性质
若两个平面垂直,则在一个平面内 性质定理:
垂直于它们交线的直线垂直于另一个平面.
在β内作直线BE⊥CD于B, 则∠ABE是二面角α-CD-β 的平面角 由α⊥β知,AB⊥BE ∴AB⊥β
A
D C B
E
又AB⊥CD 而BE和CD是β内的两条相交直线
面面垂直
线面垂直
举例
例: 已知
l , , ,
判定定理 判定定理
线线垂直
定义
线面垂直
性质定理
面面垂直
作业 1. 求证:两条异面直线不能同时
和一个平面垂直;
2. 求证:三个两两垂直的平面的 交线两两垂直.
平面与平面 垂直的性质
先直观感受平面与平面 垂直的情形
复习
1.定义:两个平面相交,如果它们所成 的二面角是直二面角,则两个平面垂直
记作α⊥β
性质:
1.凡是直二面角都相等; 2.两个平面相交,可引成四个二面角,如果其中有一 个是直二面角,那么其他各个二面角都是直二面角.
复习
若一个平面经过另一个平面 2.判定定理: 的一条垂线,则这两个平面互相垂直.
D
A垂直
思考
(1) 黑板所在平面与地面所在平面垂直,你能 否在黑板上画一条直线与地面垂直? (2) 如图,长方体中, 平面A1ADD1与平面 ABCD垂直,直线A1A A1 垂直于其交线AD,平 面A1ADD1内的直线 A A1A与平面ABCD垂 直吗? D1 B1 D B C C1
求证: l
l
m
n
a
b P
证明:在平面 a m,b n