tan0.81

BC

AB

CAB

==≈

答:A、B两地之间的距离约为123米.

【点睛】

本题考查解直角三角形,选择合适的锐角三角函数是解题的关键.

22.4

9

【解析】

【分析】

首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.

【详解】

解:画树状图得:

∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,

∴两次两次抽取的卡片上数字之和是奇数的概率为4

9

【点睛】

本题考查列表法与树状图法.

23.(1)AD=9

5

;(2)当点E是AC的中点时,ED与⊙O相切;理由见解析.

【解析】

【分析】

(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知

△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当

ED与 O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE 即可.

【详解】

(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;

连接CD,∵BC为直径,

∴∠ADC=∠BDC=90°;

∵∠A=∠A,∠ADC=∠ACB,

∴Rt△ADC∽Rt△ACB;

∴,∴;

(2)当点E是AC的中点时,ED与⊙O相切;

证明:连接OD,

∵DE是Rt△ADC的中线;

∴ED=EC,

∴∠EDC=∠ECD;

∵OC=OD,

∴∠ODC=∠OCD;

∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;

∴ED⊥OD,

∴ED与⊙O相切.

【点睛】

本题考查了圆周角定理、切线的判定、相似三角形的判定与性质,熟练掌握该知识点是本题解题的关键.

24.-1<x≤1

【解析】

【分析】

分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.

【详解】

解:

341 {51

2

2

x x

x

x

≥-

-

-

解不等式①可得x≤1,解不等式②可得x>-1

在数轴上表示解集为:

所以不等式组的解集为:-1<x≤1.

【点睛】

本题考查了解不等式组,熟练掌握计算法则是解题关键.

25.(1)a=6,b=179,c=188;(2)600;(3)详见解析.

【解析】

【分析】

(1)依据中位数以及众数的定义即可将上面两个表格补充完整;(2)依据样本中能得满分(185个及以上)的同学所占的比例,即可估计该校初三年级学生中考跳绳成绩能得满分的人数;(3)依据两组数据的极差和平均数的大小,即可得到结论.

【详解】

(1)满足185≤x<190的数据有:186,188,186,185,186,187.

∴a=6,

20名男生的跳绳成绩排序后最中间的两个数据为178和180,

∴b=(178+180)=179,

20名男生的跳绳成绩中出现次数最多的数据为188,

∴c=188,

故答案为:6;179;188;

(2)∵20名男生和20名女生的跳绳成绩中,185个及以上的有16个,

∴该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有1500×=

600(人);

(3)理由:初三年级的女生跳绳成绩的极差较小,而平均数较大.

【点睛】

本题考查了用样本估计总体,中位数,众数,正确的理解题意是解题的关键.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.

人教版中考数学模拟试题及答案(含详解)

中考数学模拟试卷 一、选择题(每题只有一个正确选项,本题共10 小题,每题3分,共30分)1.(3.00分)﹣的相反数是() A.﹣B.C.﹣D. 2.(3.00分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为() A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×1011 3.(3.00分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是() A.厉B.害C.了D.我 4.(3.00分)下列运算正确的是() A.(﹣x2)3=﹣x5B.x2+x3=x5 C.x3?x4=x7 D.2x3﹣x3=1 5.(3.00分)河南省旅游资源丰富,2013~2017 年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是() A.中位数是12.7% B.众数是15.3% C.平均数是15.98% D.方差是0 6.(3.00分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5 钱,还差45钱;若每人出7钱,还差3 钱,问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 线,根据题意,可列方程组为() A.C.B.D. 7.(3.00分)下列一元二次方程中,有两个不相等实数根的是()

A .x 2 +6x +9=0 B .x 2 =x C .x 2 +3=2x D .(x ﹣1)2 +1=0 8.(3.00 分)现有 4 张卡片,其中 3 张卡片正面上的图案是“ ”,1 张卡片正 面上的图案是“ ”,它们除此之外完全相同.把这 4 张卡片背面朝上洗匀,从 中随机抽取两张,则这两张卡片正面图案相同的概率是( ) A . B . C . D . 9.(3.00 分)如图,已知 AOBC 的顶点 O (0,0),A (﹣1,2),点 B 在 x 轴正 半轴上按以下步骤作图:①以点 O 为圆心,适当长度为半径作弧,分别交边 OA , OB 于点 D ,E ;②分别以点 D ,E 为圆心,大于 DE 的长为半径作弧,两弧在∠ AOB 内交于点 F ;③作射线 OF ,交边 AC 于点 G ,则点 G 的坐标为( ) A .( ﹣1,2) B .( ,2) C .(3﹣ ,2) D .( ﹣2,2) 10.(3.00 分)如图 1,点 F 从菱形 ABCD 的顶点 A 出发,沿 A →D→B 以 1cm/s 的速度匀速运动到点 B ,图 2 是点 F 运动时 △,FBC 的面积 y (cm 2 变化的关系图象,则 a 的值为( ) )随时间 x (s ) A . B .2 C . D .2 二、细心填一填(本大题共 5 小题,每小题 3 分,满分 15 分,请把答案填在答 題卷相应题号的横线上) 11.(3.00 分)计算:|﹣5|﹣ = .

