小波变换发展史
- 格式:docx
- 大小:21.24 KB
- 文档页数:3
信号变换技术的发展历史
信号变换技术是指将信号从一种表示形式转变为另一种表示形式的技术。
它的发展历史可以追溯到很早的时期,以下是信号变换技术的主要发展历史:
1. 傅里叶变换:傅里叶变换是一种将时域信号转换为频域信号的方法,由法国数学家傅里叶在19世纪初提出。
傅里叶变换广泛应用于信号处理、图像处理、通信等领域。
2. 拉普拉斯变换:拉普拉斯变换是将时域信号转换为复频域信号的方法。
它在控制系统、电路分析等领域有重要应用。
拉普拉斯变换由法国数学家拉普拉斯在19世纪初提出。
3. Z变换:Z变换是一种将离散时间信号转换为复变量信号的方法。
它在离散时间系统分析与设计中广泛使用。
Z变换于20世纪40年代由美国电气工程师拉斯·高斯特提出。
4. 小波变换:小波变换是一种将信号分解为不同频率的成分的方法。
它能提供更好的时域和频域局部特性描述,被广泛应用于信号处理、图像处理、数据压缩等领域。
小波变换的理论和方法在20世纪60年代到80年代逐渐形成。
5. 离散余弦变换:离散余弦变换是一种将离散时间信号转换为离散频域信号的方法。
它广泛应用于图像编码、数据压缩等领域。
离散余弦变换于20世纪70年代提出。
6. 离散傅里叶变换:离散傅里叶变换是一种将离散时间信号转
换为离散频域信号的方法。
它在信号处理和通信领域中得到广泛应用。
离散傅里叶变换是在20世纪60年代到70年代发展起来的。
随着技术的不断进步和需求的不断变化,信号变换技术也在不断发展和演进,不断涌现出新的变换方法和算法,为各个领域的信号处理提供了更多选择和解决方案。
文献综述小波变换(Wavelet Transform)的概念是1984年法国地球物理学家J.Morlet在分析处理地球物理勘探资料时提出来的。
小波变换的数学基础是19世纪的傅里叶变换,其后理论物理学家A.Grossman采用平移和伸缩不变性建立了小波变换的理论体系。
1985年,法国数学家Y.Meyer第一个构造出具有一定衰减性的光滑小波。
1988年,比利时数学家I.Daubechies证明了紧支撑正交标准小波基的存在性,使得离散小波分析成为可能。
1989年S.Mallat提出了多分辨率分析概念,统一了在此之前的各种构造小波的方法,特别是提出了二进小波变换的快速算法,使得小波变换完全走向了实用性。
小波分析是建立在泛函分析、Fourier分析、样条分析及调和分析基础上的新的分析处理工具。
它又被称为多分辨率分析,在时域和频域同时具有良好的局部化特性,常被誉为信号分析的“数据显微镜”。
近十多年来,小波分析的理论和方法在信号处理、语音分析、模式识别、数据压缩、图像处理、数字水印、量子物理等专业和领域得到广泛的应用。
小波变换分析在数据处理方面的应用主要集中在安全变形监测数据和GPS观测数据的处理,应为他们都对精度用较高的要求,而小波变换分析方法的优势能满足这个要求。
在安全变形数据处理主要集中在去噪处理、识别变形的突变点,也包括提取变形特征、分离不同变形频率、估计观测精度、小波变换最佳级数的确定等。
在GPS数据处理方面包括:利用小波分析法来检测GPS相位观测值整周跳变的理论与方法,GPS粗差检测、GPS信号多路径误差分析、相位周跳检测、基于小波的GPS双差残差分析等。
国内有关学者和研究人员研究工作如下:李宗春等研究了变形测量异常数据中小波变换最佳级数的确定,综合分析数据去噪效果的4 个分项评价指标,即数据的均方根差变化量、互相关系数、信噪比及平滑度,将各分项评价指标归化到[0, 1]后相加得到总体评价指标,将总体评价指标最大值所对应的级数定义为小波分解与重构的最佳级数。
小波变换的发展简史从时频分析方法发展的角度出发(对比每种方法的优缺点),简述了小波变换的发展历史。
小波变换的概念是由法国从事石油信号处理的工程师J.Morlet在1974年首先提出的,通过物理的直观和信号处理的实际需要经验的建立了反演公式,当时未能得到数学家的认可。
