当前位置:文档之家› 中考数学试题与参考答案

中考数学试题与参考答案

中考数学试题与参考答案
中考数学试题与参考答案

20XX 年广东省初中毕业生学业考试

数 学

说明:1.全卷共6页,满分为120 分,考试用时为100分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。用2B 铅笔把对应该号码的标号涂黑。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。

5.考生务必保持答题卡的整洁。考试结束时,将试卷和答题卡一并交回。

一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.

1. 5的相反数是( ) A.15 B.5 C.-1

5

D.-5 2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。20XX 年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )

A.0.4×910

B.0.4×1010

C.4×910

D.4×1010 3.已知70A ∠=?,则A ∠的补角为( )

A.110?

B.70?

C.30?

D.20? 4.如果2是方程230x x k -+=的一个根,则常数k 的值为( )

A.1

B.2

C.-1

D.-2

5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )

A.95

B.90

C.85

D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( )

A.等边三角形

B.平行四边形

C.正五边形

D.圆

7.如题7图,在同一平面直角坐标系中,直线11(0)y k x k =≠与双曲

线2

2(0)k y k x

=

≠ 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( )

8.下列运算正确的是( )

A.2

23a a a += B.325·

a a a = C.426()a a = D.424a a a +=

9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )

A.130°

B.100°

C.65°

D.50°

10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下

列结论:①ABF ADF S S =△△;②4CDF CBF S S =△△;③2ADF CEF S S =△△; ④2ADF CDF S S =△△,其中正确的是( ) A.①③ B.②③ C.①④ D.②④

二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.

11.分解因式:a a +2 .

12.一个n 边形的内角和是720?,那么n= .

13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则a b ÷ 0(填“>”,“<”或“=”).

14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随

机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知431a b ÷=,则整式863a b ÷-的值为 .

16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD

沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .

三、解答题(一)(本大题共3题,每小题6分,共18分)

17.计算:2

1|7|(1)3π-??

---+ ???.

18.先化简,再求值2

11(x 4)22x x ??+÷- ?-+??

,其中.

19.学校团委组织志愿者到图书馆整理一批新进的图书。若干男生每人整理30本,女生每人

整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本,求男生 、女生志愿者各有多少人?

四、解答题(二)(本大题共3题,每小题7分,共21分) 20.如是20图,在ABC ?中,A B ∠>∠.

(1)作边AB 的垂直平分线DE ,与AB 、BC 分别相交于点D 、E (用尺规作图,保留作图痕

迹,不要求写作法):

(2)在(1)的条件下,连接AE ,若50B ∠=?,求AEC ∠的度数。

21.如图21图所示,已知四边形ABCD、ADEF都是菱形,BAD FAD BAD

、为锐角.

∠=∠∠(1)求证:AD BF

⊥;

(2)若BF=BC,求ADC

∠的度数。

22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取

学生的体重情况绘制如下不完整的统计图表,如题22图表所示,请根据图表信息回答下列问题:

(1)填空:①m= (直接写出结果);

②在扇形统计图中,C组所在扇形的圆心角的度数等于度;

(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?

五、解答题(三)(本大题共3题,每小题9分,共27分)

23.如图23图,在平面直角坐标系中,抛物线2

=-++交x轴于A(1,0),B(3,0)两点,

y x ax b

点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.

(1)求抛物线2

=-++的解析式;

y x ax b

(2)当点P是线段BC的中点时,求点P的坐标;

(3)在(2)的条件,求sin OCB

∠的值.

24.如题24图,AB是⊙O的直径,,点E为线段OB上一点(不与O、B重合),作,

交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,于点F,连结CB.

(1)求证:CB是的平分线;

(2)求证:CF=CE;

(3)当时,求劣弧?BC的长度(结果保留π).

25.如题25图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A、C的坐标分别是和,点D是对角线AC上一动点(不与A、C重合),连结BD,作,交x轴于点E,以线段DE、DB为邻边作矩形BDEF.

(1)填空:点B的坐标为;

(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;

(3)①求证:;

②设,矩形BDEF的面积为,求关于的函数关系式(可利用①的结论),并

求出的最小值

20XX 年广东省中考数学试卷参考答案

一、选择题

二、填空题 11、a (a +1) 12、6 13、> 14、

5

2 15、-1 16、10 三、解答题(一) 17、计算:()1

-0

31-1-7-??

? ??+π 解:原式=7-1+3 =9

18、先化简,再求值:()

5421212=-???

?

??++-x x x x ,其中 解:()()

()()22222

2-++--++=

x x x x x x 原式

x 2= 当5=

x 时,上式=52

19、解:设男生x 人,女生y 人,则有

??

?==???=+=+16

12

124040506802030y x y x y x 解得 答:男生有12人,女生16人。 四、解答题(二)

20、(1)作图略

(2)∵ED 是AB 的垂直平分线 ∴EA =EB

∴∠EAC =∠B =50°

∵∠AEC 是△ABE 的外角 ∴∠AEC =∠EBA +∠B =100°

21、(1)如图,∵ABCD 、ADEF 是菱形

∴AB =AD =AF

又∵∠BAD =∠F AD

由等腰三角形的三线合一性质可得 AD ⊥BF

(2)∵BF =BC ∴BF =AB =AF

∵△ABF 是等比三角形 ∴∠BAF =60°

又∵∠BAD =∠F AD ∴∠BAD =30° ∴∠ADC =180°-30°=150° 22、(1)①、52 (2)144 (3)(人)720%100200

80

52121000=?++?

答:略

五、解答题(三)

23、解(1)把A (1,0)B (3,0)代入b ax x y ++-=2

??

?-==???=++-=++3

4

03901-b a b a b a 解得

∴342

-+-=x x y (2)过P 做PM ⊥x 轴与M ∵P 为BC 的中点,PM ∥y 轴 ∴M 为OB 的中点 ∴P 的横坐标为2

3 把x =

23代入342

-+-=x x y 得4

3=y ∴??