2019年吉林中考数学试题(解析版)

{来源}2019年吉林中考数学试卷 {适用范围:3.九年级} 2019年吉林初中毕业生学业水平考试 数学试卷 考试时间:120分钟满分:120分 {题目}1.(2019年吉林)1.如图,数轴上蝴蝶所在点表示的数可能为() (第1题) A.3 B.2 C.1 D.-1 {答案}D {解析}本题考查了数轴上有理数的表示,因为负数在原点的左侧,因此本题选D. {分值}2 {章节: [1-1-2-2]数轴} {考点:数轴表示数} {类别:常考题} {难度:1-最简单} {题目}2.(2019年吉林)2.如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为() (第2题) A.B.C.D. {答案}D {解析}本题考查了俯视图,因为该组合图形俯视图由四个正方体连成一排,因此本题选D. {分值}2 {章节:[1-29-2]三视图} {考点:简单组合体的三视图} {类别:常考题} {难度:1-最简单} {题目}3.(2019年吉林)3.若a为实数,则下列各式的运算结果比a小的是() A.1 a?D.1 a÷ a-C.1 a+B.1 {答案}B {解析}本题考查了数值大小比较,a-1比a小,因此本题选B. {分值}2 {章节:[1-2-2]整式的加减} {考点:实数的大小比较} {类别:常考题} {难度:1-最简单} {题目}4.(2019年吉林)4.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为() A.30°B.90°C.120°D.180°

(第4题) {答案}C {解析}本题考查了图形的旋转运动,因为图形可以分解成三份完全相同的图形,360°÷3=120°,因此本题选C . {分值}2 {章节:[1-23-1]图形的旋转} {考点:与旋转有关的角度计算} {类别:常考题} {难度:1-最简单} {题目}5.(2019年吉林)5.如图,在⊙O 中,AB 所对的圆周角∠ACB =50°,若P 为AB 上一点,∠AOP =55°,则 ∠POB 的度数为( ) A .30° B .45° C .55° D .60° O P C B A (第5题) {答案}B {解析}本题考查了圆内角度计算,同弧所对的圆周角是圆心角的一半,因此本题选B . {分值}2 {章节:[1-24-1-3]弧、弦、圆心角} {考点:直径所对的圆周角} {类别:常考题} {难度:3-中等难度} {题目}6(2019年吉林)6. 曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人 更好地观赏风光。如图,A 、B 两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是( ) A .两点之间,线段最短 B .平行于同一条直线的两条直线平行 C .垂线段最短 D .两点确定一条直线 曲桥 (第6题) B A {答案}A {解析}本题考查几何定理在生活中的应用,两点之间,直线最短,因此本题选A . {分值}2 {章节:[1-4-2]直线、射线、线段} {考点:线段公理}

中考数学计算题大全及答案解析

中考数学计算题大全及答案解析 1.计算: (1); (2). 【来源】2018年江苏省南通市中考数学试卷 【答案】(1)-8;(2) 【解析】 【分析】 (1)先对零指数幂、乘方、立方根、负指数幂分别进行计算,然后根据实数的运算法则,求得计算结果; (2)用平方差公式和完全平方公式,除法化为乘法,化简分式. 【详解】 解:(1)原式; (2)原式. 【点睛】 本题考查的知识点是实数的计算和分式的化简,解题关键是熟记有理数的运算法则. 2.(1)计算: (2)化简: 【来源】四川省甘孜州2018年中考数学试题 【答案】(1)-1;(2)x2 【解析】 【分析】 (1)原式第一项化为最简二次根式,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值计算,计算即可得到结果.

(2)先把除法转化为乘法,同时把分子分解因式,然后约分,再相乘,最后合并同类项即可. 【详解】 (1)原式=-1-4× =-1- =-1; (2)原式=-x =x(x+1)-x =x2. 【点睛】 此题考查了实数和分式的运算,熟练掌握运算法则是解本题的关键. 3.(1)解不等式组: (2)化简:(﹣2)?. 【来源】2018年山东省青岛市中考数学试卷 【答案】(1)﹣1<x<5;(2). 【解析】 【分析】 (1)先求出各不等式的解集,再求出其公共解集即可. (2)根据分式的混合运算顺序和运算法则计算可得. 【详解】 (1)解不等式<1,得:x<5, 解不等式2x+16>14,得:x>﹣1, 则不等式组的解集为﹣1<x<5; (2)原式=(﹣)?