幸运的是,1986年著名数学家Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat合作建立了构造小波基的同一方法枣多尺度分析之后,小波分析才开始蓬勃发展起来。
与Fourier变换、窗口Fourier变换相比,它是一个时间和频率的局域变换,因而能有效的从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析,解决了Fourier变换不能解决的许多困难问题,从而小波变化被誉为“数学显微镜”,它是调和分析发展史上里程碑式的进展,势必取代傅立叶分析的位置。
1.小波分析的3个特点:小波变换,既具有频率分析的性质,又能表示发生的时间。
有利于分析确定时间发生的现象。
(傅里叶变换只具有频率分析的性质)小波变换的多分辨度的变换,有利于各分辨度不同特征的提取(图象压缩,边缘抽取,噪声过滤等)小波变换比快速Fourier变换还要快一个数量级。
信号长度为M 时,Fourier变换(左)和小波变换(右)计算复杂性分别如下公式:2. 小波基表示发生的时间和频率:傅里叶变换(Fourier)基小波基时间采样基“时频局域性” 图解:Fourier变换的基(上)小波变换基(中)和时间采样基(下)的比较4.信号的时频分析:信号时频分析的重要性:时间和频率是描述信号的两个最重要的物理量。
信号的时域和频域之间具有紧密的联系。
信号时频分析的主要方法:3. 傅里叶变换(一)傅里叶变换伟大贡献及其局限性:傅立叶变换的理论是人类数学发展史上的一个里程碑,从1807年开始,直到1966年整整用了一个半世纪多才发展成熟,她在各个领域产生了深刻的影响得到了广泛的应用,推动了人类文明的发展。
1 小波变换简要回顾小波变换是调和分析(包括函数空间、广义函数、傅里叶分析和抽象调和分析等)这一重要学科大半个世纪以来的工作结晶;小波变换又是计算机应用、信号处理、图像分析、非线性科学和工程技术近几年来在方法上的重大突破。
1从小波变换的发展过程来说,大致可分成三个阶段。
(1)孤立应用时期(1985年以前)(2)国际性研究热潮和统一构造时期(1986—1992)(3)全面应用时期(1992—)23(1)孤立应用时期1910年Harr 提出Harr 正交基1938年Paley-Littlewood 的按二进制频率成分分组1965年Calderon 的再生核公式1981年对Harr 系的改进1984/5年A Grossmann ,J Morlet展开的伸缩平移系按一个函数ψ{}Zk j j j kb x a a ∈−−−,2/)(ψ4(2)国际性研究热潮和统一构造时期1986年Meyer 构造出了具有一定衰减性质的光滑函数1988年I Daubechies)(x ψ{}构成使得Z k j k j x ∈,,)(ψ的规范正交基)(2R L Communication on Pure and Applied Math.,1988, 41:909~996Orthonormal Bases of Compactly Supported Wavelets 1989年S Mallat 1991年C K Chui ,J Z Wang 1992年I Daubechies 《Ten Lectures on Wavelets 》(3)全面应用时期1992年,《IEEE Transaction on Information Theory 》1993年,《Applied and Computational Harmonic Analysis》1993年,《IEEE Transaction on Signal Processing 》网络、软件、图书…52 小波变换与傅里叶变换1809年,J. Fourier(法)给出Fourier离散变换其想法是:用简单的函数表示复杂的周期函数1822年,——《热的解析理论》,提出Fourier变换1946年,D.Gabor引入窗口Fourier变换1965年,Cooley-Tukey(美)提出快速Fourier变换67D .Gabor 变换或称为窗口傅里叶变换是Gaussian 函数,称为“窗口函数”.定义为的中的任何函数或信号FT t f R L )()(2∫−=Rt i dt e t f f ωω)()(ˆ∫−−=R t i a f dte b t g tf b G ωω)()(),(a t a e a tg 4/221)(−=π其中小波变换的定义∫∗−=R f dt ab t t f a b a W ))(1),(ψ>=<ψ,f。
