PF 5
【技法点拨】 1.线线垂直、线面垂直、面面垂直的相互转化 通过线面垂直可以实现线线垂直和面面垂直关系的相互转化, 即直线与直线垂直 噲垐直垐线 直垐与 线平 与垐垐面 平垂 面垐直 垂垐的 直直判 的垐垐定 定线定 义与理垎垐平面垂直 噲垐平 平垐面 面垐与 与平 平垐垐面 面垂 垂垐 直 直垐的 的平判 性垐垐定 质面定 定理 理垎与垐平面垂直.
试着完成下列各题,总结线线、线面、面面位置关系之间
的相互转化.
1.已知两个不同的平面α,β和两条不重合的直线m,n,有下列
四个结论:(1)若m∥n,m⊥α,则n⊥α.(2)若m⊥α,m⊥β,则
α∥β.(3)若m⊥α,m⊥n,n⊥β,则α⊥β.(4)若α⊥β,
α∩β=n,m⊥n,则m⊥α,其中正确结论的个数是( )
2.3.4 平面与平面垂直的性质
1.探究平面与平面垂直的性质定理,进一步培养学生的空间想 象能力. 2.能运用性质定理证明一些空间位置关系的简单命题. 3.了解直线与平面、平面与平面垂直的判定定理和性质定理 间的相互联系,掌握等价转化思想在解决问题中的运用.
平面与平面垂直的性质定理
(1)文字语言:两个平面垂直,则一个平面内垂直于交线的直
【解析】1.选C.利用平行线的性质(1)正确.由线面垂直的性质 知(2)正确.(3)m⊥α,m⊥n,则n⊂α或n∥α,又n⊥β,故α⊥β,正 确.(4)错误,m⊥n但m不一定在平面β内,故不一定垂直于平面 α. 2.选A.因为AD⊥AB,AD⊥PA且AB,PA⊂平面PAB, 所以AD⊥平面PAB,所以平面PAD⊥平面PAB, 因为BC∥AD,所以BC⊥平面PAB, 所以平面PBC⊥平面PAB.
【证明】如图,在a上任取点Q,过b与 Q作一平面交α于直线a1,交β于直 线a2. 因为b∥α,所以b∥a1. 同理,b∥a2. 因为a1,a2同过Q且平行于b,所以a1,a2重合. 又a1⊂α,a2⊂β,所以a1,a2都是α,β的交线,即都重合于a. 因为b∥a1,所以b∥a.而a⊥γ,所以b⊥γ.