小波概念
- 格式:doc
- 大小:31.50 KB
- 文档页数:2
连续小波变换的概念swt,cwt,dwt1。
连续小波的概念。
就是把一个可以称作小波的函数(从负无穷到正无穷积分为零)在某个尺度下与待处理信号卷积。
改变小波函数的尺度,也就改变了滤波器的带通范围,相应每一尺度下的小波系数也就反映了对应通带的信息。
本质上,连续小波也就是一组可控制通带范围的多尺度滤波器。
2。
连续小波是尺度可连续取值的小波,里面的a一般取整数,而不像二进小波a取2的整数幂。
从连续小波到二进小波再到正交离散小波,其实就是a、b都连续,a不连续、b连续,a、b都不连续的过程。
操作他们的快速算法也就是卷积(快速傅里叶),多孔(a trous),MALLAT。
在MATLAB里,也就是CWT,SWT,DWT。
SWT称平稳小波变换、二进小波变换、或者非抽取小波变换。
3。
从冗余性上:CWT>SWT>DWT,前面两个都冗余,后面的离散小波变换不冗余。
4。
从应用上:CWT适合相似性检测、奇异性分析;SWT适合消噪,模极大值分析;DWT适合压缩。
5。
操作。
就是在某个尺度上得到小波的离散值和原信号卷积,再改变尺度重新得到小波的离散值和原信号卷积。
每一个尺度得到一个行向量存储这个尺度下的小波系数,多个尺度就是一个矩阵,这个矩阵就是我们要显示的时间-尺度图。
6。
显示。
“不要认为工程很简单”。
我的一个老师说过的话。
小波系数的显示还是有技巧的。
很多人画出的图形“一片乌黑”就是个例子。
第一步,一般将所有尺度下的小波系数取模;第二步,将每个尺度下的小波系数范围作映射,映射到你指定MAP的范围,比如如果是GRAY,你就映射到0-255;第三步,用IMAGE命令画图;第四步,设置时间和尺度坐标。
MATLAB是个很专业的软件,它把这些做的很好,但也就使我们懒惰和糊涂,我是个好奇心重的人就研究了下。
里面有个巧妙的函数把我说的(1,2)两个步骤封装在了一起,就是WCODEMAT,有兴趣的同学可以看看。
希望大家深入研究小波。
小波分析小波分析是一种在信号处理领域中常用的数学工具。
它可以分析和处理各种类型的信号,包括音频、图像和视频等。
小波分析的概念来源于法国数学家Jean Morlet在20世纪80年代提出的一种数学理论,经过不断的发展和改进,如今已成为信号处理中不可或缺的技术之一。
小波分析的基本思想是将信号分解成不同尺度和频率的小波基函数。
这些小波基函数可以看作是时间和频率的局部性的权衡。
相比于传统的傅里叶分析和傅立叶变换方法,小波分析更加适用于处理非平稳信号,因为它允许信号在时间和频率上的变化。
小波分析的核心概念是小波变换,它将信号分解成不同频率的小波分量,并用小波系数表示。
这些小波系数可以提供关于信号的时间和频率信息。
小波变换可以通过离散小波变换(DWT)或连续小波变换(CWT)来实现。
DWT适用于离散信号,而CWT适用于连续信号。
小波分析有许多优点。
首先,它可以提供更精确的时间和频率信息。
由于小波基函数具有局部性,它们可以更好地捕捉信号的瞬时特性。
其次,小波分析可以有效地处理非平稳信号。
传统的傅里叶变换方法基于信号是稳态的假设,对于非平稳信号的处理效果会相对较差。
而小波分析通过局部分析的方式,可以更好地处理非平稳信号。
此外,小波分析还可以提供多分辨率分析的能力。
通过对小波系数的分层表示,可以在不同的分辨率下对信号进行分析,从而可以同时关注信号的整体结构和细节。
在实际应用中,小波分析有广泛的应用。
在音频和音乐领域,小波分析可以用于音频信号的压缩、去噪和特征提取等方面。
在图像和视频领域,小波分析可以用于图像压缩、边缘检测和运动分析等。
此外,小波分析还可以应用于金融领域的数据分析、生物医学信号的处理和地震信号的分析等。
总的来说,小波分析是一种强大的信号处理技术,它可以提供更精确和全面的信号分析。
小波分析在不同领域有广泛的应用,并且随着技术的发展和创新,其应用范围还会不断扩大。
通过深入研究和应用小波分析,我们可以更好地理解和处理各种类型的信号,为我们的生活和工作带来更大的便利和效益。