从时频分析方法发展的角度出发(对比每种方法的优缺点),简述了小波变换的发展历史。
小波变换的概念是由法国从事石油信号处理的工程师J.Morlet 在1974年首先提出的,通过物理的直观和信号处理的实际需要经验的建立了反演公式,当时未能得到数学家的认可。
幸运的是,1986年著名数学家Y.Meyer 偶然构造出一个真正的小波基,并与S.Mallat 合作建立了构造小波基的同一方法枣多尺度分析之后,小波分析才开始蓬勃发展起来。
与Fourier 变换、窗口Fourier 变换相比,它是一个时间和频率的局域变换,因而能有效的从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析,解决了Fourier 变换不能解决的许多困难问题,从而小波变化被誉为“数学显微镜”,它是调和分析发展史上里程碑式的进展,势必取代傅立叶分析的位置。
1.小波分析的3个特点:• 小波变换,既具有频率分析的性质,又能表示发生的时间。
有利于分析确定时间发生的现象。
(傅里叶变换只具有频率分析的性质)• 小波变换的多分辨度的变换,有利于各分辨度不同特征的提取(图象压缩,边缘抽取,噪声过滤等)• 小波变换比快速Fourier 变换还要快一个数量级。
信号长度为M 时, Fourier 变换(左)和小波变换(右)计算复杂性分别如下公式:M O M M O w f ==,log 2 小波基表示发生的时间和频率:4.信号的时频分析:• 信号时频分析的重要性:- 时间和频率是描述信号的两个最重要的物理量。
- 信号的时域和频域之间具有紧密的联系。
• 信号时频分析的主要方法:t d e (t)f )(F -t j -⎰+∞∞=ωω傅里叶变换(Fourier )基小波基时间采样基ωωπωd e )(F 21(t)f -t j ⎰+∞∞= 3. 傅里叶变换(一)傅里叶变换伟大贡献及其局限性:傅立叶变换的理论是人类数学发展史上的一个里程碑,从1807年开始,直到1966年整整用了一个半世纪多才发展成熟,她在各个领域产生了深刻的影响得到了广泛的应用,推动了人类文明的发展。
小波变换及其应用研究目录:一、小波变换的概述及背景二、小波变换的基本理论三、小波变换的应用领域1. 信号处理领域2. 图像处理领域3. 音频处理领域4. 视频处理领域四、小波变换技术的发展现状及趋势五、小波变换技术存在的问题及解决方案六、结论一、小波变换的概述及背景小波变换是一种信号分析方法,在20世纪80年代由美国数学家Ingrid Daubechies等人提出。
它是基于多尺度分析理论发展起来的一种数字信号处理技术。
与传统的傅里叶分析方法不同,小波变换可以将信号分解成不同频段和时间段的小波基函数,从而能够精细地描述信号的局部特征。
由于小波变换具有多尺度、局部性、压缩性等优点,已被广泛应用于数字信号处理、图像处理、音频处理等领域,并取得了诸多重要应用成果。
二、小波变换的基本理论小波变换是一种分解和重构的过程,分为两个阶段:分解和重构。
在分解阶段,通过一些特定的小波变换,将原始信号分解成不同尺度、不同频段的小波系数。
在重构阶段,通过逆小波变换,从多尺度小波系数中恢复原始信号。
小波变换的基本理论包括小波基函数和小波分解方法。
小波基函数是小波变换的基本操作单元,是由局部性和多尺度性两个方面组成的。
小波分解方法是将一个信号分解成一组小波子带,即一组低频信号和一组高频信号。
小波变换与傅里叶变换的最大区别在于它们的基函数不同。
傅里叶变换使用正弦和余弦基函数,而小波变换使用一组局部化的小波基函数。
这些小波基函数可以是正交的或非正交的。
三、小波变换的应用领域小波变换技术具有多尺度分析、非线性和压缩性等特点,广泛应用于数字信号处理、图像处理、音频处理等领域。
