-直线与平面、平面与平面垂直的性质
- 格式:ppt
- 大小:237.51 KB
- 文档页数:24
空间中的垂直关系1.线面垂直直线与平面垂直的判定定理:如果 ,那么这条直线垂直于这个平面。
推理模式:直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线 。
2.面面垂直两个平面垂直的定义:相交成 的两个平面叫做互相垂直的平面。
两平面垂直的判定定理:(线面垂直⇒面面垂直)如果 ,那么这两个平面互相垂直。
推理模式:两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的 的直线垂直于另一个平面。
一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面就是判定定理,而从后面推出前面就是性质定理.同学们应当学会灵活应用这些定理证明问题.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,下面举例说明.例题:1.如图,AB 就是圆O 的直径,C 就是圆周上一点,PA ⊥平面ABC.(1)求证:平面PAC ⊥平面PBC;(2)若D 也就是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.2、如图,棱柱111ABC A B C -的侧面11BCC B 就是菱形,11B C A B ⊥证明:平面1AB C ⊥平面11A BC3、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 就是棱CC 1的中点 (Ⅰ)求异面直线A 1M 与C 1D 1所成的角的正切值;(Ⅱ)证明:平面ABM ⊥平面A 1B 1M 14、如图,AB 就是圆O的直径,C就是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F就是PB 上任意一点,求证:平面AEF ⊥平面PBC .5、如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 就是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面C 1DF ?并证明您的结论6、S 就是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB⊥平面SBC,求证AB ⊥BC 、7、在四棱锥中,底面ABCD 就是正方形,侧面VAD 就是正三角形,平面VAD ⊥底面ABCD证明:AB ⊥平面VAD8、如图,平行四边形ABCD 中,60DAB ︒∠=,2,4AB AD ==,将CBD ∆沿BD 折起到EBD ∆的位置,使平面EDB ⊥平面ABD 、求证:AB DE ⊥VDC B A SAB9、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD,AB=AD,∠BAD=60°,E 、F 分别就是AP 、AD 的中点求证:(1)直线EF ‖平面PCD;(2)平面BEF ⊥平面PAD10、如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,AB AS BC AB =⊥,、过A 作SB AF ⊥,垂足为F ,点G E ,分别就是棱SC SA ,的中点。
【课题】9.4 直线与直线、直线与平面、平面与平面垂直的判定与性质【教学目标】知识目标:(1)了解空间两条直线垂直的概念;(2)掌握与平面垂直的判定方法与性质,平面与平面垂直的判定方法与性质.能力目标:培养学生的空间想象能力和数学思维能力.【教学重点】直线与平面、平面与平面垂直的判定方法与性质.【教学难点】判定空间直线与直线、直线与平面、平面与平面垂直.【教学设计】在平面内,过一点可以作一条且只能作一条直线与已知直线垂直;在空间中,过一点作与已知直线垂直的直线,能作无数条.例1是判断异面直线垂直的巩固性题目,根据异面直线垂直的定义,只要判断它们所成的角为90即可.