=? =. 【点睛】 本题主要考查分式的混合运算和解一元一次不等式组,解题的关键是掌握解一元一次不等式组的步骤和分式混合运算顺序和运算法则. 4.先化简,再求值:,其中. 【来源】内蒙古赤峰市2018年中考数学试卷 【答案】, 【解析】 【分析】 先根据分式混合运算顺序和运算法则化简原式,再利用二次根式性质、负整数指数幂及绝对值性质计算出x的值,最后代入计算可得. 【详解】 原式(x﹣1) . ∵x=22﹣(1)=21,∴原式.【点睛】 本题考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.5.先化简,再求值.(其中x=1,y=2) 【来源】2018年四川省遂宁市中考数学试卷 【答案】-3. 【解析】 【分析】

人教版初三数学圆的测试题及答案

九年级圆测试题 一、选择题(每题3分,共30分) 1.如图,直角三角形A BC 中,∠C =90°,A C =2,A B =4,分别以A C 、BC 为直径作半圆,则图中阴影的面积为 ( ) A 2π- 3 B 4π-4 3 C 5π-4 D 2π-23 2.半径相等的圆内接正三角形、正方形、正六边形的边长之比为 ( ) A 1∶2∶3 B 1∶ 2∶3 C 3∶2∶1 D 3∶2∶1 3.在直角坐标系中,以O(0,0)为圆心,以5为半径画圆,则点A(3-,4)的位置在 ( ) A ⊙O 内 B ⊙O 上 C ⊙O 外 D 不能确定 4.如图,两个等圆⊙O 和⊙O ′外切,过O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( ) A. 30° B. 45° C. 60° D. 90° 5.在Rt △A BC 中,已知A B =6,A C =8,∠A =90°,如果把此直角三角形绕直线A C 旋转一周得到一个圆锥,其表面积为S 1;把此直角三角形绕直线A B 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( ) A 2∶3 B 3∶4 C 4∶9 D 5∶12 6.若圆锥的底面半径为 3,母线长为5,则它的侧面展开图的圆心角等于 ( ) A . 108° B . 144° C . 180° D . 216° 7.已知两圆的圆心距d = 3 cm ,两圆的半径分别为方程0352 =+-x x 的两根,则两圆的位置关系是 ( ) A 相交 B 相离 C 相切 D 内含 8.四边形中,有内切圆的是 ( ) A 平行四边形 B 菱形 C 矩形 D 以上答案都不对 9.如图,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么

吉林省中考数学压轴题汇编

2003年---2011年吉林省中考数学压轴题 28.(2011年吉林省)如图,梯形ABCD 中,AD ∥BC ,∠BAD=90°,CE ⊥AD 于点E ,AD=8cm ,BC=4cm ,AB=5cm .从初始时刻开始,动点P ,Q 分别从点A ,B 同时出发,运动速度均为1cm/s ,动点P 沿A-B--C--E 的方向运动,到点E 停止;动点Q 沿B--C--E--D 的方向运动,到点D 停止,设运动时间为xs ,△PAQ 的面积为ycm2,(这里规定:线段是面积为0的三角形) 解答下列问题: (1)当x=2s 时,y= cm2;当x=9s 时,y= cm2.2 4S 梯形ABCD 时x 的值.15 (2)当5≤x ≤14时,求y 与x 之间的函数关系式. (3)当动点P 在线段BC 上运动时,求出y=(4)直接写出在整个运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值. 28.(2010年吉林省)如图,在等腰梯形ABCD 中,AD ∥BC ,AE ⊥BC 于点E .DF ⊥BC 于点F .AD=2cm ,BC=6cm ,AE=4cm .点P 、Q 分别在线段AE 、DF 上,顺次连接B 、P 、Q 、C ,线段BP 、PQ 、QC 、CB 所围成的封闭图形记为M ,若点P 在线段AE 上运动时,点Q 也随之在线段DF 上运动,使图形M 的形状发生改变,但面积始终为10cm2,设EP=xcm ,FQ=ycm .解答下列问题: (1)直接写出当x=3时y 的值; (2)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)当x 取何值时,图形M 成为等腰梯形?图形M 成为三角形? (4)直接写出线段PQ 在运动过程中所能扫过的区域的面积.