以下是小波变换在不同应用领域的应用举例:1. 信号处理领域小波变换可以用于信号去噪、信号压缩、信号辨识等方面。
在去噪方面,小波变换可以将信号分解成频带,从而能够选择性地去除噪声。
在压缩方面,小波变换可以将信号分解成不同尺度、不同频段的小波系数,从而在保留信号本质特征的同时实现信号数据的压缩。
经过近一个学期的学习,我对小波这个概念有了浅显的认识,下面主要从以下几个方面对小波概念展开我的理解。
一:小波变换的由来小波变换的概念是1984年法国地球物理学家J.Morlet 在分析地球物理勘探资料时提出来的。
小波变换的基础是19世纪的傅里叶变化,其后理论物理学家A.Grossman 采用平移和伸缩不变性建立了小波变换的理论体系。
1985年,法国数学家Y.Meyer 第一个构造出具有一定衰减性的光滑小波。
1988年,比利时数学家I.Daubechies 证明了紧支撑正交标准小波基的存在性,使得离散小波分析成为可能。
1989年,比利时数学家S.Mallat 提出了多分辨率分析概念,统一了在此之前的各种构造小波的方法,特别是提出了二进小波变换的快速算法,使得小波变换完全走向实用性。
二:傅里叶变换傅里叶变换是信号处理常用的方法,它架起了时间域和频率域之间的桥梁。
傅里叶变换所用的正弦波e −iωt 是所有线性时不变算子的特征向量,所以傅里叶变换对于线性时不变信号一直处于一种统治地位。
设f(t)∈L 1(R ),连续傅里叶变换定义为:F (ω)=∫e −iωt f (t )dt +∞−∞F (ω)傅里叶逆变换定义为:f (t )=12π∫e iωt F (ω)dω+∞−∞实际应用中,计算机处理信号时要求信号时离散的,并且为有限长。
因此,有了短时傅里叶变换(DFT)。
给定实的或复的离散时间序列f 0, f 1,…, f N−1,设该序列绝对可积,即满足∑|fn |<∞N−1n=0,则序列{f n }的离散傅里叶变换为: X (k )=F (f n )=∑f n N−1n=0e−i 2πk N n 序列{ X (k )}的离散傅里叶逆变换(IDFT)为:f n =1N ∑X (k )N−1k=0e i 2πN n从物理意义上讲,傅里叶变换的实质是把f(t)波形分解成许多不同频率的正弦波的叠加和,这样我们就可以从时域转换到频域实现对信号的分析。
小波变换在现代的科学研究中有着广阔的应用。
作为一种近些年提出的新的数学概念,它的科学研究工具的作用正在被充分发掘。
1 小波变换的提出小波变换(wavelet transform )是80年代后期发展起来的应用数学分支。
虽然从历史上往上追溯,在此之前已有一些学者零散地进行过一些工作,但在理论上构成较系统的构架则主要是法国数学家Y .Meyer 和地质物理学家J.Morlet 及理论物理学家A.Grossmanr 的贡献。
而把这一理论引入工程应用,特别是信号处理领域,法国学者 I.Daubechies 和 S.Mallat 则起着极为重要的作用。
因此人们有把小波分析的兴起归功于所谓‘法国学派’。
小波变换的含义是:把某一被称为基本小波[也叫母小波(mother wavelet )]的函数()t ψ作位移τ后,再在不同尺度α下与待分析信号()x t 作内积:*(,)()(),0x t WT x t dt τατϕαα+∞-∞-=>等效的频域变化是:*(,)()()2j x WT x e d ωπατωϕαωωπ+∞+-∞=⎰其中()X t ,()ψω是()x t ()t ϕ的傅里叶变换。
2 小波变换的特点小波变换有以下特点:1、具有多分辨率(multi-resolution ),也叫多尺度(multi-scale )的特点,可以由粗及精地逐步观察信号。
2、也可以看成是用基本频率特性为()ψω的带通滤波器在不同尺度α下对信号作滤波。
由于傅里叶变换的尺度特性: 如果()t ψ的傅里叶变换是()ψω,则()t αϕ的傅里叶变换为()αψαω。
因此这组滤波器有品质因数恒定,即相对带宽(带宽与中心频率之比)恒定的特点。
注意,α愈大相当于频率愈低。