第一篇:小波分析发展历史简述1910年,Haar提出了L2(R)中第一个小波规范正交基,即Haar正交基。
1936年,Littlewood和Paley对傅立叶级数建立了二进制频率分量分组理论,(即L-P理论:按二进制频率成分分组,其傅立叶变换的相位并不影响函数的大小和形状),这是多尺度分析思想的最早起源。
1952年~1962年,Calderon等人将L-P理论推广到高维,建立了奇异积分算子理论。
1965年,Calderon发现了著名的再生公式,给出了抛物型空间上H1的原子分解。
1974年,Coifman实现了对一维空间和高维空间的原子分解。
1976年,Peetre在用L-P理论对Besov空间进行统一描述的同时,给出了Besov空间的一组基。
1981年,Stromberg引入了Sobolev空间Hp的正交基,对Haar正交基进行了改造,证明了小波函数的存在性。
1981年,法国地球物理学家Morlet提出了小波的正式概念。
1985年,法国数学家Meyer提出了连续小波的容许性条件及其重构公式。
1984年~1988年,Meyer、Battle和Lemarie分别给出了具有快速衰减特性的小波基函数:Meyer小波、Battle-Lemarie样条小波。
1987年,Mallat将计算机视觉领域中的多尺度分析思想引入到小波分析中,提出了多分辨率分析的概念,统一了在此前的所有具体正交小波的构造,给出了构造正交小波基的一般方法,提出了快速小波变换(即Mallat算法)。
1988年,Daubechies基于多项式方式构造出具有有限支集的光滑正交小波基(即Daubechies基)。
Chui和中国学者王建忠基于样条函数构造出单正交小波函数,并提出了具有最优局部化性能的尺度函数和小波函数的一般性构造方法。
1988年,Daubechies在美国NSF/CBMS 主办的小波专题研讨会上进行了10次演讲,引起了广大数学家、物理学家、工程师以及企业家的重视,将小波理论发展与实际应用推向了一个高潮。
小波变换的基本概念和原理小波变换是一种数学工具,用于分析信号的频谱特性和时域特征。
它在信号处理、图像处理、数据压缩等领域有着广泛的应用。
本文将介绍小波变换的基本概念和原理。
一、什么是小波变换?小波变换是一种将信号分解为不同频率的成分的数学工具。
它类似于傅里叶变换,但不同之处在于小波变换不仅能提供频域信息,还能提供时域信息。
小波变换使用一组称为小波基函数的函数族,通过对信号进行连续或离散的变换,将信号分解为不同尺度和频率的成分。
二、小波基函数小波基函数是小波变换的基础。
它是一个用于描述信号特征的函数,具有局部性和可调节的频率特性。
常用的小波基函数有Morlet小波、Haar小波、Daubechies 小波等。
这些小波基函数具有不同的性质和应用场景,选择适当的小波基函数可以更好地适应信号的特征。
三、小波分解小波分解是将信号分解为不同尺度和频率的过程。
通过对信号进行连续或离散的小波变换,可以得到小波系数和小波尺度。
小波系数表示信号在不同尺度和频率下的能量分布,而小波尺度表示不同尺度下的信号特征。
小波分解可以将信号的局部特征和全局特征分离开来,为信号分析提供更多的信息。
四、小波重构小波重构是将信号从小波域恢复到时域的过程。
通过对小波系数进行逆变换,可以得到原始信号的近似重构。
小波重构可以根据需要选择保留部分小波系数,从而实现信号的压缩和去噪。
五、小波变换的应用小波变换在信号处理、图像处理、数据压缩等领域有着广泛的应用。
在信号处理中,小波变换可以用于信号去噪、特征提取、模式识别等任务。
在图像处理中,小波变换可以用于图像压缩、边缘检测、纹理分析等任务。
在数据压缩中,小波变换可以将信号的冗余信息去除,实现高效的数据压缩和存储。
六、小波变换的优势和局限性小波变换相比于傅里叶变换具有一些优势。
首先,小波变换可以提供更多的时域信息,对于非平稳信号和瞬态信号具有更好的分析能力。
其次,小波变换可以实现信号的局部分析,对于局部特征的提取和分析更为有效。
