第6章 函数
- 格式:ppt
- 大小:1.19 MB
- 文档页数:8
第6章函数和模块设计【习题6-1】更正下面函数中的错误。
(1)返回求x和y平方和的函数。
(2)返回求x和y为直角边的斜边的函数。
sum_of_sq(x,y) hypot(double x,double y){ {double x,y; h=sqrt(x*x+y*y);return(x*x+y*y); return(h);} }程序如下:/*c6_1(1).c*/ /*c6_1(2).c*/(1) (2)double sum_of_sq(double x,double y) double hypot(double x,double y) { {return(x*x+y*y); double h;} h=sqrt(x*x+y*y);return(h);}【习题6-2】说明下面函数的功能。
(1)itoa(int n,char s[ ])(2)int htod(char hex [ ]){ { int i,dec=0;static int i=0,j=0; for(i=0;hex[i]!='\0';i++)int c; { if(hex[i]>='0'&&hex[i]<='9') if(n!=0) dec=dec*16+hex[i]-'0';{ if(hex[i]>='A'&&hex[i]<='F') j++; dec=dec*16+hex[i]-'A'+10;c=n%10+'0'; if(hex[i]>='a'&&hex[i]<='f') itoa(n/10,s); dec=dec*16+hex[i]-'a'+10;s[i++]=c; }} return(dec);else }{ (3)void stod(int n)if(j==0) s[j++]='0'; { int i;s[j]='\0'; if(n<0){ putchar('-');n=-n;} i=j=0; if((i=n/10)!=0) stod(i);} putchar(n%10+'0');} }功能:(1)(略)(2)(略)【习题6-3】编写已知三角形三边求面积的函数,对于给定的3个量(正值),按两边之和大于第三边的规定,判别其能否构成三角形,若能构成三角形,输出对应的三角形面积。
第六章 三角函数一、基础知识定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。
若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。
角的大小是任意的。
定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。
360度=2π弧度。
若圆心角的弧长为L ,则其弧度数的绝对值|α|=rL ,其中r 是圆的半径。
定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x 轴的正半轴重合,在角的终边上任意取一个不同于原点的点P ,设它的坐标为(x ,y ),到原点的距离为r,则正弦函数s in α=r y ,余弦函数co s α=r x ,正切函数tan α=x y ,余切函数cot α=yx,正割函数se cα=x r ,余割函数c s c α=.yr定理1 同角三角函数的基本关系式,倒数关系:tan α=αcot 1,s in α=αcsc 1,co s α=αsec 1;商数关系:tan α=αααααsin cos cot ,cos sin =;乘积关系:tan α×co s α=s in α,cot α×s in α=co s α;平方关系:s in 2α+co s 2α=1, tan 2α+1=se c 2α, cot 2α+1=c s c 2α.定理2 诱导公式(Ⅰ)s in (α+π)=-s in α, co s(π+α)=-co s α, tan (π+α)=tan α, cot (π+α)=cot α;(Ⅱ)s in (-α)=-s in α, co s(-α)=co s α, tan (-α)=-tan α, cot (-α)=cot α; (Ⅲ)s in (π-α)=s in α, co s(π-α)=-co s α, tan =(π-α)=-tan α, cot (π-α)=-cot α; (Ⅳ)s in ⎪⎭⎫⎝⎛-απ2=co s α, co s ⎪⎭⎫⎝⎛-απ2=s in α, tan ⎪⎭⎫⎝⎛-απ2=cot α(奇变偶不变,符号看象限)。