历年全国中考数学试题及答案

班级 姓名 学号 成绩 一、精心选一选 1.下列运算正确的是( ) A.()11a a --=-- B.( ) 2 3624a a -= C.()2 22a b a b -=- D.3 2 5 2a a a += 2.如图,由几个小正方体组成的立体图形的左视图是( ) 3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖 C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球 D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=o ∠ ∠∠ B.123360++=o ∠ ∠∠ C.1322+=∠∠∠ D.132+=∠ ∠∠ 5.已知24221 x y k x y k +=??+=+?,且10x y -<-<,则k 的取值范围为( ) A.112 k -<<- B.102 k << C.01k << D. 1 12 k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4 y x = 的图象上,则a ,b ,c 的大小关系为( ) A.a b c >> B.c b a >> C.b c a >> D.c a b >> 8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.2 1185580x = B.()2 11851580x -= C.( )2 11851580x -= D.()2 58011185x += 9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条 B.2条 C.3条 D.4A. B. C. D. A B D C 3 2 1 第4题图 P 第9题图

2018年中考数学模拟试卷及答案解析

2018年中考数学模拟试卷 一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.7的相反数是() A.7 B.﹣7 C.D.﹣ 2.数据3,2,4,2,5,3,2的中位数和众数分别是() A.2,3 B.4,2 C.3,2 D.2,2 3.如图是一个空心圆柱体,它的左视图是() A.B.C. D. % 4.下列二次根式中,最简二次根式是() A.B. C.D. 5.下列运算正确的是() A.3a2+a=3a3B.2a3?(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2 6.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在() A.第一象限B.第二象限C.第三象限D.第四象限 7.下列命题中假命题是() A.正六边形的外角和等于360° B.位似图形必定相似 C.样本方差越大,数据波动越小 ) D.方程x2+x+1=0无实数根 8.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概

率是() A.B.C.D.1 9.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是() A.45°B.60°C.75°D.85° 10.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是() A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=2(x﹣1)2+1 D.y=2(x+1)2+1 11.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM 的最大值是() \ A.4 B.3 C.2 D.1 12.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是()

初三数学圆测试题和答案及解析

九年级上册圆单元测试 一、选择题(本大题共10小题,每小题3分,共计30分) 1.下列命题:①长度相等的弧是等弧②任意三点确定一个圆③相等的圆心角所对的弦相等④外心在三角形的一条边上的三角形是直角三角形,其中真命题共有( ) A.0个 B.1个 C.2个 D.3个 2.同一平面内两圆的半径是R和r,圆心距是d,若以R、r、d为边长,能围成一个三角形,则这两个圆 的位置关系是( ) A.外离 B.相切 C.相交 D.内含 3.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=( ) A.35° B.70° C.110° D.140° 4.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围( ) A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<5 5.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于( ) A.42 ° B.28° C.21° D.20° 6.如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O的直径是( ) A.2cm B.4cm C.6cm D.8cm 7.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图

中阴 影部分的面积为( ) A. B. C. D. 8.已知⊙O1与⊙O2外切于点A,⊙O1的半径R=2,⊙O2的半径r=1,若半径为4的⊙C与⊙O1、⊙O2都相 切,则满足条件的⊙C有( ) A.2个 B.4个 C.5个 D.6个 9.设⊙O的半径为2,圆心O到直线的距离OP=m,且m使得关于x的方程有实数 根,则直线与⊙O的位置关系为( ) A.相离或相切 B.相切或相交 C.相离或相交 D.无法确定 10.如图,把直角△ABC的斜边AC放在定直线上,按顺时针的方向在直线上转动两次,使它转到△A2B2C2的位置,设AB=,BC=1,则顶点A运动到点A2的位置时,点A所经过的路线为( ) A. B. C. D. 二、填空题(本大题共5小题,每小4分,共计20分) 11.(山西)某圆柱形网球筒,其底面直径是10cm,长为80cm,将七个这样的网球筒如图所示放置并包 装侧面,则需________________的包装膜(不计接缝,取3). 12.(山西)如图,在“世界杯”足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同样乙已经被攻冲到B点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅

2020年吉林省中考数学试题

2020年吉林省中考数学试卷 一、单项选择题(每小题2分,共12分) 1.(2分)﹣6的相反数是() A.6B.﹣6C.D. 2.(2分)国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为() A.11.09×106B.1.109×107C.1.109×108D.0.1109×108 3.(2分)如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为() A.B.C.D. 4.(2分)下列运算正确的是() A.a2?a3=a6B.(a2)3=a5C.(2a)2=2a2D.a3÷a2=a 5.(2分)将一副三角尺按如图所示的方式摆放,则∠α的大小为() A.85°B.75°C.65°D.60° 6.(2分)如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的

大小为() A.54°B.62°C.72°D.82° 二、填空题(每小题3分,共24分) 7.(3分)分解因式:a2﹣ab=. 8.(3分)不等式3x+1>7的解集为. 9.(3分)一元二次方程x2+3x﹣1=0根的判别式的值为.10.(3分)我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,根据题意,可列方程为. 11.(3分)如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是.

