平面与平面垂直的性质
- 格式:ppt
- 大小:329.50 KB
- 文档页数:22
平面与平面垂直的性质定理
平面与平面垂直的性质定理
如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。
如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
(线面垂直面面垂直)
证明两个平面垂直,通常是通过证明线线垂直、线面垂直来实现的,在关于垂直问题的论证中要注意三者之间的相互转化,必要时可添加辅助线,如:已知面面垂直时,一般用性质定理,在一个平面内作出交线的垂线,使之转化为线面垂直,然后转化为线线垂直,故要熟练掌握三者之间的转化条件及常用方法.线面垂直与面面垂直最终归纳为线线垂直,证共面的两直线垂直常用勾股定理的逆定理、等腰三角形的性质;证不共面的两直线垂直通常利用线面垂直或利用空间向量.(1)如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内,此结论可以作为性质定理用,(2)从该性质定理的条件看出:只要在其中一个平面内通过一点作另一个平面的垂线,那么这条垂线必在这个平面内,点的位置既可以在交线上,也可以不在交线上。
1。
面面垂直性质
性质定理:如果两个平面相互垂直,那么在一个平面内垂直于它们交
线的直线垂直于另一个平面。
如果两个平面相互垂直,那么经过第一个平
面内的一点作垂直于第二个平面的直线在第一个平面内等。
面面垂直
定义
若两个平面的二面角为直二面角(平面角是直角的二面角),则这两
个平面互相垂直。
性质定理
1、如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直
线垂直于另一个平面。
2、如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于
第二个平面的直线在第一个平面内。
3、如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于
第三个平面。
4、如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。
(判定定理推论1的逆定理)
线面垂直
定义
如果一条直线与一个平面内的任意一条直线都垂直,就说这条直线与
此平面互相垂直。
是将“三维”问题转化为“二维”解决是一种重要的立
体几何数学思想方法。
在处理实际问题过程中,可以先从题设条件入手,分析已有的垂直关系,再从结论入手分析所要证明的重要垂直关系,从而架起已知与未知的“桥梁”。
判定定理
直线与平面垂直的判定定理(线面垂直定理):一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
推论1:如果在两条平行直线中,有一条直线垂直于一个平面,那么另一条直线也垂直于这个平面。
推论2:如果两条直线垂直于同一个平面,那么这两条直线平行。
面面垂直的性质
面面垂直性质定理如下:
性质:若两平面垂直,则在一个平面内与交线垂直的直线垂直于另一平面;若两平面垂直,则与一个平面垂直的直线平行于另一平面或在另一平面内。
其判定定理是:一个面如果过另外一个面的垂线,那么这两个面相互垂直。
即一个平面过另一平面的垂线,则这两个平面相互垂直。
定义:若两个平面的二面角为直二面角(平面角是直角的二面角),则这两个平面互相垂直。
面面垂直的判定定理如下:一个平面过另一平面的垂线,则这两个平面相互垂直。
垂直的性质是如下:在同一平面内,过一点有且只有一条直线与已知直线垂直。
垂直一定会出现90°。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
垂直是指一条线与另一条线相交并成直角,这两条直线互相垂直。
通常用符号“⊥”表示。
对于立体几何中的垂直问题,主要涉及到线面垂直问题与面面垂直问题,而要解决相关的问题,其难点是线面垂直的定义及其对判定定理成立的条件的理解;两平面垂直的判定定理及其运用和对二面角有关概念的理解。