?

??43,23P (3)∵PM ∥OC ∴∠OCB =∠MPB ,2

343==

MB PM ,

∴54

349169=+=

PB ∴sin ∠MPB =

55

2

5432

3==PB BM ∴sin ∠OCB =55

2 24、证明:连接AC , ∵AB 为直径, ∴∠ACB =90° ∴∠1+∠2=90°,∠2+∠3=90° ∴∠1=∠

3 又∵CP 为切线 ∴∠OCP =90° ∵DC 为直径 ∴∠DBC =90°

∴∠4+∠DCB =90°,∠DCB +∠D =90° ∴∠4=∠D

又∵弧BC =弧BC ∴∠3=∠D

∴∠1=∠4即:CB 是∠ECP 的平分线 (2)∵∠ACB =90° ∴∠5+∠4=90°,∠ACE +∠1=90° 由(1)得∠1=∠4 ∴∠5=∠ACE

在Rt △AFC 和Rt △AEC 中

AEC AFC AC AC ECA FCA AEC F ≌△△∴??

?

??=∠=∠?=∠=∠90 ∴CF =CE

(3)延长CE 交DB 于Q

x

x x EQ x CQ CP PQ CB QCB CB x CE CF x CP x CF CP CF =-=∴==∴⊥∠=====34432434

3

的角平分线是∵)得由(,设:

π

π33

2

32180603

2346060-60-18060333tan 33290219019022=?∴=∴=?=???=∠∴?

=∠∴===

∠=∴=??=∴=∴

∴∠=∠∴?=∠+∠?=∠+∠?=∠⊥的长度为:弧∵中,在△即∽△△,,,BC OB AB CBE CBE x

x

EB CE CBE CEB x

EB EB x x EQ CE EB EQ

EB

EB CE BEQ CEB CQB CQB CBQ EB CE

25、(1)()

232,

(2)存在

理由:①如图1 若ED=EC 由题知:∠ECD =∠EDC =30° ∵DE ⊥DB ∴∠BDC =60° ∵∠BCD =90°-∠ECD =60°

∴△BDC 是等边三角形,CD=BD=BC =2

∴AC =422=+OC OA ∴AD=AC-CD =4-2=2 ②如图2 若CD=CE 依题意知:∠ACO =30°,∠CDE =∠CED =15° ∵DE ⊥DB ,∠DBE=90° ∴∠ADB =180°-∠ADB -∠CDE =75° ∵∠BAC =∠OCA =30° ∴∠ABD =180°-∠ADB -∠BAC =75° ∴△ABD 是等腰三角形,AD=AB =32

③:若DC=DE 则∠DEC =∠DCE=30°或∠DEC =∠DCE=150° ∴∠DEC >90°,不符合题意,舍去 综上所述:AD 的值为2或者32,△CDE 为等腰三角形

(3)①如图(1),过点D 作DG ⊥OC 于点G ,DH ⊥BC 于点H 。 ∵∠GDE + ∠EDH = ∠HDB + ∠EDH = 90° ∴∠GDE = ∠HDB

在△ DGE 和△ DHB 中,

DGE = 90

GDE HDB

DHB ∠=∠∠∠=??? ∴ D G E

D H B ∽ ∴ DG DE

=DH DB

DH=GC ,

tan 3

DG ACO GC =∠=

DE DB =

②如图(2),作 I DI AB ⊥于点。

222

22

2

222

2)2

3

3

)(

3)

33x AD x DI AI x BD DI BI x x y BD DE BD x x x y x y =∴===+=+==?=+????=

-+?=44在时取到最小值,的最小值为

中考数学圆综合题汇编

25题汇编 1. 如图,AB 是⊙O 的直径,BC 是⊙O 的切线,切点为B ,AD 为弦,OC ∥AD 。 (1)求证:DC 是⊙O 的切线; (2)若OA=2,求OC AD 的值。 2. 如图,⊙O 是△ABC 的外接圆,∠B=60°,CD 是⊙O 的直径,P 是CD 延长线上的一点,且AP=AC (1)求证:直线AP 是⊙O 的切线; (2)若AC=3,求PD 的长。 3. 如图,已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,点E 是⊙ O 上一点,点D 是AM 上一点,连接DE 并延长交BN 于点C ,连接OD 、BE ,且OD ∥BE 。 (1)求证:DE 是⊙O 的切线; (2)若AD=1,BC=4,求直径AB 的长。 D C B A O C B M N E D B A O

4. 如图,△ABC 内接于⊙O ,弦AD ⊥AB 交BC 于点E ,过点B 作⊙O 的切线交DA 的延长线于点F ,且∠ABF=∠ABC 。 (1)求证:AB=AC ; (2)若EF=4,2 3 tan = F ,求DE 的长。 5. 在△ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,过点D 作DE ⊥AC ,垂足为E 。 (1)求证:DE 是⊙O 的切线; (2)若AE=1,52=BD ,求AB 的长。 6. 如图,AB 是⊙O 的直径,C 是⊙O 上一点,AD 垂直于过点C 的直线,垂足为D ,且AC 平分 ∠BAD 。 (1)求证:CD 是⊙O 的切线; (2)若62=AC ,AD=4,求AB 的长。 A