在判定直线与平面垂直时,要特别注意“平面内两条相交的直线”的条件.可举一些实例,以加深学生对条件的理解.两个平面互相垂直是两个平面相交的特殊情况.在日常生活和工农业生产中,两个平面互相垂直的例子非常多,教学时可以多结合一些实例,以引起学生的兴趣.例4是判断平面与平面垂直的巩固性题目,关键是在平面B AC内找到一条直线AC与平面B1BDD11垂直.例5是巩固平面与平面垂直的性质的题目.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】图9-43图9−44看曲尺的另一条直角边是否和圆木柱吻合,然后把直角尺换个位置,照样再检查一次(应当注意,直角尺*巩固知识典型例题【知识巩固】例2长方体ABCD-A1B1C1D1中(如图9−45),直线AA1与平面ABCD垂直吗?为什么?图9−45解因为长方体ABCD-A1B1C1D1中,侧面ABB1A1、AA1D1D都是长方形,所以AA1⊥AB,AA1⊥AD.且AB和AD是平面ABCD内的两条相交直线.由直线与平面垂直的判定定理知,直线AA1⊥平面ABCD.图9−46[小提示]在实际生活中,我们采用如图9−46所示的“合页型折纸”检验直线与平面垂直,就是直线与平面垂直方法的应用.【做一做】图9−48α,所以AB∥CD.因为BD 确定平面β,在平面β内,过点A作中,因为AE=BD=5 cm,图9−52C1D1中,B1B⊥平面ABCD1,因此AC⊥平面BB1D1D,内,所以平面B1AC与平面B1BDD图9−54AD.又由于BD⊥AB,所以在直角三角形2222BD,3425+=+=cm).第2题图【教师教学后记】。
【课题】9.4 直线与直线、直线与平面、平面与平面垂直的判定与性质【教学目标】知识目标:(1)了解空间两条直线垂直的概念;(2)掌握与平面垂直的判定方法与性质,平面与平面垂直的判定方法与性质.能力目标:培养学生的空间想象能力和数学思维能力.【教学重点】直线与平面、平面与平面垂直的判定方法与性质.【教学难点】判定空间直线与直线、直线与平面、平面与平面垂直.【教学设计】在平面内,过一点可以作一条且只能作一条直线与已知直线垂直;在空间中,过一点作与已知直线垂直的直线,能作无数条.例1是判断异面直线垂直的巩固性题目,根据异面直线垂直的定义,只要判断它们所成的角为90即可.在判定直线与平面垂直时,要特别注意“平面内两条相交的直线”的条件.可举一些实例,以加深学生对条件的理解.两个平面互相垂直是两个平面相交的特殊情况.在日常生活和工农业生产中,两个平面互相垂直的例子非常多,教学时可以多结合一些实例,以引起学生的兴趣.例4是判断平面与平面垂直的巩固性题目,关键是在平面B AC内找到一条直线AC与平面B1BDD11垂直.例5是巩固平面与平面垂直的性质的题目.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】图9-43图9−44看曲尺的另一条直角边是否和圆木柱吻合,然后把直角尺换个位置,照样再检查一次(应当注意,直角尺*巩固知识典型例题【知识巩固】例2长方体ABCD-A1B1C1D1中(如图9−45),直线AA1与平面ABCD垂直吗?为什么?图9−45解因为长方体ABCD-A1B1C1D1中,侧面ABB1A1、AA1D1D都是长方形,所以AA1⊥AB,AA1⊥AD.且AB和AD是平面ABCD内的两条相交直线.由直线与平面垂直的判定定理知,直线AA1⊥平面ABCD.图9−46[小提示]在实际生活中,我们采用如图9−46所示的“合页型折纸”检验直线与平面垂直,就是直线与平面垂直方法的应用.【做一做】图9−48α,所以AB∥CD.因为BD 确定平面β,在平面β内,过点A作中,因为AE=BD=5 cm,图9−52C1D1中,B1B⊥平面ABCD1,因此AC⊥平面BB1D1D,内,所以平面B1AC与平面B1BDD图9−54AD.又由于BD⊥AB,所以在直角三角形2222BD,3425+=+=cm).第2题图【教师教学后记】。