小波的几个术语及常见的小波基介绍集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-小波的几个术语及常见的小波基介绍本篇是这段时间学习小波变换的一个收尾,了解一下常见的小波函数,混个脸熟,知道一下常见的几个术语,有个印象即可,这里就当是先作一个备忘录,以后若有需要再深入研究。
一、小波基选择标准小波变换不同于傅里叶变换,根据小波母函数的不同,小波变换的结果也不尽相同。
现实中到底选择使用哪一种小波的标准一般有以下几点:1、支撑长度小波函数Ψ(t)、Ψ(ω)、尺度函数φ(t)和φ(ω)的支撑区间,是当时间或频率趋向于无穷大时,Ψ(t)、Ψ(ω)、φ(t)和φ(ω)从一个有限值收敛到0的长度。
支撑长度越长,一般需要耗费更多的计算时间,且产生更多高幅值的小波系数。
大部分应用选择支撑长度为5~9之间的小波,因为支撑长度太长会产生边界问题,支撑长度太短消失矩太低,不利于信号能量的集中。
这里常常见到“紧支撑”的概念,通俗来讲,对于函数f(x),如果自变量x在0附近的取值范围内,f(x)能取到值;而在此之外,f(x)取值为0,那么这个函数f(x)就是紧支撑函数,而这个0附近的取值范围就叫做紧支撑集。
总结为一句话就是“除在一个很小的区域外,函数为零,即函数有速降性”。
2、对称性具有对称性的小波,在图像处理中可以很有效地避免相位畸变,因为该小波对应的滤波器具有线性相位的特点。
3、消失矩在实际中,对基本小波往往不仅要求满足容许条件,对还要施加所谓的消失矩(Vanishing Moments)条件,使尽量多的小波系数为零或者产生尽量少的非零小波系数,这样有利于数据压缩和消除噪声。
消失矩越大,就使更多的小波系数为零。
但在一般情况下,消失矩越高,支撑长度也越长。
所以在支撑长度和消失矩上,我们必须要折衷处理。
小波的消失矩的定义为,若其中,Ψ(t)为基本小波,0<=p<N。
则称小波函数具有N阶消失矩。
现代数字信号处理作业小波分析及其应用电研111梁帅小波分析及其应用1.小波分析的概念和特点1.1小波理论的发展概况20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪数学领域中研究的重要杰出成果之一。
小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。
它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。
而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。
它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。
另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。
小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。
在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。
在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。
然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。
首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。
小波分析原理
小波分析原理是一种基于时频分析的数学工具,可以将信号分解成不同频率的小波成分,并对这些成分进行分析和处理。
小波分析原理的关键是小波函数的选择和尺度变换。
小波函数通常具有局部化的特性,能够在时间和频率上同时进行局部分析。
小波函数的尺度变换可以实现不同频率范围的分析,通过调整尺度参数,可以实现对不同频率小波成分的捕捉和揭示。
小波分析原理中的核心概念是小波变换和小波系数。
小波变换是指将信号与小波函数进行卷积运算,得到一系列的小波系数。
小波系数可以反映信号在不同频率上的能量分布情况,较大的小波系数表示信号在对应频率上具有较高的能量。
通过对小波系数进行进一步的分析和处理,可以获取信号的时频信息,如信号的频率、幅值和相位等。