7. 如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为点D ,AD 交⊙O 于点E 。 求证:(1)AC 平分∠DAB ; (2)若∠B=60°,32 CD ,求AE 的长。 8. 如图,⊙O 是△ABC 的外接圆,AC 是⊙O 的直径,弦BD=BA ,AB=12,BC=5,BE ⊥DC 交DC 的延长线于点E 。 (1)求证:BE 是⊙O 的切线; (2)求DE 的长。 9. 如图,在Rt △ABC 中,∠C=90°,CB=CA=6,半径为2的⊙F 与射线BA 相切于点G ,且AG=4,将Rt △ABC 绕点A 顺时针旋转135°后得到Rt △ADE ,点B 、C 的对应点分别是点D 、E 。 (1)求证:DE 为⊙F 的切线; (2)求出Rt △ADE 的斜边AD 被⊙ F 截得的弦PQ 的长度。 A E A D

中考数学全真模拟试题3

年中考数学全真模拟试题(三) 班级 姓名 得分 一、 填空题(每空2分,共40分) 1、的相反数是 ;-2的倒数是 ; 16的算术平方根是 ;-8的立方根是 。 2、不等式组的解集是 。 3、函数y= 自变量x 的取值范围是 。 4、直线y=3x-2一定过(0,-2)和( ,0)两点。 5、样本5,4,3,2,1的方差是 ;标准差是 ;中位数是 。 6、等腰三角形的一个角为,则底角为 。 7、梯形的高为4厘米,中位线长为5厘米,则梯形的面积为 平方厘米。 8、如图PA 切⊙O 于点A ,PAB=,AOB= ,ACB= 。 9、 如图PA 切⊙O 于A 割线PBC 过圆心,交⊙O 于B 、C ,若PA=6;PB=3,则PC= ;⊙O 的半径为 。 10、如图ABC 中,C=,点D 在BC 上,BD=6,AD=BC ,cos ADC= ,则DC 的长为 。 11、如图同心圆,大⊙O 的弦AB 切小⊙O 于P ,且AB=6,则阴影部分既圆环的面积为 。 12、已知Rt ABC 的两直角边AC 、BC 分别是一元二次方程的两根,则此Rt 的外接圆的面 积为 。 二、 选择题(每题4分,共20分) 13、如果方程有两个同号的实数根,m 的取值范围是 ( ) A 、m <1 B 、0<m ≤1 C 、0≤m <1 D 、m >0 14、徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是81元。则平均每次降低成本的百分率是 ( ) A .8.5% B. 9% C. 9.5% D. 10% 15、二次函数的图像如图所示,则关于此二次函数的下列四个结论①a<0 ②a>0 ③ 2 1 - ?? ?-+2 80 4<>x x 1 1-x ?30∠?30∠∠ 10题图 9题图 A C D B 8题图 A 11题图 B ?∠?90∠5 3 ?06x 5-x 2 =+?0m x 2x 2 =++c bx ax y 2 ++=

中考数学专题练习数与式

数与式 一、选择题(每小题3分,共24分) 1.3-的相反数是( ) A .1 3 B . 1 3- C . 3 D . -3 2.下列数022cos 607π,中,无理数的个数是( ) A .1个 B .2个 C .3个 D .4个 3.下列计算中,结果正确的是( ) A.030= B.1221 -=?- C.331-=- D.527-+=- 4.若式子x 的取值范围是( ) A.1 12x x ≥-≠且 B.1x ≠ C.12x ≥- D.1 12x x >-≠且 5. 下列运算中,结果正确的是( )

A .235x x x += B .326x x x ?= C .55x x x ÷= D .()2 3539x x x ?= 6.a ,b 是两个连续整数,若a <7<b ,则a ,b 分别是( ) ,3 ,2 ,4 ,8 7.若2(1)20m n -++=,则m n +的值是( ) A .-1 B .0 C .1 D .2 8.我们规定[]x 表示不大于x 的最大整数,例如[]12.1=, []33=,[]35.2-=-,若5104=?? ????+x ,则x 的取值可以是( ) 二、填空题(每小题3分,共24分) 9.四个实数2-,0,2-,1中,最小的实数是 . 10.分解因式:22(21)a a --= .

11.古生物学家发现350 000 000年前,地球上每年大约是400天,用科学记数法表示350 000 000=_________. 12.如图,一个正方形纸盒的展开图,在其中的四个正方形内标有数字1,2,3和-3,要在其余的正方形内分别填上―1,―2,使得按虚线折成的正方体后,相对面上的两个数互为相反数, 则A 处应填 . 13. 计算:323()a a ?= . 14.当分式24 2 +-x x 的值为0时,x 的值是 _. 15.已知2x y -=3,则代数式624x y -+的值为 . 16.观察下列等式: 1 11122=-?,1112323=-?,111 3434=-?, 将以上三个等式两边分别相加得: 1 1 1 1 1 1 1 1 13 111223342233444++=-+-+-=-=???. 那么,计算1 1 1 1 12233420142015++++????L 的结果是

中考数学专题复习圆的综合的综合题

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上,BF FA =,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG; (3)在(2)的条件下,如图3,若AE=2 3 DG,PO=5,求EF的长. 【答案】(1)证明见解析;(2)证明见解析;(3)EF=32. 【解析】 【分析】 (1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可; (2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案; (3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出 EH∥DG,求出OM=1 2 AE,设OM=a,则HM=a,AE=2a,AE= 2 3 DG,DG=3a, 求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO= 1 2 MO BM =,tanP= 1 2 CO PO =,设 OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】 (1)证明:连接OC, ∵PC为⊙O的切线,

∴OC⊥PC, ∵AD⊥PC, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OC=OA, ∴∠PAC=∠OCA, ∴∠DAC=∠PAC; (2)证明:连接BE交GF于H,连接OH, ∵FG∥AD, ∴∠FGD+∠D=180°, ∵∠D=90°, ∴∠FGD=90°, ∵AB为⊙O的直径, ∴∠BEA=90°, ∴∠BED=90°, ∴∠D=∠HGD=∠BED=90°, ∴四边形HGDE是矩形, ∴DE=GH,DG=HE,∠GHE=90°, ∵BF AF =, ∴∠HEF=∠FEA=1 2 ∠BEA=190 2 o ?=45°, ∴∠HFE=90°﹣∠HEF=45°, ∴∠HEF=∠HFE, ∴FH=EH, ∴FG=FH+GH=DE+DG; (3)解:设OC交HE于M,连接OE、OF, ∵EH=HF,OE=OF,HO=HO, ∴△FHO≌△EHO, ∴∠FHO=∠EHO=45°,