【课题】9.3 直线与直线、直线与平面、平面与平面所成的角【教学目标】知识目标:(1)了解两条异面直线所成的角的概念;(2)理解直线与平面垂直、直线与平面所成的角的概念,二面角及其平面角的概念.能力目标:培养学生的空间想象能力和数学思维能力.【教学重点】异面直线的概念与两条异面直线所成的角的概念、直线与平面所成的角的概念、二面角及其平面角的概念.【教学难点】两条异面直线所成的角的概念、二面角的平面角的确定.【教学设计】两条异面直线所成的角可用来刻画两条异面直线之间的位置关系,它是本节教学的难点.学生一般会有疑问:异面直线不相交怎么能成角?教学时要讲清概念.例1是求异面直线所成的角的巩固性题目,一般来说,这类题目要先画出两条异面直线所成的角,然后再求解.斜线在平面内的射影是本节的重要概念之一,是理解直线与平面所成的角的基础.要讲清这一概念,可采取“一边演示,一边讲解,一边画图”的方法,结合图形讲清斜线、斜足、斜线段、垂足、垂线段、斜线在平面内的射影与斜线段在平面内的射影.要讲清斜线在平面内的射影与斜线段在平面内的射影的区别.两个平面相交时,它们的相对位置可用两个平面所成的角来确定.教材从观察建筑房屋、修筑河堤两个实例,结合实验引入二面角的概念,二面角的概念可以与平面几何中的角的概念对比进行讲解.二面角的平面角的大小只与二面角的两个面的相对位置有关,而与平面角的顶点在棱上的位置无关.因此二面角的大小可以用它的平面角来度量.规定二面角的范围为[0,180].【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教 学 过 程教师 行为 学生 行为 教学 意图 时间*揭示课题9.3 直线与直线、直线与平面、平面与平面所成的角*创设情境 兴趣导入在图9−30所示的长方体中,直线1BC 和直线AD 是异面直线,度量1CBC ∠和1DAD ∠,发现它们是相等的.如果在直线AB 上任选一点P ,过点P 分别作与直线1BC 和直线AD 平行的直线,那么它们所成的角是否与1CBC ∠相等?图9−30介绍 质疑引导 分析了解 思考启发 学生思考0 5 *动脑思考 探索新知我们知道,两条相交直线的夹角是这两条直线相交所成的最小的正角.经过空间任意一点分别作与两条异面直线平行的直线,这两条相交直线的夹角叫做两条异面直线所成的角.如图9−31(1)所示,m '∥m 、n '∥n ,则m '与n '的夹角θ就是异面直线m 与n 所成的角.为了简便,经常取一条直线与过另一条直线的平面的交点作为点O (如图9−31(2))(1)讲解 说明 引领 分析思考 理解带领 学生 分析nm'm'noθ过 程行为 行为 意图 间*运用知识 强化练习在如图所示的正方体中,求下列各对直线所成的角的度数:(1)1DD 与BC ; (2)1AA 与1BC .提问 指导思考 解答领会知识21 *创设情境 兴趣导入正方体1111ABCD A B C D -中(图9−33),直线1BB 与直线AB 、BC 、CD 、AD 、AC 所成的角各是多少?可以发现,这些角都是直角.图9−33质疑 引导 分析思考启发 学生思考26*动脑思考 探索新知如果直线l 和平面α内的任意一条直线都垂直,那么就称直线l 与平面α垂直,记作α⊥l .直线l 叫做平面α的垂线,垂线l 与平面α的交点叫做垂足.画表示直线l 和平面α垂直的图形时,要把直线l 画成与平行四边形的横边垂直(如图9−34所示),其中交点A 是垂足.图9−34讲解说明引领 分析思考 理解带领 学生 分析309.3.1题图过程行为行为意图间*创设情境兴趣导入将一根木棍P A直立在地面α上,用细绳依次度量点P与地面上的点A、B、C、D的距离(图9−35),发现P A最短.质疑思考带领学生分析32*动脑思考探索新知如图9−35所示,PAα⊥,线段P A叫做垂线段,垂足A 叫做点P在平面α内的射影.直线PB与平面α相交但不垂直,则称直线PB与平面α斜交,直线PB叫做平面α的斜线,斜线和平面的交点叫做斜足.点P与斜足B之间的线段叫做点P到这个平面的斜线段.过垂足与斜足的直线叫做斜线在平面内的射影.如图9−35中,直线AB是斜线PB在平面α内的射影.从上面的实验中可以看到,从平面外一点向这个平面引垂线段和斜线段,垂线段最短.