2018年中考数学试卷及答案

2018四川高级中等学校招生考试 数 学 试 卷 学校: 姓名: 准考证号: 一、选择题(本题共30分,每小题3分) 第1-10题均有四个选项,符合题意的选项只有..一个. 1.如图所示,点P 到直线l 的距离是 A.线段P A 的长度 B. A 线段PB 的长度 C.线段PC 的长度 D.线段PD 的长度 2.若代数式 4 x x -有意义,则实数x 的取值范围是 A. x =0 B. x =4 C. 0x ≠ D. 4x ≠ 3.右图是某几何体的展开图,该几何体是 A.三棱柱 B.圆锥 C.四棱柱 D.圆柱 4.实数a,b,c,d 在数轴上的点的位置如图所示,则正确的结论是 A.4a >- B. 0ab > C. a d > D. 0 a c +> 5.下列图形中,是轴对称图形不是中心.. 对称图形的是 6.若正多边形的一个内角是150°,则该正方形的边数是 A.6 B. 12 C. 16 D.18

7.如果2210 a a +-=,那么代数式 2 4 2 a a a a ?? -? ?- ?? 的值是 A.-3 B. -1 C. 1 D.3 8.下面统计图反映了我国与“一带一路”沿线部分地区的贸易情况. 根据统计图提供的信息,下列推断不合理 ...的是 A.与2015年相比,2016年我国与东欧地区的贸易额有所增长 B.2016—2016年,我国与东南亚地区的贸易额逐年增长 C. 2016—2016年,我国与东南亚地区的贸易额的平均值超过4 200亿美元 D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多 9.小苏和小林在右图的跑道上进行4×50米折返跑.在整个过程中, 跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的 对应关系如下图所示。下列叙述正确的是 A. 两个人起跑线同时出发,同时到达终点 B.小苏跑全程的平均速度大于小林跑全程的平均速度 C.小苏前15s跑过的路程大于小林15s跑过的路程 D.小林在跑最后100m的过程中,与小苏相遇2次

中考数学试卷及答案解析word版完整版

中考数学试卷及答案解 析w o r d版 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

2015年北京市中考数学试卷 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一.个.是符合题意的 1.(3分)(2015?北京)截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.×105C.×106D.14×106 考 点: 科学记数法—表示较大的数. 专 题: 计算题. 分 析: 将140000用科学记数法表示即可. 解答:解:140000=×105,故选B. 点评:此题考查了科学记数法﹣表示较大的数,较小的数,以及近似数与有效数字,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 2.(3分)(2015?北京)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是() A.a B.b C.c D.d 考 点: 实数大小比较. 分析:首先根据数轴的特征,以及绝对值的含义和性质,判断出实数a,b,c,d的绝对值的取值范围,然后比较大小,判断出这四个数中,绝对值最大的是哪个数即可. 解答:解:根据图示,可得 3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a. 故选:A. 点评:此题主要考查了实数大小的比较方法,以及绝对值的非负性质的应用,要熟练掌握,解答此题的关键是判断出实数a,b,c,d的绝对值的取值范围. 3.(3分)(2015?北京)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为() A.B.C.D. 考 点: 概率公式. 专 题: 计算题. 分 析: 直接根据概率公式求解. 解 答: 解:从中随机摸出一个小球,恰好是黄球的概率==. 故选B. 点本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出

人教中考数学 圆的综合综合试题附答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.已知O 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______; ()2如图②,若m 6=. ①求C ∠的正切值; ②若ABC 为等腰三角形,求ABC 面积. 【答案】()130;()2C ∠①的正切值为3 4 ;ABC S 27=②或 432 25 . 【解析】 【分析】 ()1连接OA ,OB ,判断出AOB 是等边三角形,即可得出结论; ()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结 论; ②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论. 【详解】 ()1如图1,连接OB ,OA , OB OC 5∴==, AB m 5==, OB OC AB ∴==, AOB ∴是等边三角形, AOB 60∠∴=,