人教版初三数学圆的测试题及答案

九年级圆测试题 一、选择题(每题3分,共30分) 1.如图,直角三角形A BC 中,∠C =90°,A C =2,A B =4,分别以A C 、BC 为直径作半圆,则图中阴影的面积为 ( ) A 2π- 3 B 4π-4 3 C 5π-4 D 2π-23 2.半径相等的圆内接正三角形、正方形、正六边形的边长之比为 ( ) A 1∶2∶3 B 1∶ 2∶3 C 3∶2∶1 D 3∶2∶1 3.在直角坐标系中,以O(0,0)为圆心,以5为半径画圆,则点A(3-,4)的位置在 ( ) A ⊙O 内 B ⊙O 上 C ⊙O 外 D 不能确定 4.如图,两个等圆⊙O 和⊙O ′外切,过O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( ) A. 30° B. 45° C. 60° D. 90° 5.在Rt △A BC 中,已知A B =6,A C =8,∠A =90°,如果把此直角三角形绕直线A C 旋转一周得到一个圆锥,其表面积为S 1;把此直角三角形绕直线A B 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( ) A 2∶3 B 3∶4 C 4∶9 D 5∶12 6.若圆锥的底面半径为 3,母线长为5,则它的侧面展开图的圆心角等于 ( ) A . 108° B . 144° C . 180° D . 216° 7.已知两圆的圆心距d = 3 cm ,两圆的半径分别为方程0352 =+-x x 的两根,则两圆的位置关系是 ( ) A 相交 B 相离 C 相切 D 内含 8.四边形中,有内切圆的是 ( ) A 平行四边形 B 菱形 C 矩形 D 以上答案都不对 9.如图,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么

2009年中考数学全真模拟试题及答案

2010年中考数学全真模拟试题(六) 考生注意: 1.本卷共8页,三大题共26小题,满分150分.考试形式为闭卷,考试时间为120分钟. 一、填空题(每题3分,共30分) 1.据中新社报道:2010年我国粮食产量将达到540000000000千克,用科学记数法表示这个粮食产量为______千克. 2.分解因式:x 2 -1=________. 3.如图1,直线 a ∥ b ,则∠ACB =_______. 4.抛物线y =-4(x +2)2 +5的对称轴是______. 5.如图2,菱形ABCD 的对角线的长分别为2 和5,P 是对角线AC 上任一点(点P 不与点A 、 C 重合),且PE ∥BC 交AB 于E ,PF ∥C D 交AD 于F ,则阴影部分的面积是_______. 6.口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别.随机从口袋中任取一只球,取到黄球的概率是_____. 7.如图3,在⊙O 中,弦AB =1.8cm ,圆周角∠ACB =30°,则⊙O 的直径等于______cm. 8.某班50名学生在适应性考试中,分数段在90~100分的频率为0.1,则该班在这个分数段的学生有_____人. 9.正n 边形的内角和等于1080°,那么这个正n 边形的边数n =_____. 10.一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分(如图4),则这串珠子被盒子遮住的部分有____颗. 二、选择题(以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项 正确,请把正确选项的字母选入该题括号内.每小题4分,共24分) (图2) A 28° 50° a C b B (图1) (图3) (图4)

初三数学圆测试题和答案及解析

九年级上册圆单元测试 一、选择题(本大题共10小题,每小题3分,共计30分) 1.下列命题:①长度相等的弧是等弧②任意三点确定一个圆③相等的圆心角所对的弦相等④外心在三角形的一条边上的三角形是直角三角形,其中真命题共有( ) A.0个 B.1个 C.2个 D.3个 2.同一平面内两圆的半径是R和r,圆心距是d,若以R、r、d为边长,能围成一个三角形,则这两个圆 的位置关系是( ) A.外离 B.相切 C.相交 D.内含 3.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=( ) A.35° B.70° C.110° D.140° 4.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围( ) A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<5 5.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于( ) A.42 ° B.28° C.21° D.20° 6.如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O的直径是( ) A.2cm B.4cm C.6cm D.8cm 7.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图

中阴 影部分的面积为( ) A. B. C. D. 8.已知⊙O1与⊙O2外切于点A,⊙O1的半径R=2,⊙O2的半径r=1,若半径为4的⊙C与⊙O1、⊙O2都相 切,则满足条件的⊙C有( ) A.2个 B.4个 C.5个 D.6个 9.设⊙O的半径为2,圆心O到直线的距离OP=m,且m使得关于x的方程有实数 根,则直线与⊙O的位置关系为( ) A.相离或相切 B.相切或相交 C.相离或相交 D.无法确定 10.如图,把直角△ABC的斜边AC放在定直线上,按顺时针的方向在直线上转动两次,使它转到△A2B2C2的位置,设AB=,BC=1,则顶点A运动到点A2的位置时,点A所经过的路线为( ) A. B. C. D. 二、填空题(本大题共5小题,每小4分,共计20分) 11.(山西)某圆柱形网球筒,其底面直径是10cm,长为80cm,将七个这样的网球筒如图所示放置并包 装侧面,则需________________的包装膜(不计接缝,取3). 12.(山西)如图,在“世界杯”足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同样乙已经被攻冲到B点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅

中考数学全真模拟试题(5)浙教版

北京四中2011年中考数学全真模拟试题(5) 考生注意:1、数学试卷共8页,共24题.请您仔细核对每页试卷下方页码和题数,核实 无误后再答题. 2、请您仔细思考、认真答题,不要过于紧张,祝考试顺利! 一、选择题:(本大题共10小题,每小题4分,共40分)在每小题给出的四个选项中,只.有一项是符合题意的,请把你认为正确的选项前的字母填写在本答案表中. 题 号 1 2 3 4 5 6 7 8 9 10 答 案 蕴藏量就达56000万m 3 ,用科学记数法记作 ( ) A.95.610?m 3 B.8 5610?m 3 C.85.610?m 3 D.4 5600010?m 3 2.请阅读一小段约翰斯特劳斯作品,根据乐谱中的信息,确定最后一个音符的时值长应 为 ( ) A. 1 8 B. 12 C. 14 D. 34 3.在“手拉手,献爱心”捐款活动中,九年级七个班级的捐款数分别为:260、300、240、 220、240、280、290(单位:元),则捐款数的中位数为 ( ) A.280 B.260 C.250 D.270 4.已知 1O 和2O 的半径分别是5和4,1O 23O =,则1O 和 2O 的位置关系是( ) A.外离 B.外切 C.相交 D.内切 5.在平面直角坐标系中,点(43)-, 所在象限是 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 6.如图,已知一坡面的坡度1:3i =,则坡角α为 ( ) A.15 B.20 C.30 D.45 7.下列图形中,是轴对称而不是中心对称图形的是 ( ) A.平行四边形 B.菱形 C.等腰梯形 D.直角梯形 8.若使分式22 23 1 x x x +--的值为0,则x 的取值为 ( ) A.1或1- B.3-或1 C.3- D.3-或1- 9.若一个多边形的内角和为外角和的3倍,则这个多边形为 ( ) A.八边形 B.九边形 C.十边形 D.十二边形 第6题图 C B A 1:3i = α

中考数学专题训练:专题1 数与式

2019-2020年中考数学专题训练:专题1 数与式 一、选择题(每小题3分,共30分) 1.绝对值大于2而小于5的所有正整数之和为() A、7 B、8 C、9 D、10 2.数轴上的点P与表示有理数2的点的距离是6个单位长度,由点P表示的数是() A、6 B、8 C、8或-4 D、8 3.若,则的取值范围是() A.B.C.D. 4.下列二次根式中,不是最简二次根式的是() A.B.C.D. 5.分式有意义的条件是() A.B.C.D. 6.下列计算中,结果正确的是 A.2x2+3x3=5x5 B.2x3·3x2=6x6C.2x3÷x2=2x D.(2x2)3=2x6 7.下列计算结果为正数的是( ) A. B. C. D. 8.-2的绝对值等于 A.2 B.-2 C.1 2D.4 9.已知,,则的值为() A、7 B、5 C、3 D、1 10.下列计算中,正确的有( ) ①②③④ A. 0个 B. 1个 C. 2个 D. 3个 二、填空题(每小题3分,共30分) 11.将分式约分可得; 12.当时,分式的值为零. 13.甲数的与乙数的差可以表示为_________ 14..当时,化简的结果是.

15.根据如图所示的计算程序,若输出的值为-1,则输入的值为 _ _ . 16.使有意义的的取值范围为 . 17.把一根32㎝长的铁丝弯成长宽之比5:3的长方形,则长方形的面积为( ) 18.若|m -2|+|n +3|=0,则n m 。 19.一组按规律排列的式子…,其中第8个式子是 ,第n 个式子是 (n 为正整数). 20.248-1能够被60~70之间的两个数整除,则这两个数是______________. 三、解答题(共60分) 21 ()()202532014?-+-+ 22.先化简,再求值:,其中. 23.已知,求()() ()32235156a a a a a ++--+的值.

人教中考数学圆的综合综合题汇编及详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.如图,AB 是半圆的直径,过圆心O 作AB 的垂线,与弦AC 的延长线交于点D ,点E 在OD 上DCE B ∠=∠. (1)求证:CE 是半圆的切线; (2)若CD=10,2 tan 3 B = ,求半圆的半径. 【答案】(1)见解析;(2)413 【解析】 分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论; (2)设AC=2x ,由根据题目条件用x 分别表示出OA 、AD 、AB ,通过证明△AOD ∽△ACB ,列出等式即可. 详解:(1)证明:如图,连接CO . ∵AB 是半圆的直径, ∴∠ACB =90°. ∴∠DCB =180°-∠ACB =90°. ∴∠DCE+∠BCE=90°. ∵OC =OB , ∴∠OCB =∠B. ∵=DCE B ∠∠, ∴∠OCB =∠DCE . ∴∠OCE =∠DCB =90°. ∴OC ⊥CE . ∵OC 是半径, ∴CE 是半圆的切线. (2)解:设AC =2x ,

∵在Rt △ACB 中,2 tan 3 AC B BC ==, ∴BC =3 x . ∴()() 22 2313AB x x x = +=. ∵OD ⊥AB , ∴∠AOD =∠A CB=90°. ∵∠A =∠A , ∴△AOD ∽△ACB . ∴ AC AO AB AD =. ∵1132OA AB x = =,AD =2x +10, ∴ 1 132210 13x x x = +. 解得 x =8. ∴13 8413OA = ?=. 则半圆的半径为413. 点睛:本题考查了切线的判定与性质,圆周角定理,相似三角形. 2.如图,在平面直角坐标系xoy 中,E (8,0),F(0 , 6). (1)当G(4,8)时,则∠FGE= ° (2)在图中的网格区域内找一点P ,使∠FPE=90°且四边形OEPF 被过P 点的一条直线分割成两部分后,可以拼成一个正方形. 要求:写出点P 点坐标,画出过P 点的分割线并指出分割线(不必说明理由,不写画法). 【答案】(1)90;(2)作图见解析,P (7,7),PH 是分割线. 【解析】 试题分析:(1)根据勾股定理求出△FEG 的三边长,根据勾股定理逆定理可判定△FEG 是直角三角形,且∠FGE="90" °. (2)一方面,由于∠FPE=90°,从而根据直径所对圆周角直角的性质,点P 在以EF 为直径