因此,将从平面外一点P到平面α的垂线段的长叫做点P到平面α的距离.讲解说明引领分析仔细分析讲解关键词语思考理解记忆带领学生分析40*创设情境兴趣导入如图9−36所示,炮兵在发射炮弹时,为了击中目标,需要调整好炮筒与地面的角度.图9−36质疑思考带领学生分析42图9−35过程行为行为意图间*动脑思考探索新知斜线l与它在平面α内的射影l'的夹角,叫做直线l与平面α所成的角.如图9−37所示,PBA∠就是直线PB与平面α所成的角.规定:当直线与平面垂直时,所成的角是直角;当直线与平面平行或直线在平面内时,所成的角是零角.显然,直线与平面所成角的取值范围是[0,90].【想一想】如果两条直线与一个平面所成的角相等,那么这两条直线一定平行吗?图9−37讲解说明引领分析仔细分析讲解关键词语思考理解记忆带领学生分析47*巩固知识典型例题例2如图9−38所示,等腰∆ABC的顶点A在平面α外,底边BC在平面α内,已知底边长BC=16,腰长AB=17,又知点A到平面α的垂线段AD=10.求(1)等腰∆ABC的高AE的长;(2)斜线AE和平面α所成的角的大小(精确到1º).分析三角形AEB是直角三角形,知道斜边和一条直角边,利用勾股定理可以求出AE的长;AED∠是AE和平面α所成的角,三角形ADE是直角三角形,求出AED∠的正弦值即可求出斜线AE和平面α所成的角.解(1) 在等腰∆ABC中,AE BC⊥,故由BC=16可得BE=8.在Rt∆AEB中,∠AEB=90°,因此222217815AE AB BE=-=-=.(2)联结DE.因为AD是平面α的垂线,AE是α的斜线,所以DE是AE在α内的射影.因此AED∠是AE和平面α所成说明强调引领观察思考主动求解通过例题进一步领会图9−38过 程行为 行为 意图 间的角. 在Rt ∆ADE 中,102sin 153AD AED AE ∠===, 所以42AED ∠≈︒.即斜线AE 和平面α所成的角约为42︒. 【想一想】为什么这三条连线都画成虚线?讲解 说明思考注意 观察 学生 是否 理解 知识 点55*运用知识 强化练习长方体ABCD −1111A B C D 中,高DD 1=4cm ,底面是边长为3cm 的正方形,求对角线D 1B 与底面ABCD 所成角的大小(精确到1′).练习9.3.2图提问 巡视 指导思考 求解及时 了解 学生 知识 掌握 得情 况60 *创设情境 兴趣导入在建筑房屋时,有时为了美观和排除雨水的方便,需要考虑屋顶面与地面形成适当的角度(如图9−39(1));在修筑河堤时,为使它经济且坚固耐用,需要考虑河堤的斜坡与地面形成适当的角度(如图9−39(2)).在白纸上画出一条线,沿着这条线将白纸对折,然后打开进行观察.质疑引导 分析思考启发 思考63 *动脑思考 探索新知平面内的一条直线把平面分成两部分,每一部分叫做一个半平面.从一条直线出发的两个半平面所组成的图形叫做二面讲解(2)图9−39(1)过 程行为 行为 意图 间角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面.以直线l (或CD )为棱,两个半平面分别为αβ、的二面角,记作二面角l αβ--(或CD αβ--)(如图9−40).过棱上的一点,分别在二面角的两个面内作与棱垂直的射线,以这两条射线为边的最小正角叫做二面角的平面角.如图9−41所示,在二面角α−l −β的棱l 上任意选取一点O ,以点O 为垂足,在面α与面β内分别作OM l ⊥、ON l ⊥,则MON ∠就是这个二面角的平面角. 说明引领 分析 仔细 分析 讲解 关键 词语思考 理解 记忆带领 学生 分析70 *创设情境 兴趣导入用纸折成一个二面角,在棱上选择不同的点作出二面角的平面角,度量它们是否相等,想一想是什么原因. 质疑 思考 启发 思考 72 *动脑思考 探索新知二面角的平面角的大小由αβ、的相对位置所决定,与顶点在棱上的位置无关,当二面角给定后,它的平面角的大小也就随之确定.因此,二面角的大小用它的平面角来度量.当二面角的两个半平面重合时,规定二面角为零角;当二面角的两个半平面合成一个平面时,规定二面角为平角.