3、适当地选择基本小波,使()t ϕ在时域上为有限支撑,()ψω在频域上也比较集中,便可以使WT 在时频两域都有表征信号局部特征的能力,因此有利于检测信号的瞬态或奇异点。
[转载]时频分析与小波变换的发展历程已有 1441 次阅读2010-6-13 13:07|个人分类:学术|系统分类:科研笔记|关键词:时频分析,发展傅立叶分析的发展历程1807年,法国学者Fourier指出任何周期函数都可以用一系列正弦波来表示,开创了傅立叶分析。
(1)操作过程:从数学角度而言,对一个函数进行傅立叶变换(Fourier Transform,FT)。
从信号处理的角度而言,对任意信号f(t) 的频谱F(ω)进行分析。
(2)优点:能够准确刻画平稳信号在整个时(空)域的频率性质。
(3)缺点:不能反映非平稳信号在局部区域的频域特征及其对应关系,即FT在时域没有任何分辨率,无法确定信号奇异性的位置。
1946年,Gabor提出了短时傅立叶变换(Short Time Fourier Transform,STFT)。
(1)操作过程:对信号进行加窗,再对加窗后的信号进行傅立叶变换,从而得到信号在局部区域的频谱。
(2)优点:能够分析信号局部频域特征。
(3)缺点:由于STFT中时间窗的宽度与频率无关,它仍然是一种恒分辨率分析。
1948年,Ville提出了维格纳-威尔分布(Wigner-Ville Distribution,WVD),并引入时频信号分析。
(1)操作过程:信号中心协方差函数的傅立叶变换。
(2)优点:具有对称性、时移不变性、真边缘性、平均瞬时频率等优良性质,WVD的时频分辨率比STFT的分辨率高。
(3)缺点:存在交叉干扰项(Cross-Term Interference,CTI),这是二次型时频分布的固有结果,大量的CTI会淹没或严重干扰信号的自项,模糊信号的原始特征。
小波分析的发展历程一、小波分析1910年,Haar提出了L2(R)中第一个小波规范正交基,即Haar正交基。
(1)操作过程:Haar正交基是以一个简单的二值函数作为母小波经平移和伸缩而形成的。
(2)优点:Haar小波变换具有最优的时(空)域分辨率。
小波变换发展史传统的信号理论,是建立在Fourier分析基础上的,而Fourier变换作为一种全局性的变化,其有一定的局限性。
在实际应用中人们开始对Fourier变换进行各种改进,小波分析由此产生了。
小波分析是一种新兴的数学分支,它是泛函数、Fourier分析、调和分析、数值分析的最完美的结晶;在应用领域,特别是在信号处理、图像处理、语音处理以及众多非线性科学领域,它被认为是继Fourier分析之后的又一有效的时频分析方法。
小波变换与Fourier变换相比,是一个时间和频域的局域变换因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺(Multiscale Analysis),解决了Fourier变换不能解决的许多困难问题。
1.从傅立叶分析到小波分析1807年,法国学者Fourier指出任何周期函数都可以用一系列正弦波来表示,开创了傅立分析。
傅立叶分析揭示了时域与频域之间内在的联系,反映了“整个”时间范围内信号的“全部”频谱成分,是研究信号的周期现象不可缺少的工具。
建立在傅立叶分析基础上的采样定理和FFT技术奠定了现代数字化技术的理论基础。
尽管傅立叶变换具有很强的频域局域化能力,但是它明显的缺点,那就是无法反映非平稳信号在局部区域的频域特征及其对应关系,即FT在时域没有任何分辨率,无法确定信号奇异性的位置。
为了研究信号在局部时间范围内的频谱特征,1946年,Gabor提出了短时傅立叶变换(Short Time Fourier Transform,STFT),但是STFT的窗口宽度是固定的(和频率无关),这使得它无法同时兼顾信号的低频和高频特征,在分析时变信号时也有一定的局限性。
另外,STFT的窗口函数或核函数不能提供一组离散正交基,所以给数值计算带来了不便,这也是导致STFT 没有得到广泛应用的重要原因。
从傅立叶分析演变而来的小波分析的优点恰恰可以弥补傅立叶变换中存在的不足之处。
小波变换是以牺牲部分频域定位性能来取得时-频局部性的折衷。