中考数学全真模拟试题(含答案)

中考数学全真模拟试题 一、选择题(本题有10小题,每小题4分,共40分.请选出各题中唯一的正确选项) 1.-5的相反数是( ) A. -5 B. 5 C. 1 5 D. 1 5- 2.下列所给图形中,既是中心对称图形又是轴对称图形的是( ) 3.如图,桌面上有一个一次性纸杯,它的俯视图是( ) A . B . C . D . 4.要使分式 3 2x x --有意义,则x 的取值应满足( ) A .x 3≠ B .x 2≠ C .2x < D .x>2 5.某校7名初中男生参加引体向上体育测试的成绩分别为:8,5,7,5,8,6,8,则这组数据的众数和中位数分别为( ) A .6,7 B .8,6 C . 5,7 D . 8,7 6.下列运算正确的是( ) A. 632a a a =? B.222)(b a b a +=+ C. 236()a a -=- D. 235a a a += 7.将二次函数3)2(2---=x y 的图象先向右平移2个单位,再向上平移2单位后,所得图象的函数表达式是( ) A .2y 1x =-- B .2y 5x =-- C .()2y x 41=--- D .()2y x 45=--- 8AB O C D D=20BAC ∠∠o e 、如图,是直径,,是圆上的点,若,则的值是( ) A .20o B .60o C .70o D .80o 9.某校组织1080名学生去外地参观,现有A 、B 两种不同型号的客车可供选择。在每辆 (第 3题图) 主视方向

第8题 A 车刚好满座的前提下,每辆B 型客车比每辆A 型客车多坐15人,单独选择B 型客车比单独选择A 型客车少租12辆,设A 型客车每辆坐x 人,根据题意列方程为( ) A 、 108010801215x x =+- B 、108010801215x x =-- C 、108010801215x x =++ D 、10801080 1215 x x =-+ () 6 y S S A 10.OAD BCD A AO x B AB ABC C AC x D =V V V 点在反比例函数= 在第一象限的图象上,连结并延长交另一分支于点,以为斜边作等腰直角,顶点在第四象限,与轴交于点。若,则点的横 坐标为 A .2 B . C D .1 二、填空题(本题有6小题,每小题5分,共30分) 11.分解因式: 2484x x -+=_____________. 12.在一个不透明的盒子中装有1个白球和2个黄球,它们除颜色不同外,其余均相同, 则从中随机摸出两个球是一白一黄的概率是_________ . 13.抛物线2y ax bx c =++的对称轴为直线x=1,与x 轴的一个交点的坐标为(﹣3,0),则 与x 轴另一个交点坐标为_______. 14.关于x 的一元二次方程210mx x -+=总有实数根,则m 应满足的条件是__________. 15.如图用两个完全相同的1cm ×4cm 长方形纸片,其中心用细铁丝串起来,使纸片交叉 叠合,旋转纸片,保持重叠部分形状为菱形,则菱形的最大面积是_______2 cm .

中考数学数与式专题测试卷(附答案)

中考数学数与式专题测试卷(附答案) 一、单选题(共12题;共24分) 1.下列各式中正确的是() A. B. C. D. 2.下列各式中,计算正确的是() A. B. C. D. 3.2019年12月12日,国务院新闻办公室发布,南水北调工程全面通水5周年来,直接受益人口超过1.2亿人,其中1.2亿用科学记数法表示为() A. B. C. D. 4.要使分式有意义,则x的取值范围是() A. B. C. D. 5.-3相反数是() A. 3 B. -3 C. D. 6.下列式子运算正确的是() A. B. C. D. 7.已知,则a+2b的值是() A. 4 B. 6 C. 8 D. 10 8.﹣3的相反数是() A. ﹣3 B. ﹣ C. D. 3 9.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为() A. 0.69×107 B. 69×105 C. 6.9×105 D. 6.9×106 10.若有意义,则a的取值范围是() A. a≥1 B. a≤1 C. a≥0 D. a≤﹣1 11.下列计算正确的是() A. B. C. D. 12.下列等式成立的是() A. B. C. D. 二、填空题(共6题;共12分) 13.计算:________.

14.因式分解:x3y﹣4xy3=________. 15.若多项式是关于x,y的三次多项式,则________. 16.关于x的分式方程的解为正实数,则k的取值范围是________. 17.计算:=________. 18.计算的结果是________. 三、计算题(共3题;共25分) 19. (1)计算:; (2)先化简,再从中选择合适的值代入求值. 20. (1)计算:| ﹣3|+2 cos60°﹣× ﹣(﹣)0. (2)先化简,再求值:(x+2+ )÷ ,其中x=﹣1. 21.先化简,再求值:,其中. 四、综合题(共4题;共39分) 22.用※定义一种新运算:对于任意实数m和n,规定,如: . (1)求; (2)若,求m的取值范围,并在所给的数轴上表示出解集. 23.阅读以下材料,并解决相应问题: 小明在课外学习时遇到这样一个问题: 定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的旋转函数,小明是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的旋转函数. 请思考小明的方法解决下面问题: (1)写出函数y=x2﹣4x+3的旋转函数. (2)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”. 24.已知