因此二面角取值范围是[0,180].平面角是直角的二面角叫做直二面角.例如教室的墙壁与地面就组成直二面角,此时称两个平面垂直.平面α与平面β垂直记作αβ⊥ 讲解 说明 引领 分析 思考 理解 记忆 带领 学生 分析76 *巩固知识 典型例题例3 在正方体1111ABCD A B C D -中(如图9−42),求二面角1D AD B --的大小.说明 强调观察通过图9−40CD图9−41loNM βαCD过 程行为 行为 意图 间图9−42解 AD 为二面角的棱, 1AA 与AB 是分别在二面角的两个面内并且与棱AD 垂直的射线,所以1A AB ∠为二面角1D AD B --的平面角.因为在正方体1111ABCD A B C D -中,1A AB ∠是直角.所以二面角1D AD B --为90°. 引领 讲解 说明思考 主动 求解例题进一步领会81*运用知识 强化练习在正方体1111ABCD A B C D -中,求二面角1A DD B --的大小.提问 巡视 指导思考 求解及时 了解 学生 知识 掌握 得情 况86 *理论升华 整体建构 思考并回答下面的问题:异面直线所成的角、二面角的平面角的概念? 结论:经过空间任意一点分别作与两条异面直线平行的直线,这两条相交直线的夹角叫做两条异面直线所成的角.过棱上的一点,分别在二面角的两个面内作与棱垂直的射线,以这两条射线为边的最小正角叫做二面角的平面角. 质疑 归纳强调 回答 及时了解学生知识掌握情况 87 *归纳小结 强化思想引导回忆练习9.3.3题继续探索活动探究(1)读书部分:教材(2)书面作业:教材习题(3)实践调查:用发现的眼睛寻找生活中的异面直线实例【教师教学后记】【课题】9.4 直线与直线、直线与平面、平面与平面垂直的判定与性质【教学目标】知识目标:(1)了解空间两条直线垂直的概念;(2)掌握与平面垂直的判定方法与性质,平面与平面垂直的判定方法与性质.能力目标:培养学生的空间想象能力和数学思维能力.【教学重点】直线与平面、平面与平面垂直的判定方法与性质.【教学难点】判定空间直线与直线、直线与平面、平面与平面垂直.【教学设计】在平面内,过一点可以作一条且只能作一条直线与已知直线垂直;在空间中,过一点作与已知直线垂直的直线,能作无数条.例1是判断异面直线垂直的巩固性题目,根据异面直线垂直的定义,只要判断它们所成的角为90即可.在判定直线与平面垂直时,要特别注意“平面内两条相交的直线”的条件.可举一些实例,以加深学生对条件的理解.两个平面互相垂直是两个平面相交的特殊情况.在日常生活和工农业生产中,两个平面互相垂直的例子非常多,教学时可以多结合一些实例,以引起学生的兴趣.例4是判断平面与平面垂直的巩固性题目,关键是在平面B AC内找到一条直线AC与1平面B1BDD1垂直.例5是巩固平面与平面垂直的性质的题目.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间9.4 直线与直线、直线与平面、平面与平面垂直的判定与性质 *创设情境 兴趣导入【知识回顾】如果空间两条直线所成的角是90º,那么称这两条直线互相垂直,直线a 和b 互相垂直,记作a ⊥b .【想一想】演示并画出两条相交直线垂直与两条异面直线垂直的位置关系,并回答问题:经过空间任意一点作与已知直线垂直的直线,能作几条? 介绍质疑引导分析了解 思考启发 学生思考0 5 *巩固知识 典型例题【知识巩固】例1 如图9-43,长方体ABCD -A 1B 1C 1D 1中,判断直线AB 和DD 1是否垂直.解 AB 和DD 1是异面直线,而BB 1∥DD 1,AB ⊥BB 1,根据异面直线所成的角的定义,可知AB 与DD 1成直角.因此1AB DD .图9-43说明 强调 引领讲解 说明观察 思考 主动 求解通过例题进一步领会10 *运用知识 强化练习1.垂直于同一条直线的两条直线是否平行?2.在图9−43所示的正方体中,找出与直线AB 垂直的棱,并指出它们与直线1AA 的位置关系. 提问 指导 思考 解答了解 知识 掌握 情况14 *创设情境 兴趣导入【问题】前面我们学过直线与平面垂直的概念.