小波变换不仅能够提供较精确的时域定位,还能提供较精确的频域定位。
我们所面对的真实物理信号,更多的表现出非平稳的特性,小波变换成为处理非平稳信号的有力工具。
与Fourier变换相比,小波变换是空间(时间)和频率的局部变换,因而能有效地从信号中提取信息。
通过伸缩和平移等运算功能可对函数或信号进行多尺度的细化分析,解决了Fourier 变换不能解决的许多困难问题。
小波变换联系了应用数学、物理学、计算机科学、信号与信息处理、图像处理、地震勘探等多个学科。
数学家认为,小波分析是一个新的数学分支,它是泛函分析、Fourier分析、样调分析、数值分析的完美结晶;信号和信息处理专家认为,小波分析是时间—尺度分析和多分辨分析的一种新技术,它在信号分析、语音合成、图像识别、计算机视觉、数据压缩、地震勘探、大气与海洋波分析等方面的研究都取得了有科学意义和应用价值的成果。
2. 小波分析的发展小波理论的兴起,得益于其对信号的时域和频域局域分析能力及其对一维有界函数的最优逼近性能,也得益于多分辨率分析概念,以及快速小波变换的实现方法。
小波分析的思想来源于伸缩与平移方法。
第一个正交小波基是由Haar在1910年提出的,它就是人们熟知的Haar正交基,Haar 正交基是以一个简单的二值函数作为母小波经平移和伸缩而形成的。
它具有最优的时(空)域分辨率,但是Haar小波基是非连续函数,因而Haar小波变换的频域分辨率非常差。
其后,1936年,Littlewood和Paley对傅立叶级数建立了二进制频率分量分组理论(L-P理论);1952年~1962年,Calderon等人将L-P理论推广到高维,建立了奇异积分算子理论;1965年,Calderon发现了著名的再生公式,给出了抛物型空间上H1的原子分解;1974年,Coifman 实现了对一维空间和高维空间的原子分解;1976年,Peetre在用L-P理论对Besov空间进行统一描述的同时,给出了Besov空间的一组基。
70年代末,法国地球物理学家Morlet试图改进依赖于窗体位置和频率分量的加窗傅立叶变换分析方法,采用一种窗函数的收缩与平移构造基函数变换,并成功的应用于油气勘探的非稳定性地震信号分析。
1981年,Stromberg对Haar系进行了改进,证明了小波函数的存在性。
1984年,Morlet在分析地震波数据的局部性质时,发现用傅立叶变换难以达到要求,因此引入小波的概念应用于信号分析中,并用一种无限支集的非正交小波分析地震数据,这是第一次真正意义上提出了小波的概念。
随后,Grossman和Morlet一起提出了确定小波函数伸缩平移系的展开理论。
1985年,法国数学家Meyer提出了连续小波的容许性条件及其重构公式。
1986年,Meyer在证明不可能存在同时在时频域都具有一定正则性(即光滑性)的正交小波基时,意外发现具有一定衰减性的光滑性函数以构造的规范正交基(即Meyer基),从而证明了正交小波系的存在。
1984年~1988年,Meyer、Battle和Lemarie 分别给出了具有快速衰减特性的小波基函数:Meyer小波、Battle-Lemarie样条小波。
1987年,Meyer和Mallat将计算机视觉领域中的多尺度分析思想引入到小波分析中,提出了多分辨率分析的概念,统一了在此前的所有具体正交小波的构造方法,同时给出了将信号和图像分解为不同频率通道的分解和重构快速算法,即Mallat算法。
Mallat算法在小波分析发展中具有里程碑的意义。
1988年,Daubechies创立了支持离散小波的二进制小波理论,得出了二进小波的正则性与多项式表示的条件,并构造了具有有限支集的正交小波基。
1992年,Kovacevic和Vetterli提出了双正交小波的概念。
1992年,Daubechies和Feauveau 等构造出具有对称性、紧支撑、消失矩、正则性等性质的双正交小波。
1992年,Coifman和Wickerhauser提出了小波包(Wavelet Packet,WP)分析。
1992年,Zou等提出了多带小波(M-band Wavelet)理论,将人们对小波变换的研究从“二带”推广到“多带”情况。