中考数学圆试题及答案

0 1 2 3 4 5 0 1 2 3 4 5 B . C . 一.选择 1. (2009 年泸州)已知⊙O 1 与⊙O 2 的半径分别为 5cm 和 3cm ,圆心距 020=7cm ,则两圆的位置关系为 A .外离 B .外切 C .相交 D .内切 2. (2009 年滨州)已知两圆半径分别为 2 和 3,圆心距为 d ,若两圆没有公共点,则下列结论正确的是( ) A . 0 < d < 1 B . d > 5 C . 0 < d < 1或 d > 5 D . 0 ≤ d < 1 或 d > 5 3.(2009 年台州市)大圆半径为 6,小圆半径为 3,两圆圆心距为 10,则这两圆的位置关系为( ) A .外离 B .外切 C.相交 D .内含 4.(2009 桂林百色)右图是一张卡通图,图中两圆的位置关系( ) A .相交 B .外离 C .内切 D .内含 5.若两圆的半径分别是 1cm 和 5cm ,圆心距为 6cm ,则这两圆的位置关系是( ) A .内切 B .相交 C .外切 D .外离 6(2009 年衢州)外切两圆的圆心距是 7,其中一圆的半径是 4,则另一圆的半径是 A .11 B .7 C .4 D .3 7.(2009 年舟山)外切两圆的圆心距是 7,其中一圆的半径是 4,则另一圆的半径是 A .11 B .7 C .4 D .3 8. .(2009 年益阳市)已知⊙O 1 和⊙O 2 的半径分别为 1 和 4,如果两圆的位置关系为相交,那么圆心距 O 1O 2 的 取值范围在数轴上表示正确的是 0 1 2 3 4 5 0 1 2 3 4 5 A . D . 9. (2009 年宜宾)若两圆的半径分别是 2cm 和 3cm,圆心距为 5cm ,则这两个圆的位置关系是( ) A. 内切 B.相交 C.外切 D. 外离 10.. (2009 肇庆)10.若⊙O 与 ⊙O 相切,且 O O = 5 ,⊙O 的半径 r = 2 ,则⊙O 的半径 r 是( ) 1 2 1 2 1 1 2 2 A . 3 B . 5 C . 7 D . 3 或 7 11. .(2009 年湖州)已知⊙O 与 ⊙O 外切,它们的半径分别为 2 和 3,则圆心距 O O 的长是( ) 1 2 1 2 A . O O =1 B . O O =5 C .1< O O <5 D . O O >5 1 2 1 2 1 2 1 2

2020-2021学年中考数学一轮复习《数与式》专题练习卷及答案

数与式专题 1.下列各数:–2,0, 1 3 ,0.020020002……,π A .4 B .3 C .2 D .1 【答案】C 2.下列无理数中,与4最接近的是 A B C D 【答案】C 3.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km ,用科学记数法表示1.496亿是 A .1.496×107 B .14.96×108 C .0.1496×108 D .1.496×108 【答案】D 4.如果2x a+1 y 与x 2y b –1 是同类项,那么a b 的值是 A . 12 B . 32 C .1 D .3 【答案】A 5.下列运算正确的是 A .2a –a=1 B .2a+b=2ab C .(a 4 )3 =a 7 D .(–a )2 ?(–a )3 =–a 5

【答案】D 6.–1 3 的倒数是 A.3 B.–3 C.1 3 D.– 1 3 【答案】B 7.–3的绝对值是 A.–3 B.3 C.–1 3 D. 1 3 【答案】B 8.数轴上A,B两点所表示的数分别是3,–2,则表示AB之间距离的算式是A.3–(–2)B.3+(–2) C.–2–3 D.–2–(–3) 【答案】A 9.下列计算正确的是 A=2 B=±2 C=2 D=±2 【答案】A 10.的立方根是 A.–8 B.–4 C.–2 D.不存在 【答案】C

11.2018的相反数是 A.–2018 B.2018 C.– 1 2018 D. 1 2018 【答案】A 12.按如图所示的运算程序,能使输出的结果为12的是 A.x=3,y=3 B.x=–4,y=–2 C.x=2,y=4 D.x=4,y=2 【答案】C 13.分解因式:x2y–y=__________. 【答案】y(x+1)(x–1) 14.若分式 29 3 x x - - 的值为0,则x的值为__________. 【答案】–3 15.已知:a2+a=4,则代数式a(2a+1)–(a+2)(a–2)的值是__________.【答案】8 163 x-有意义,则x的取值范围是__________.【答案】x≥3

中考数学全真模拟试题(十)

中考数学全真模拟试题(十) 班级 姓名 得分 一、 填空题(每空2分,共40分) 1、2 1 - 的相反数是 ;-2的倒数是 ; 16的算术平方根是 ;-8的立方根是 。 2、不等式组?? ?-+2 80 4<>x x 的解集是 。 3、函数y= 1 1-x 自变量x 的取值范畴是 。 4、直线y=3x-2一定过(0,-2)和( ,0)两点。 5、样本5,4,3,2,1的方差是 ;标准差是 ;中位数是 。 6、等腰三角形的一个角为?30,则底角为 。 7、梯形的高为4厘米,中位线长为5厘米,则梯形的面积为 平方厘米。 8、如图PA 切⊙O 于点A ,∠PAB=?30,∠AOB= ,∠ACB= 。 9、 如图PA 切⊙O 于A 割线PBC 过圆心,交⊙O 于B 、C ,若PA=6;PB=3,则PC= ;⊙O 的半径为 。 10题图 9题图 A C D B 8题图 A 11题图 B 10、如图?ABC 中,∠C=?90,点D 在BC 上,BD=6,AD=BC ,cos ∠ADC= 5 3 ,则DC 的长为 。 11、如图同心圆,大⊙O 的弦AB 切小⊙O 于P ,且AB=6,则阴影部分既圆环的面积为 。 12、已知Rt ?ABC 的两直角边AC 、BC 分别是一元二次方程06x 5-x 2=+的两根,则此Rt ?的外接圆的面积为 。 二、 选择题(每题4分,共20分) 13、假如方程0m x 2x 2 =++有两个同号的实数根,m 的取值范畴是 ( ) A 、m <1 B 、0<m ≤1 C 、0≤m <1 D 、m >0 14、徐工集团某机械制造厂制造某种产品,原先每件产品的成本是100元,由于提高生产技术,因此连续两次降低成本,两次降低后的成本是81元。则平均每次降低成本的百分率是 ( ) A .8.5% B. 9% C. 9.5% D. 10% 15、二次函数c bx ax y 2 ++=的图像如图所示,则关于此二次函数的下列四个结论①a<0 ②a>0