小波分析原理具有许多优点,如适应非平稳信号分析、精确的时频局部化特性、多尺度分析能力等。
它在信号处理、图像处理、模式识别等领域有广泛的应用。
第3章小波与小波变换(征求意见稿)清华大学计算机科学与技术系智能技术与系统国家重点实验室林福宗,2001-9-25小波是近十几年才发展起来并迅速应用到图像处理和语音分析等众多领域的一种数学工具,是继110多年前的傅立叶(Joseph Fourier)分析之后的一个重大突破,无论是对古老的自然学科还是对新兴的高新技术应用学科都产生了强烈冲击。
小波理论是应用数学的一个新领域。
要深入理解小波理论需要用到比较多的数学知识。
本章企图从工程应用角度出发,用比较直观的方法来介绍小波变换和它的应用,为读者深入研究小波理论和应用提供一些背景材料。
3.1 小波介绍3.1.1 小波简史傅立叶理论指出,一个信号可表示成一系列正弦和余弦函数之和,叫做傅立叶展开式。
用傅立叶表示一个信号时,只有频率分辨率而没有时间分辨率,这就意味我们可以确定信号中包含的所有频率,但不能确定具有这些频率的信号出现在什么时候。
为了继承傅立叶分析的优点,同时又克服它的缺点,人们一直在寻找新的方法。
20世纪初,哈尔(Alfred Haar)对在函数空间中寻找一个与傅立叶类似的基非常感兴趣。
1909年他发现了小波,并被命名为哈尔小波(Haar wavelets),他最早发现和使用了小波。
20世纪70年代,当时在法国石油公司工作的年轻的地球物理学家Jean Morlet提出了小波变换WT(wavelet transform)的概念。
进入20世纪80年代,法国的科学家Y.Meyer和他的同事开始为此开发系统的小波分析方法。
Meyer于1986年创造性地构造出具有一定衰减性的光滑函数,他用缩放(dilations)与平移(translations)均为j2(j≥0的整数)的倍数构造了2L(R)空间的规范正交基,使小波得到真正的发展。
小波变换的主要算法则是由法国的科学家Stephane Mallat在1988年提出[1]。
他在构造正交小波基时提出了多分辨率的概念,从空间上形象地说明了小波的多分辨率的特性,提出了正交小波的构造方法和快速算法,叫做Mallat算法[1]。
小波简介摘要小波是数学函数,它把数据分割成不同的频率成分,然后用与其规模相匹配的解决方案来研究每个频率成分,小波在物理情况下比传统的傅立叶方法有诸多的优点,即在信号包含不连续点和尖峰值的时候。
小波在数学,量子物理,电器工程和地质学方面都有独立的发展。
在过去的十年间这些独立的领域之间的交流导致了许多新的小波应用。
比如图象压缩,湍流,人的视觉,雷达,地震预测等。
本卷把小波介绍给那些数字信号处理领域之外的有兴趣的技术人员,我从傅立叶方法开始对小波的发展史做了描述,比较了小波变换和傅立叶变换,以及其他的特殊小波方面。
以一些有趣的例子作为结束,如图象压缩,音乐音调和去噪数据。
1:波回顾小波分析的基本方法是按照规模来分析,的确,一些小波领域的研究人员感觉通过使用小波你其实是在处理数据时候采用了一种全新的思维模式,或者说观点。
小波是可以满足特定数学要求的函数,被广泛用于数据重现和其他用途。
其实这种方法并不是一种新的方法,自从19世纪早期,当傅立叶发现他可以叠加正弦和余弦函数来重现其他的函数或应用时,这种利用叠加的近似已经存在了。
然而在小波分析的过程当中,我们用于观察数据的规模扮演了特殊的角色,小波分析方法以不同的规模和解决方案来处理数据,如果我们用一个小窗来观察信号,我们可以注意到一些微小的特征,小波分析的结果是我们既可以看到森林又可以看到树木。
这一切使得小波方法有趣而且有用。
数十年来,科学家希望找到比正弦和余弦(包括傅立叶分析法)更好更合适的函数来近似信号(1),经过这些科学家的定义,这些函数都是非本地的,是无限延拓的,他们因此也做了许多尖峰近似的工作,但随着小波分析的出现,我们可以用一些包含有限应用的近似函数,小波分析法特别适合于有尖峰成分的近似数据。
小波分析过程采用了一种小波原形函数,即所谓的分析小波或叫做母小波。