根据定义判断直线与平面垂直,需要判定直线与平面内的任意一条直线都垂直,这是比较困难的.那么,如何判定直线和平面垂直呢? 【观察】 我们来看看实践中工人师傅是如何做的.如图9−44所示,检验一根圆木柱和板面是否垂直.工人质疑 引导思考带领 学生 分析图9−44*巩固知识典型例题【知识巩固】例2长方体ABCD-A1B1C1D1中(如图9−45),直线AA1与平面ABCD垂直吗?为什么?图9−45解因为长方体ABCD-A1B1C1D1中,侧面ABB1A1、AA1D1D 都是长方形,所以AA1⊥AB,AA1⊥AD.且AB和AD是平面ABCD 内的两条相交直线.由直线与平面垂直的判定定理知,直线AA1⊥平面ABCD.图9−46[小提示]在实际生活中,我们采用如图9−46所示的“合页型折纸”检验直线与平面垂直,就是直线与平面垂直方法的应用.【做一做】如果只给一个卷尺,你能否判断操场中立的旗杆与底面垂直吗?图9−48α,CD⊥α,所以AB∥CD BD,CD⊥BD.设AB与CD确定平面AE∥BD,直线AE与CD交于点ACE中,因为AE=BD=5 cm,过 程行为 行为 意图 间所以 AC =22AE CE + = 22512+ =13(cm ).说明求解 理解 知识 点 37 *运用知识 强化练习1.一根旗杆AB 高8 m ,它的顶端A 挂两条10 m 的绳子,拉紧绳子并把它们的两个下端固定在地面上的C 、D 两点,并使点C 、D 与旗杆脚B 不共线,如果C 、D 与B 的距离都是6 m ,那么是否可以判定旗杆AB 与地面垂直,为什么?2.如图所示,ABC ∆在平面α内,90BAC ∠=︒,且PA α⊥于A ,那么AC 与PB 是否垂直?为什么?提问 巡视 指导 思考 解答及时 了解 学生 知识 掌握 情况42 *创设情境 兴趣导入【知识回顾】两个平面相交,如果所成的二面角是直二面角,那么称这两个平面互相垂直.平面α与平面β垂直,记作βα⊥. 画表示两个互相垂直平面的图形时,一般将两个平行四边形的一组对边画成垂直的位置,可以把直立的平面画成矩形(图9−49(1)),也可以把直立的平面画成平行四边形(图9−49(2)).【做一做】请动手画出图9−50中的两个图形. [实例]建筑工人在砌墙时,把线的一端系一个铅锤,另一端用砖压在墙壁面上(图9−50),观察系有铅锤的线与墙面是否紧贴(在铅锤处应有一空隙),即判断所砌墙面是否经过地面的垂线,以此保证所砌的墙面与地面垂直.质疑 引导 分析观察 思考带领 学生 分析β(2)α图9−49过程行为行为意图间图9−5048 *动脑思考探索新知【新知识】这种做法的依据是平面与平面垂直的判定方法:一个平面经过另一个平面的垂线则两个平面垂直.如图9−51所示,如果ABβ⊥,AB在α内,那么αβ⊥.讲解说明引领分析理解带领学生分析52*巩固知识典型例题【知识巩固】例4在正方体ABCD-A1B1C1D1(如图9−52)中,判断平面B1AC与平面B1BDD1是否垂直.图9−52解在正方体ABCD-A1B1C1D1中,B1B⊥平面ABCD,所以BB1⊥AC,在底面正方形ABCD中,BD⊥AC,因此AC⊥平面BB1D1D,因为AC在平面B1AC内,所以平面B1AC与平面B1BDD1垂直.说明强调引领讲解说明观察思考主动求解通过例题进一步领会57*创设情境兴趣导入图9−51图9−54内,连结AD.又由于BD⊥AB过 程行为 行为 意图 间222223425=+=+=AD AB BD ,故 AD =5(cm ).因为αβ⊥,AC 在平面α内,且AC ⊥AB ,AB 为平面α与β的交线,所以AC ⊥β. 因此CA ⊥AD .在直角三角形ACD 中,22222125169=+=+=CD AC AD ,故 CD =13(cm ).讲解 说明主动 求解观察 学生 是否 理解 知识 点69 *运用知识 强化练习1.如图所示,在长方体1111ABCD A B C D -中,与平面1AB 垂直的平面有 个,与平面1AB 垂直的棱有 条.2.如图所示,检查工件相邻的两个面是否垂直时,只要用曲尺的一边卡在工件的一个面上,另一边在工件的另一个面上转动一下,观察尺边是否和这个面密合就可以了,为什么? 