微卫星筛选方法课件(精选)
- 格式:ppt
- 大小:994.50 KB
- 文档页数:9
高效快速筛选新发现的微卫星位点的方法-HRM摘要:本文介绍了一种新的识别微卫星位点的方法,微卫星标记是一种功能强大的共显性标记,扩增产物可靠且可以确定已知物种的高度的多态信息含量,但是对于新位点的发现依然是一种费时费力的方法。
相对于大肠杆菌文库分离方法,新一代测序技术(NGS)可以得到更多可用的候选基因。
我们对已知微卫星引物的注释作了系统的论述,并发现无论采用什么分离技术,由于PCR 未充分扩增,基因位点的单态性或多拷贝都会导致一半以上的候选基因丢失。
因此,在分子标记技术上,筛选候选基因依然是一个很关键的步骤。
我们通过重新评估毛细电泳法进行基因分型,发现HRM可以用于基因分型及筛选候选基因,对此列出了具体的流程。
通过该流程,或许我们可以快速地进行新一代标记的检测,并可以把费用降低到传统方法的一半甚至四分之一。
关键词:HRM 微卫星重新分离技术分子标记新一代测序技术群体遗传学引言微卫星也叫简单重复序列(SSRs),是群体遗传学中最强大的共显性标记,具有广泛的应用(e.g., Chambers and MacAvoy 2000; Ellegren 2004; Jarne and Lagoda 1996;MacDonald et al. 2011)。
最近由于新一代测序技术(NGS)的发展正解决SSRs技术中的一个重要的缺陷,不能获得足够的设计引物的数据。
扩增片段多态位点的选择,依然是一件费时费力的工作,这是SSRs发展中的另一个瓶颈。
因此我们引进了HRM用于识别潜在的SSR位点,并且HRM有望加快SSR的发展速度,降低传统方法的费用。
SSRs 一般是以核心序列1-6bp为重复单位首尾串联而成的短的DNA序列(Wan et al. 2004)。
微卫星具有高突变率、易于进行PCR扩增、便于毛细电泳法(CE)的分析以及可以利用许多软件工具进行生物学推论的诸多优点,使其在群体遗传学方面得到广泛应用。
传统的SSR位点的重新分离,是借助于丰富的基因文库(Glenn and Schable 2005; Zane et al. 2002),但是该法对于SSR位点不多的物种则不能检测到足够的位点进行分析(Arthofer et al. 2007; Megle´cz et al. 2004)。
1.进行酶切用Vs pⅠ对四种鱼(GC、GS、NL和ZZ)基因组DNA(需基因组DNA浓度较高)进行酶切。
反应体系为:ddH2O 15µLVs pⅠbuffer 2µLVs pⅠ酶1µLDNA2µL总体积20µL酶切在37℃反应3~4h即可,但是为了提高酶切效率可切4~6h。
PCR反应程序为:94℃ 5min,(94℃ 1min,53℃ 1min,72℃ 1min)×30,72℃ 10min,4℃ hold。
Vs pⅠ酶即(AseⅠ酶):酶切识别位点为:5’A T↓T A A T 3’5’T A A T↑T A 3’AseⅠ酶的接头为:A1:5’CTC GTA GAC TGC GTA CC 3’A2:5’TAG GTA CGC AGT C 3’AseⅠ酶用的预扩增产物为:A3:5’CTC GTA GAC TGC GTA CCT AAT 3’2.接头制备用10µL A1(200µM)和10µL A2(200µM)混合,94℃ 3min后室温放置30min。
3.酶切片段与接头连接接头为A1和A2制备的接头,命名为AE。
连接反应体系如下:ddH2O 5µLT4 ligation酶0.5µLT4 buffer4µL酶切产物20µLA TP(10mM)0.3µLAE 1µL总体积30.8µL上述混合体系在16℃连接过夜。
10h左右。
4.连接产物PCR扩增对连接产物进行PCR扩增,每个样本做4管。
扩增引物为A3。
反应体系如下:ddH2O 14µL10×buffer 2.5µLMg2+2µLdNTPs(10mM)0.5µLA3 1µLDNA(连接产物)5µLTaqE(2.5U/µL)0.2µL总体积25.2µLPCR反应程序为:(94℃ 30sec,56℃ 1min,72℃ 1min)×20,72℃ 10min,4℃ hold。
1.进行酶切用Vs pⅠ对四种鱼(GC、GS、NL和ZZ)基因组DNA(需基因组DNA浓度较高)进行酶切。
反应体系为:ddH2O 15µLVs pⅠbuffer 2µLVs pⅠ酶1µLDNA 2µL总体积20µL酶切在37℃反应3~4h即可,但是为了提高酶切效率可切4~6h。
PCR反应程序为:94℃ 5min,(94℃ 1min,53℃ 1min,72℃ 1min)×30,72℃ 10min,4℃ hold。
Vs pⅠ酶即(AseⅠ酶):酶切识别位点为:5’A T↓T A A T 3’5’T A A T↑T A 3’AseⅠ酶的接头为:A1:5’CTC GTA GAC TGC GTA CC 3’A2:5’TAG GTA CGC AGT C 3’AseⅠ酶用的预扩增产物为:A3:5’CTC GTA GAC TGC GTA CCT AAT 3’2.接头制备用10µL A1(200µM)和10µL A2(200µM)混合,94℃ 3min后室温放置30min。