状态分析是和合同的,高频率,的原型小波一起起作用的,但是频率分析是与不合同的低频率的同小波一起起作用的,因为原始信号或函数可以以小波拓展的形式得到重现(即使用小波函数的线形组合的系数),数据操作可以只用相应的小波系数来完成。
第3章小波与小波变换(征求意见稿)清华大学计算机科学与技术系智能技术与系统国家重点实验室林福宗,2001-9-25小波是近十几年才发展起来并迅速应用到图像处理和语音分析等众多领域的一种数学工具,是继110多年前的傅立叶(Joseph Fourier)分析之后的一个重大突破,无论是对古老的自然学科还是对新兴的高新技术应用学科都产生了强烈冲击。
小波理论是应用数学的一个新领域。
要深入理解小波理论需要用到比较多的数学知识。
本章企图从工程应用角度出发,用比较直观的方法来介绍小波变换和它的应用,为读者深入研究小波理论和应用提供一些背景材料。
3.1 小波介绍3.1.1 小波简史傅立叶理论指出,一个信号可表示成一系列正弦和余弦函数之和,叫做傅立叶展开式。
用傅立叶表示一个信号时,只有频率分辨率而没有时间分辨率,这就意味我们可以确定信号中包含的所有频率,但不能确定具有这些频率的信号出现在什么时候。
为了继承傅立叶分析的优点,同时又克服它的缺点,人们一直在寻找新的方法。
20世纪初,哈尔(Alfred Haar)对在函数空间中寻找一个与傅立叶类似的基非常感兴趣。
1909年他发现了小波,并被命名为哈尔小波(Haar wavelets),他最早发现和使用了小波。
20世纪70年代,当时在法国石油公司工作的年轻的地球物理学家Jean Morlet提出了小波变换WT(wavelet transform)的概念。
进入20世纪80年代,法国的科学家Y.Meyer和他的同事开始为此开发系统的小波分析方法。
Meyer于1986年创造性地构造出具有一定衰减性的光滑函数,他用缩放(dilations)与平移(translations)均为j2(j≥0的整数)的倍数构造了2L(R)空间的规范正交基,使小波得到真正的发展。
小波变换的主要算法则是由法国的科学家Stephane Mallat在1988年提出[1]。
他在构造正交小波基时提出了多分辨率的概念,从空间上形象地说明了小波的多分辨率的特性,提出了正交小波的构造方法和快速算法,叫做Mallat算法[1]。
对小波的认识和理解小波变换是在Fourier变换的基础上延伸出来的,传统的信号理论分析是建立在Fourier分析的基础上,但是Fourier分析具有一定的局限性,它只能分析全局的信号变化,所以在以后的应用中人们对其进行了改进,来完善其缺陷性。
小波分析具备了局部化分析能力和分析信号中的非平整信号能力,小波变换和Fourier变换相比,是一个时间和频域的局部变换,因而能有效地提取信息,解决了Fourier 变换不能解决的难题。
小波就是指小的波形,小是指它具有衰减性,而波是指它的波动性,其振幅正负相间的振动形式。
信号分析的目的主要目的是寻找一种简单有效的信号变换方法,以便突出信号中的重要特性,简化运算的复杂程度。
Fourier变换就是一种刻画函数空间,求解微分方程,进行数值计算的主要方法和有效的数学工具,从物理上来说,一个周期振动信号可看成是具有简单频率的简谐振动的叠加。
Fourier变换的特点是域变换,它把时域和频域联系起来,把时域内难以显现的特征在频域中十分清楚地显现出来。
在实际的应用中,时变信号是常见的,在这些时变信号中,我们希望知道在突变时刻的频率成分,如果利用Fourier变换处理这些时变信号,那么突变时刻的信号就会被Fourier变换平滑掉了,时域和频谱间的整体刻画,不能反映各自在局部区域上的特征,因此,不能用于局部分析。
Fourier分析主要有两方面的内容,即Fourier变换和Fourier级数,同样的,小波分析也主要有两方面的内容,即小波变换和小波级数。
Fourier 分析就是将一个周期内平方可积函数空间中任一函数分解成不同函数的叠加。
利用Fourier 变换,可以将信号从时域变换到频域,并分解成不同尺度上连续重复的成分,据此完成从不同空间对同一信号进行分解分析,计算结果通过递变换返回原空间。
但是,对于突变的非平整信号的表达和局部瞬时的分析,Fourier 变换并不适用。