1 ACB AOB 302 ∠∠∴==, 故答案为30; ()2①如图2,连接AO 并延长交 O 于D ,连接BD , AD 为O 的直径, AD 10∴=,ABD 90∠=, 在Rt ABD 中,AB m 6==,根据勾股定理得,BD 8=, AB 3 tan ADB BD 4 ∠∴= =, C ADB ∠∠=, C ∠∴的正切值为3 4 ; ②Ⅰ、当AC BC =时,如图3,连接CO 并延长交AB 于E , AC BC =,AO BO =, CE ∴为AB 的垂直平分线, AE BE 3∴==, 在Rt AEO 中,OA 5=,根据勾股定理得,OE 4=, CE OE OC 9∴=+=, ABC 11 S AB CE 692722 ∴=?=??=; Ⅱ、当AC AB 6==时,如图4,

吉林省中考数学试题及答案

吉林省中考数学试题 全卷满分120分,考试时间为120分钟. 一、单项选择题(每小题2分共12分) 1.(2014年吉林省 1,2分)在1,-2,4 0小的数是 (A )-2. (B )1. (C . (D )4. 【答案】C 2.(2014年吉林省2,2分)用4个完全相同的小正方体组成如图所示的立体图形,它的俯视图是 (A ) (B ) (C ) (D ) 【答案】B 3.(2014年吉林省 3,2分)如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为 (A )10°. (B )15°. (C )20°. (D )25°. 【答案】D 4.(2014年吉林省 4,2分)如图,四边形ABCD 、AEFG 是正方形,点E 、G 分别在AB ,AD 上,连接FC ,过点E 作EH //FC ,交BC 于点H .若AB =4,AE =1,则BH 的长为 (A )1. (B )2. (C )3. (D ). 【答案】C (第3题) (第4题) (第5题) 5.(2014年吉林省 5,2分)如图,△ABC 中,∠C =45°,点D 在AB 上,点E 在BC 上,若AD =DB =DE ,AE =1,则AC 的长为 (A (B )2. (C (D . 【答案】D 6.(2014年吉林省 6,2分)小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购 进校车接送学生,若校车速度是他骑自行车速度的2倍,现在小军乘班车上学可以从家晚出发,结果与原来到校的时间相同.设小军骑车的速度为x 千米/时,则所列方程正确的为 正面

(A ) 51562x x +=. (B )515 62x x -= . (C )55102x x +=. (D )55102x x -=. 【答案】B 二、填空题(每小题3分,共24分) 7.(2014年吉林省 7,3分)经统计,截止到2013年末,某省初中在校学生只有645 000人,将数据645 000用科学记数法表示为 . 【答案】6.45×5 10 8.(2014年吉林省 8,3分)不等式组24, 30 x x -?的解集是 . 【答案】x >3 9.(2014年吉林省 9,3分)若a b <,且a ,b 为连续正整数,则22b a -= . 【答案】7 10.(2014年吉林省 10,3分)某校举办“成语听写大赛”15名学生进入决赛,他们所得分数互不相同,比赛共设8个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是 (填“平均数”或“中位数”). 【答案】平均数 11.(2014年吉林省 11,3分)如图,矩形ABCD 的面积为__________(用含x 的代数式表示). 【答案】(x+3)(x+2) (第11题) (第12题) (第13题) 12.(2014年吉林省 12,3分)如图,直线24y x =+与x 、y 轴分别交于点A 、B 两点,以OB 为边在 y 轴右侧作等边三角形OBC ,将点C 向左平移,使其对应点'C 恰好落在直线AB 上,则点C ’的坐标 为 . 【答案】 (-1 13.(2014年吉林省 13,3分)如图,OB 是⊙O 的半径,弦AB =OB ,直径CD ⊥AB ,若点P 是线段OD 上 的动点,连接PA ,则∠PAB 的度数可以是 (写出一个即可). 【答案】60° 14.(2014年吉林省 14,3分)如图,将半径为3的圆形纸片,按下列顺序折叠,若 AB 和 BC 都经过圆心O ,则阴影部分的面积是 (结果保留π). 【答案】3

2020中考数学试卷及答案

2020中考数学试卷及答案 精心选一选(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的. 把所选项前的字母代号填在括号内. 相信你一定会选对!) 1、函数24-=x y 中自变量x 的取值范围是() A 、2>x B 、2≥x C 、2≠x D 、2

4、如图1,天平右盘中的每个砝码的质量都是1g ,则正视图左视图俯视图A A 图1 物体A 的质量m(g)的取值范围,在数轴上可表示为() 5、把分式方程 12121=----x x x 的两边同时乘以(x-2), 约去分母,得( ) A .1-(1-x)=1 B .1+(1-x)=1