第六章函数的概念和图象一、内容综述:1.函数的有关概念:一般地,设在某变化过程中有两个变量x,y。
如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就说y是x的函数,x叫做自变量,y叫因变量。
对于函数的意义,应从以下几个方面去理解:(1)我们是在某一变化过程中研究两个变量的函数关系,在不同研究过程中,变量与常量是可以相互转换的,即常量和变量是对某一过程来说的,是相对的。
(2)对于变量x允许取的每一个值,合在一起组成了x的取值范围。
(3)变量x与y有确定的对应关系,即对于x允许取的每一个值,y都有唯一确定的值与它对应。
2.函数值与函数值有关的问题可以转化为求代数式的值。
二、例题分析:例1.判断y=x与y=是否是同一函数。
解:∵ y==|x|当x≥0时,y=x,当x<0时, y=-x.∴ y=x与y=不是同一函数。
说明:虽然这两个函数的自变量取值范围都是全体实数,但当x<0时,两个函数的对应关系不同(如当x=-2时,y=x=-2, 而y==2), 所以它们不是同一个函数。
例2.不画图象,求函数y=-x+的图象上一点P,使点P到x轴,y轴的距离相等。
解:当点P在第一,三象限内,依题意,设P(a,a)∴ a=-a+解得:a=1.当点P在第二,四象限内,设P(b,-b)∴ -b=-b+解得:b=-3,∴点P坐标为(1,1)或(-3,3)。
说明:由点P到x轴、y轴的距离相等知点P在各象限角平分线上,由于第一,三象限角平分线上的点M(x,y)满足x=y的关系,而第二,四象限角平分线上的点N(x,y)满足x=-y的关系,所以可根据点P的位置特点来设点P的坐标,通过此例训练分类讨论思想。
例3.某自行车保管站在某个星期日接受保管的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管费是每辆一次0.3元. 若设一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;分析:由一般车辆停放次数x表示变速停放的辆次数,由保管费列出函数关系再化简,但要在函数式后注明自变量x的取值范围。
§5.函数的凹凸性个与拐点引言上面已经讨论了函数的升降与极值,这对函数性状的了解是有很大作用的.为了更深入和较精确地掌握函数的性状,我们在这里再讲述一下有关函数凸性的概念及其与函数二阶导数的关系.什么叫函数的凸性呢?我们先以两个具体函数为例,从直观上看一看何谓函数的凸性.如函数y 所表示的曲线是向上凸的,而2y x =所表示的曲线是向下凸的,这与我们日常习惯上的称呼是相类似的.或更准确地说:从几何上看,若y =f(x)的图形在区间I 上是凸的,那么连接曲线上任意两点所得的弦在曲线的上方;若y =f(x)的图形在区间I 上是凹的,那么连接曲线上任意两点所得的弦在曲线的下方.如何把此直观的想法用数量关系表示出来呢?在曲线上任取两点A 、B ,设其坐标分别为11(,())x f x 、22(,())x f x ,弦AB 在曲线上方⇔12(,)x x x ∀∈,有211121()()()()()f x f x f x f x x x x x -≤+--,可简化为(0,1)λ∀∈,12,x x I ∀∈都有1212((1))()(1)()f x x f x f x λλλλ+-≤+-,从而有以下定义:一、 凸(凹)函数的定义及判定1 凸(凹)函数的定义定义1 设函数f 为定义在区间I 上的函数,若对I 上任意两点1x 、2x 和任意实数(0,1)λ∈总有1212((1))()(1)()f x x f x f x λλλλ+-≤+-,则称f 为I 上的凸函数.反之,如果总有1212((1))()(1)()f x x f x f x λλλλ+-≥+-,则称f 为I 上的凹函数.