中考数学专题复习 数与式

中考数学专题复习 专题一 数与式 [基础训练] 1.如果a 与2-的和为O ,那么a 是( ) A .2 B . 12 C .1 2 - D .2- 2.23 4 ()m m g 等于( ) A.9 m B .10 m C .12 m D .14 m 3. 若4x =,则5x -的值是( ) A .1 B .-1 C .9 D .-9 4、5-的相反数是 ,9的算术平方根是 ,-3倒数是 . 4.已知(a-b)2 =4,ab=2 1,则(a+b)2 = 5.在函数1-=x y 中,自变量x 6.若分式 1 2 --x x 的值为零,则=x . 7.因式分解:=+-2 2 3 2xy y x x 9.根据如图所示的程序计算,若输入x 的值为1则输出y 的值为 10.计算或化简: (1)0 3260tan 33 ? ? ? ? ? - +?+ 11.已知12+=x ,求代数式x x x x x x x 1 12122÷??? ??+---+的值. (第9题图)

[精选例题] 例题1(1)1:2的倒数是( ) A 21 B-21 C ±2 1 D2 (2)写出一个比-1大的负有理数是________,写出一个比-1大的负无理数是_________. (3)若()的值为则n m n m 2,0)3(32+=++- A -4 B -1 C 0 D4 说明:本题考查对数与式基本概念的理解 (1)倒数的概念(2)有理数与无理数的概念和大小比较(3)绝对值和完全平方的非负性 例题2(1)如图,在数轴上表示15的点可能是( A 点P B 点Q C 点M D 点N (2)当x=_____时,分式 3 3--x x 无意义. (3)已知 a a a a -=-112 ,则a 的取值范围是( ) A a 0≤ B a<0 C 00 说明:本题考查对数与式有关性质的掌握 (1)实数的大小和数轴上的表示(2)分式在什么时候无意义和绝对值的意义 (3)平方根的意义和性质 例题3(1)下列运算正确的是( ) A 2 2 a a a =? B 2 a a a =+ C 2 3 6 a a a =÷ D () 62 3 a a = (2)化简a+b+(a-b)的最后结果正确的是( ) A 2a+2b B 2b C 2a D0 (3)下列计算错误的是( ) A -(-2)=2 B 228= C 2 22532x x x =+ D () 53 2 a a = (4)先化简4 1 )231(2 -+÷-+a a a , 然后请你给a 选取一个合适的值, 再求此时原式的值.

中考数学圆的综合综合经典题及详细答案

中考数学圆的综合综合经典题及详细答案 一、圆的综合 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S△CDO=1 2 ×6×4=12, ∴平行四边形OABC的面积S=2S△CDO=24. 2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O). (1)求⊙M的半径; (2)若CE⊥AB于H,交y轴于F,求证:EH=FH. (3)在(2)的条件下求AF的长. 【答案】(1)4;(2)见解析;(3)4. 【解析】 【分析】 (1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长; (2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论; (3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】 (1)如图(一),过M作MT⊥BC于T连BM, ∵BC是⊙O的一条弦,MT是垂直于BC的直径, ∴BT=TC=1 2 3 ∴124 ; (2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB, ∴∠HBC+∠BCH=90°

初三中考数学全真模拟试卷

初三年级学业水平考试数学全真模拟试卷2 第Ⅰ卷(选择题共45分) 一、选择题(本大题共15个小题,每小题3分,共45分.在每小题所给的四个选项中,只有一项是符合题目要求的.) 1.-2的绝对值是( ) 11 A. B.2 C. D.2 22 - - 2.我国第一艘航母“辽宁舰”最大排水量为67 500吨,用科学记数法表示这个数字是( ) A.6.75×103 吨 B.67.5×103吨 C.6.75×104吨 D.6.75×105吨 3.16的平方根是( ) A.4 B.±4 C.8 D.±8 4.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为( ) A.20° B.25° C.30° D.35° 5.下列等式成立的是( ) A.a2×a5=a10=+ C.(-a3)6=a18a = 6.一个盒子里有完全相同的三个小球,球上分别标上数字-1、1、2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是( ) 1125 A. B. C. D. 2336 7.分式方程 12 x1x1 = -+的解是( ) A.1 B.-1 C.3 D.无解 8.钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是( ) 111 A. B. C. D. 248 π π π π 9.如图,数轴上表示某不等式组的解集,则这个不等式组可能是( )

x 10x 10A. B.2x 02x 0 x 10x 10C. D.x 20x 20 +≥+≤?? ??-≥-≥??+≤+≥?? ??-≥-≥?? 10.如图是一个正方体被截去一角后得到的几何体,它的俯视图是 ( ) 11. 1)÷-的结果是( ) 1 B. 2 C.1 D. 2- - 12.如图,在Rt △ABC 中,∠BAC=90°,D 、E 分别是AB 、BC 的中点,F 在CA 的延长线上,∠FDA=∠B ,AC=6,AB=8,则四边形AEDF 的周长为 ( ) A.22 B.20 C.18 D.16 13.如图,过x 轴正半轴上的任意一点P ,作y 轴的平行线,分别与反比例函数 64 y y x x =-=和的图象交于A 、B 两点.若点C 是y 轴上任意一点,连接AC 、BC ,则△ABC 的面积为( )

相关主题
相关文档 最新文档