.1-(1-x)=x-2 D .1+(1-x)=x-2 6、在一副52张扑克牌中(没有大小王)任意抽取一张牌,抽出的这张牌是方块的机会是() A 、21 B 、41 C 、31 D 、0 7.将函数762++=x x y 进行配方正确的结果应为()A 2)3(2++=x y B 2)3(2+-=x y C 2)3(2-+=x y D 2)3(2--=x y 8、一个形式如圆锥的冰淇淋纸筒,其底面直径为cm 6, 母线长为cm 5,围成这样的冰淇淋纸筒所需纸片的面积是() A 、266cm π B 、230cm π C 、228cm π D 、B 0 A C D 9、某村的粮食总产量为a (a 为常量)吨,设该村粮食的人均产量为y (吨),人口数为x ,则y 与x 之间的函数图象应为图中的()10、在圆环形路上有均匀分布的四家工厂甲、乙、丙、丁,每家工厂都有足够的仓库供产品储存. 现要将所有产品集中到一家工厂的仓库储存,已知甲、乙、丙、丁四家工厂的产量之比为1∶2∶3∶5. 若运费与路程、运的数量成正比例,为使选定的工厂仓库储存所有产品时总的运费最省,应选的工厂是() A 、甲B 、乙 C 、丙D 、丁 二、细心填一填(本大题共有5小题,每 空4分,共20分.) 11、分解因式:3x 2-12y 2= . 12.如图9,D 、E 分别是∶ABC 的边AC 、AB 上的点,请你添加一个条件,使∶ADE 与∶ABC 相似.你添加的条件 甲乙丙丁

中考数学圆试题及答案

0 1 2 3 4 5 0 1 2 3 4 5 B . C . 一.选择 1. (2009 年泸州)已知⊙O 1 与⊙O 2 的半径分别为 5cm 和 3cm ,圆心距 020=7cm ,则两圆的位置关系为 A .外离 B .外切 C .相交 D .内切 2. (2009 年滨州)已知两圆半径分别为 2 和 3,圆心距为 d ,若两圆没有公共点,则下列结论正确的是( ) A . 0 < d < 1 B . d > 5 C . 0 < d < 1或 d > 5 D . 0 ≤ d < 1 或 d > 5 3.(2009 年台州市)大圆半径为 6,小圆半径为 3,两圆圆心距为 10,则这两圆的位置关系为( ) A .外离 B .外切 C.相交 D .内含 4.(2009 桂林百色)右图是一张卡通图,图中两圆的位置关系( ) A .相交 B .外离 C .内切 D .内含 5.若两圆的半径分别是 1cm 和 5cm ,圆心距为 6cm ,则这两圆的位置关系是( ) A .内切 B .相交 C .外切 D .外离 6(2009 年衢州)外切两圆的圆心距是 7,其中一圆的半径是 4,则另一圆的半径是 A .11 B .7 C .4 D .3 7.(2009 年舟山)外切两圆的圆心距是 7,其中一圆的半径是 4,则另一圆的半径是 A .11 B .7 C .4 D .3 8. .(2009 年益阳市)已知⊙O 1 和⊙O 2 的半径分别为 1 和 4,如果两圆的位置关系为相交,那么圆心距 O 1O 2 的 取值范围在数轴上表示正确的是 0 1 2 3 4 5 0 1 2 3 4 5 A . D . 9. (2009 年宜宾)若两圆的半径分别是 2cm 和 3cm,圆心距为 5cm ,则这两个圆的位置关系是( ) A. 内切 B.相交 C.外切 D. 外离 10.. (2009 肇庆)10.若⊙O 与 ⊙O 相切,且 O O = 5 ,⊙O 的半径 r = 2 ,则⊙O 的半径 r 是( ) 1 2 1 2 1 1 2 2 A . 3 B . 5 C . 7 D . 3 或 7 11. .(2009 年湖州)已知⊙O 与 ⊙O 外切,它们的半径分别为 2 和 3,则圆心距 O O 的长是( ) 1 2 1 2 A . O O =1 B . O O =5 C .1< O O <5 D . O O >5 1 2 1 2 1 2 1 2

2014年吉林省中考数学试题及答案(图片转译,修订一次,供参考)

数学试题 数学试题共6页,包括六道大题,共26道小题。全卷满分120分,考试 时间为120分钟.考试结束后,将本试题和答题卡一并交回. 1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘 贴在条形码区域内. 2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试题 卷上答题无效. 一、单项选择题(每小题2分共12分) 1.在1,-2,4 0小的数是 (A )-2. (B )1. (C (D )4. 2.用4个完全相同的小正方体组成如图所示的立体图形,它的俯视图是 (A ) (B ) (C ) (D ) 3.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为 (A )10°. (B )15°. (C )20°. (D )25°. 4.如图,四边形ABCD 、AEFG 是正方形,点E 、G 分别在AB ,AD 上,连接FC ,过点 E 作EH //FC ,交BC 于点H .若AB =4,AE =1,则BH 的长为 (A )1. (B )2. (C )3. (D ) (第3题) (第4题) (第5题) 5.如图,△ABC 中,∠C =45°,点D 在AB 上,点E 在BC 上,若AD =DB =DE ,AE =1, 则AC 的长为 (A (B )2. (C (D 正面