注 易证:若一f 为区间I 上的凸函数,则f 为区间I 上的凹函数,因此,今后只讨论凸函数的性质即可.2、凸函数的判定1引理 f 为I 上的凸函数⇔对于I 上任意三点123x x x <<总有:32212132()()()()f x f x f x f x x x x x --≤-- 注 同理可证:有上任意三点对上的凸函数为,321x x x I I f <<⇔232313131212)()()()()()(x x x f x f x x x f x f x x x f x f --≤--≤-- (4) 如果f 是I 上的可导函数,则进一步有:2 定理6.13(可导函数为凸函数的等价命题) 设f 为区间I 上的可导函数,则下述论断互相等价:(1)f 为I 上的凸函数;(2)f '为I 上的增函数;(3)对I 上的任意两点12,x x 总有21121()()()()f x f x f x x x '≥+-如果f 在I 上二阶可导,则进一步有:3定理6.14(凸函数与二阶导数的关系) 设f 为I 上的二阶可导函数,则在I 上f 为凸(凹)函数⇔()0f x ''>(()0f x ''<),x I ∈. 二、 曲线的拐点定义及判定1 定义2 设曲线y =f(x)在点(00,()x f x )处有穿过曲线的切线,且在切点近旁,曲线在切线的两侧分别是严格凸或严格凹的,这时称(00,()x f x )为曲线y =f(x)的拐点.注:拐点是严格凸与严格凹的分界点2定理6.15(拐点必要条件) 若f 在0x 二阶可导,则(00,()x f x )为曲线y =f(x)的拐点的必要条件是0()0f x ''=.综上知:(00,()x f x )的拐点,则要么(1)0()0f x ''=;要么(2)f 在0x 点不可导.3定理6.16 设f 在点0x 可导,在某邻域0()U x 内二阶可导,若在0()U x +和0()U x -上()f x ''的符号相反,则(00,()x f x )为曲线y =f(x)的拐点.;注:(00,()x f x )是曲线y=f (x)的一个拐点,但y =f(x)在点0x的导数不一定存在,如y =在x =0的情形.三、应用举例(1)利用上述等价命题验证函数的凹凸性,确定凹凸区间.例1 讨论函数()arctan f x x =的凸(凹)性及拐点.(2)证明不等式例2:(Jensen 不等式)若f 为],[b a 上凸函数,则对任意),,2,1(0],,[n i b a x i i =>∈λ11=∑=n i i λ,有)()(11ini i i n i i x f x f ∑∑==≤λλ 例3 证明均值不等式:,,,21+∈∀R a a a n 有na a a a a a a a a nn n n n +++≤≤+++ 212121111 作业:P153 1(2)(4),2,3,4,5。
第六章 传递函数对于线性定常系统,传递函数是常用的一种数学模型,它是在拉氏变换的基础上建立的。
用传递函数描述系统可以免去求解微分方程的麻烦,间接地分析系统结构及参数与系统性能的关系,并且可以根据传递函数在复平面上的形状直接判断系统的动态性能,找出改善系统品质的方法。
因此,传递函数是经典控制理论的基础,是一个极其重要的基本概念。
第一节 传递函数的定义一、传递函数的定义1、定义对于线性定常系统,在零初始条件下,系统输出量的拉氏变换与输入量的拉()()C s R s ==零初始条件输出信号的拉氏变换传递函数输入信号的拉氏变换2、推导设线性定常系统的微分方程的一般形式为1011110111()()()()()()()()n n n n nn m m m m mm d d d a c t a c t a c t a c t dtdtdtd d d b r t b r t b r t b r t dtdtdt------++⋅⋅⋅++=++⋅⋅⋅++◆ 式中c(t)是系统输出量,r(t)是系统输入量,r(t)、c(t)及其各阶导数在t=0时的值均为零,即零初始条件。
◆a , 1a ,…,na 及b , 1b ,…,mb 均为系统结构参数所决定的实常数。
对上式中各项分别求拉氏变换,并令C(s)=L[c(t)],R(s)=L[r(t)],可得s 的代数方程为:11011011[]()[]()nn mm n n m m a s a sa s a C sb sb sb s b R s ----++⋅⋅⋅++=++⋅⋅⋅++于是,由定义得到系统的传递函数为:10111011()()()()()m m m m nn n nb s b sb s b C s M s G s R s a s a sa s a N s ----++⋅⋅⋅++===++⋅⋅⋅++其中,1011()m m m m M s b s b s b s b --=++⋅⋅⋅++ 1011()n n n n N s a s a s a s a --=++⋅⋅⋅++ N(s)=0称为系统的特征方程,其根称为系统特征根。