3.酶切片段与接头连接接头为A1和A2制备的接头,命名为AE。
连接反应体系如下:ddH2O 5µLT4 ligation酶0.5µLT4 buffer4µL酶切产物20µLA TP(10mM)0.3µLAE 1µL总体积30.8µL上述混合体系在16℃连接过夜。
10h左右。
4.连接产物PCR扩增对连接产物进行PCR扩增,每个样本做4管。
扩增引物为A3。
反应体系如下:ddH2O 14µL10×buffer 2.5µLMg2+2µLdNTPs(10mM)0.5µLA3 1µLDNA(连接产物)5µLTaqE(2.5U/µL)0.2µL总体积25.2µLPCR反应程序为:(94℃ 30sec,56℃ 1min,72℃ 1min)×20,72℃ 10min,4℃ hold。
1.进行酶切用Vs pⅠ对四种鱼(GC、GS、NL和ZZ)基因组DNA(需基因组DN A浓度较高)进行酶切。
反应体系为:d dH2O15µLVs pⅠbuffer 2µLVs pⅠ酶1µLDNA2µL总体积20µL酶切在37℃反应3~4h即可,但是为了提高酶切效率可切4~6h。
PCR反应程序为:94℃ 5min,(94℃ 1min,53℃ 1min,72℃ 1min)×30,72℃ 10min,4℃ hold。
Vs pⅠ酶即(AseⅠ酶):酶切识别位点为:5’A T↓T A A T 3’5’T A A T↑T A 3’AseⅠ酶的接头为:A1:5’CTC GTA GAC TGC GTA CC 3’A2:5’TAG GTA CGC AGT C 3’AseⅠ酶用的预扩增产物为:A3:5’CTC GTA GAC TGC GTA CCT AAT 3’2.接头制备用10µLA1(200µM)和10µLA2(200µM)混合,94℃ 3min后室温放置30min。
3.酶切片段与接头连接接头为A1和A2制备的接头,命名为AE。
连接反应体系如下:ddH2O5µLT4 ligati on酶0.5µLT4 buffer4µL酶切产物20µLA TP(10mM)0.3µLAE 1µL总体积30.8µL上述混合体系在16℃连接过夜。
10h左右。
4.连接产物PC R扩增对连接产物进行PCR扩增,每个样本做4管。
扩增引物为A3。
反应体系如下:ddH2O14µL10×buffer 2.5µLMg2+2µLdNTPs(10mM)0.5µLA3 1µLDNA(连接产物)5µLTaqE(2.5U/µL)0.2µL总体积25.2µLPCR反应程序为:(94℃ 30sec,56℃ 1min,72℃ 1min)×20,72℃ 10min,4℃ hold。
微卫星方法简介关键词微卫星分子生态应用80年代以来,分子生物学技术与方法已成为进化生物学、保护遗传学、生态学等诸多领域非常重要和崭新的研究工具。
而摆在人们面前可供选择的分子生物学方法又有许多种,如同工酶(allozymes)、限制性片断长度多态性(Ristriction Fragment Length Polymorphism, RFLP)、多位点或单位点小卫星(Multi-locus or Single-locus Minisatellites)以及随机扩增多态DNA(Randomly Amplified Polymorphic DNA, RAPD)。
其中每种方法都具有自己明显的不足之处,比如:同工酶标记物由于位点多态性低、变异低而不能很好地被用来估计群体内部个体之间的亲缘关系,这在研究濒危物种时显得尤为突出;小卫星探针由于其片断长而难以获得;RAPD方法稳定性和重复性较差。
目前,随着人们对微卫星(Microsatellites)方法认识的不断深入,这一技术和手段越来越为研究者们所青睐。
微卫星(又名简单序列)是由串联重复序列组成,每单元长度在1~10bp之间,如(TG)n或(AAT)n[1~3],广泛分布于真核基因组中[4],因重复单元数目不同而呈现高度多态性[5]。
1 微卫星的产生历程生物学家在20世纪70年代就已经知道真核基因组中存在着短串联重复位点,但直至1982年Hamada等[6]发现从酵母到脊椎动物中的多拷贝多聚(dT-dG)时,这些序列的数目之大和存在之广泛才显现出来。
这一发现后来被Tautz和Renz[7]所证实:他们用不同微卫星序列与不同有机体中的基因组DNA杂交,发现存在着许多类型的简单序列。
1985年,Jeffreys等[8]发现了人基因组中有更长重复单元的超变串联重复序列,即小卫星DNA(Mini-satellite)。
与微卫星一样,小卫星的串联重复单位的数目也显示出可变性,因此二者被统称为可变数目串联重复位点(Variable Number of Tandem RapeatsVNTRs)[2]。