6.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送 学生,若校车速度是他骑自行车速度的2倍,现在小军乘班车上学可以从家晚出发, 结果与原来到校的时间相同.设小军骑车的速度为x 千米/时,则所列方程正确的为 (A ) 51562x x +=. (B )51562x x -=. (C )55102x x +=. (D )55102x x -=. 二、填空题(每小题3分,共24分) 7.经统计,截止到2013年末,某省初中在校学生只有645 000人,将数据645 000用科 学记数法表示为 . 8.不等式组24,30x x -? 的解集是 . 9.若a b <,且a ,b 为连续正整数,则=22b a - . 10.某校举办“成语听写大赛”45名学生进入决赛,他们所得分数互不相同,比赛共设8 个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量 是 (填“平均数”或“中位数”). 11.如图,矩形ABCD 的面积为(用含x 的代数式表示). (第11题) (第12题) (第13题) 12.如图,直线24y x =+与x 、y 轴分别交于点A 、B 两点,以OB 为边在y 轴右侧作等 边三角形OBC ,将点C 向左平移,使其对应点'C 恰好落在直线AB 上,则点C 的坐 标为 . 13.如图,OB 是⊙O 的半径,弦AB =OB ,直径CD ⊥AB ,若点P 是线段OD 上的动点, 连接P A ,则∠P AB 的度数可以是 (写出一个即可). 14.如图,将半径为3的圆形纸片,按下列顺序折叠,若AB 和BC 都经过圆心O ,则阴 影部分的面积是 (结果保留π). (第14题)

【必考题】中考数学试题(及答案)

【必考题】中考数学试题(及答案) 一、选择题 1.如图,菱形ABCD 的一边中点M 到对角线交点O 的距离为5cm ,则菱形ABCD 的周长为( ) A .5cm B .10cm C .20cm D .40cm 2.如图,在矩形ABCD 中,AD=2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC ﹣CF=2HE ;⑤AB=HF ,其中正确的有( ) A .2个 B .3个 C .4个 D .5个 3.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( ) A .2 B .3 C .5 D .7 4.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( ) A . B . C . D . 5.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为 ( ) A .﹣3 B .﹣5 C .1或﹣3 D .1或﹣5 6.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED 度数为( )

A .110° B .125° C .135° D .140° 7.如图,是由四个相同的小正方体组成的立体图形,它的左视图是( ) A . B . C . D . 8.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( ) A .10° B .15° C .18° D .30° 9.如图,直线//AB CD ,AG 平分BAE ∠,40EFC ∠=o ,则GAF ∠的度数为( ) A .110o B .115o C .125o D .130o 10.如图,在半径为13的O e 中,弦AB 与CD 交于点E ,75DEB ∠=?,6,1AB AE ==,则CD 的长是( ) A .26 B .10 C .211 D .4311.cos45°的值等于( ) A 2 B .1 C 3 D .22 12.如图,AB ∥CD ,∠C=80°,∠CAD=60°,则∠BAD 的度数等于( )

中考数学试题及答案解析

2019-2020年中考数学试题及答案解析 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一.个.是符合题意的 1.(3分)(xx?北京)截止到xx年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.14×106 考 点: 科学记数法—表示较大的数. 专 题: 计算题. 分 析: 将140000用科学记数法表示即可. 解答:解:140000=1.4×105,故选B. 点评:此题考查了科学记数法﹣表示较大的数,较小的数,以及近似数与有效数字,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

2.(3分)(xx?北京)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是() A.a B.b C.c D.d 考点:实数大小比较. 分析:首先根据数轴的特征,以及绝对值的含义和性质,判断出实数a,b,c,d的绝对值的取值范围,然后比较大小,判断出这四个数中,绝对值最大的是哪个数即可. 解答:解:根据图示,可得 3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3, 所以这四个数中,绝对值最大的是a. 故选:A. 点评:此题主要考查了实数大小的比较方法,以及绝对值的非负性质的应用,要熟练掌握,解答此题的关键是判断出实数a,b,c,d的绝对值的取值范围. 3.(3分)(xx?北京)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A.B.C.D. 考点:概率公式. 专题:计算题. 分析:直接根据概率公式求解. 解答:解:从中随机摸出一个小球,恰好是黄球的概率==. 故选B. 点评:本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.

相关主题
文本预览
相关文档 最新文档