提问 巡视 指导思考 求解及时 了解 学生 知识 掌握 得情 况78 *理论升华 整体建构 思考并回答下面的问题:直线与平面垂直的判定与性质? 平面与平面垂直的判断与性质? 结论:直线与平面垂直的判定方法:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线与这个平面垂直.直线和平面垂直的性质:垂直于同一个平面的两条直线互相平行.平面与平面垂直的判定方法:一个平面经过另一个平面的垂线则两个平面垂直.平面与平面垂直的性质:如果两个平面垂直,那么一个平面内垂直于交线的直线与另一个平面垂直.质疑 归纳强调回答及时了解学生知识掌握情况82A BC D D AB C第1题图第2题图【教师教学后记】。
2021年新高考数学总复习第八章《立体几何与空间向量》直线、平面垂直的判定与性质1.直线与平面垂直(1)定义如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α互相垂直,记作l⊥α,直线l叫做平面α的垂线,平面α叫做直线l的垂面.(2)判定定理与性质定理文字语言图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫a,b⊂αa∩b=Ol⊥al⊥b⇒l⊥α性质定理垂直于同一个平面的两条直线平行⎭⎪⎬⎪⎫a⊥αb⊥α⇒a∥b2.直线和平面所成的角(1)定义平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.若一条直线垂直于平面,它们所成的角是直角,若一条直线和平面平行,或在平面内,它们所成的角是0°的角.(2)范围:⎣⎡⎦⎤0,π2.3.平面与平面垂直(1)二面角的有关概念①二面角:从一条直线出发的两个半平面所组成的图形叫做二面角;②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角.(2)平面和平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(3)平面与平面垂直的判定定理与性质定理文字语言图形语言符号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直⎭⎪⎬⎪⎫l⊥αl⊂β⇒α⊥β性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎪⎬⎪⎫α⊥βl⊂βα∩β=al⊥a⇒l⊥α概念方法微思考1.若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面吗?提示垂直.若两平行线中的一条垂直于一个平面,那么在平面内可以找到两条相交直线与该直线垂直,根据异面直线所成的角,可以得出两平行直线中的另一条也与平面内的那两条直线成90°的角,即垂直于平面内的这两条相交直线,所以垂直于这个平面.2.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面吗?提示垂直.在两个相交平面内分别作与第三个平面交线垂直的直线,则这两条直线都垂直于第三个平面,那么这两条直线互相平行.由线面平行的性质定理可知,这两个相交平面的交线与这两条垂线平行,所以该交线垂直于第三个平面.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l与平面α内的无数条直线都垂直,则l⊥α.(×)(2)垂直于同一个平面的两平面平行.(×)(3)直线a⊥α,b⊥α,则a∥b.(√)(4)若α⊥β,a⊥β,则a∥α.(×)(5)若直线a⊥平面α,直线b∥α,则直线a与b垂直.(√)(6)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.(×)题组二教材改编2.下列命题中错误的是()A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β。