基于“二带”小波变换的多分辨率分析中,尺度函数对应一个低通滤波器,而小波函数对应一个高通滤波器。
“二带”小波变换把信号分解成不同的通道,而这些通道的带宽相对于尺度函数的对数是相同的,因此高频通道具有较宽的带宽,而低频通道具有较窄的带宽。
1993年,Goodman 等基于r阶多尺度函数及多分辨率分析建立了多小波(Multi-Wavelet)理论框架。
1994年,Geronimo等提出了多小波变换(Multi-Wavelet Transform,MWT),将单尺度小波变换推广到多尺度小波变换。
1995年,Sweldens提出构造第二代小波的提升方法,利用这种方法可以构造非欧空间中不允许的伸缩运算和平移运算,成为构造第二代小波的有力工具。
4.小波分析的应用小波分析的应用是与小波分析的理论研究紧密地结合在一起的。
现在,它已经在科技信息产业领域取得了令人瞩目的成就。
电子信息技术是六大高新技术中重要的一个领域,它的重要方面是图象和信号处理。
现今,信号处理已经成为当代科学技术工作的重要部分,信号处理的目的就是:准确的分析、诊断、编码压缩和量化、快速传递或存储、精确地重构(或恢复)。
从数学地角度来看,信号与图象处理可以统一看作是信号处理(图象可以看作是二维信号),在小波分析地许多分析的许多应用中,都可以归结为信号处理问题。
现在,对于其性质随时间是稳定不变的信号(平稳随机过程),处理的理想工具仍然是傅立叶分析。
但是在实际应用中的绝大多数信号是非稳定的(非平稳随机过程),而特别适用于非稳定信号的工具就是小波分析。
事实上小波分析的应用领域十分广泛,它包括:数学领域的许多学科;信号分析、图象处理;量子力学、理论物理;军事电子对抗与武器的智能化;计算机分类与识别;音乐与语言的人工合成;医学成像与诊断;地震勘探数据处理;大型机械的故障诊断等方面;例如,在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等。
在信号分析方面的滤波、去噪声、压缩、传递等。
在图象处理方面的图象压缩、分类、识别与诊断,去污等。
在医学成像方面的减少B超、CT、核磁共振成像的时间,提高分辨率等。
(1)小波分析用于信号与图象压缩是小波分析应用的一个重要方面。
它的特点是压缩比高,压缩速度快,压缩后能保持信号与图象的特征不变,且在传递中可以抗干扰。
基于小波分析的压缩方法很多,比较成功的有小波包最好基方法,小波域纹理模型方法,小波变换零树压缩,小波变换向量压缩等。
(2)小波在信号分析中的应用也十分广泛。
它可以用于边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘检测等。
(3)在工程技术等方面的应用。
包括计算机视觉、计算机图形学、曲线设计、湍流、远程宇宙的研究与生物医学方面。
从图像处理的角度看,小波变换存在以下几个优点:(1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述)(2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性(3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口)(4)小波变换实现上有快速算法(Mallat小波分解算法)5. 小波分析的局限性虽然小波变换有着很多的优点,解决了Fourier变换不能解决的许多困难问题,被誉为“数学显微镜”,但是它在一维时所具有的优异特性并不能简单推广到二维或更高维。
对于二维图像信号,常用的二维小波是一维小波的张量积,它只有有限的方向,即水平、垂直、对角,方向性的缺乏使小波变换不能充分利用图像本身的几何正则性,不能最优表示含“线”或者“面”奇异的高维函数。
也就是说,小波是以“点”为单位捕捉图像的特征。
但事实上,高维空间中最为普遍的还是具有“线”或“面”奇异的函数,自然物体光滑边界使得自然图像的主要组成单位并不是“点”,而是“线”和“面”,从而小波分析在处理二维图像时表现出很大的局限性。