小波变换的产生就弥补了Fourier 变换在这方面的不足。
- 252 -小波分析原理1.1 小波变换及小波函数的多样性小波是函数空间2()L R 中满足下述条件的一个函数或者信号()x ψ:2ˆ().R C d ψψωωω+=<∞⎰式中,*{0}R R =-表示非零实数全体,ˆ()ψω是()x ψ的傅里叶变换,()x ψ成为小波母函数。
对于实数对(,)a b ,参数a 为非零实数,函数(,)()x b a b x a ψ-⎛⎫=⎪⎝⎭称为由小波母函数()x ψ生成的依赖于参数对(,)a b 的连续小波函数,简称小波。
其中:a 称为伸缩因子;b 称为平移因子。
对信号()f x 的连续小波变换则定义为,(,)()(),()f a b Rx b W a b f x dx f x x a ψψ-⎛⎫==〈〉 ⎪⎝⎭其逆变换(回复信号或重构信号)为*1()(,)fR R x b f x W a b dadb C a ψψ⨯-⎛⎫=⎪⎝⎭⎰⎰ 信号()f x 的离散小波变换定义为2(2,2)2()(2)j j j j f W k f x x k dx ψ+∞---∞=-⎰其逆变换(恢复信号或重构信号)为(2,2)()(2,2)()j j j j fk j k f t C Wk x ψ+∞+∞=-∞=-∞=∑∑其中,C 是一个与信号无关的常数。
显然小波函数具有多样性。
在MA TLAB 小波工具箱中提供了多种小波幻术,包括Harr 小波,Daubecheies (dbN )小波系,Symlets (symN )小波系,ReverseBior (rbio )小波系,Meyer (meyer )小波,Dmeyer (dmey )小波,Morlet(morl)小波,Complex Gaussian(cgau)小波系,Complex morlet(cmor)小波系,Lemarie (lem )小波系等。
实际应用中应根据支撑长度、对称性、正则性等标准选择合适的小波函数。
- 253 -1.2 小波的多尺度分解与重构1988年Mallat 在构造正交小波基时提出多尺度的概念,给出了离散正交二进小波变换的金字塔算法,其小波分析树形结构如图1所示,即任何函数2()()f x L R ∈都可以根据分辨率为2N-的()f x 的低频部分(近似部分)和分辨率为2(1)j j N -≤≤下()f x 的高频部分(细节部分)完全重构。
小波分析
小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。
所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。
与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。
有人把小波变换称为“数学显微镜”。
目录
产生历史
分析方法
发展现状
应用领域
产生历史
小波变换的概念是由法国从事石油信号处理的工程师J.Morlet在1974年首先提出的,通过物理的直观和信号处理的实际需要经验的建立了反演公式,当时未能得到数学家的认可。
正如1807年法国的热学工程师J.B.J.Fourier提出任一函数都能展开成三角函数的无穷级数的创新概念未能得到著名数学家
grange,place以及A.M.Legendre的认可一样。
幸运的是,早在七十年代,A.Calderon表示定理的发现、Hardy空间的原子分解和无条件基的深入研究为小波变换的诞生做了理论上的准备,而且J.O.Stromberg还构造了历史上非常类似于现在的小波基;1986年著名数学家Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat合作建立了构造小波基的同意方法枣多尺度分析之后,小波分析才开始蓬勃发展起来,其中比利时女数学家I.Daubechies撰写的《小波十讲(Ten Lectures on Wavelets)》对小波的普及起了重要的推动作用。
它与Fourier变换、窗口Fourier变换(Gabor变换)相比,这是一个时间和频率的局域变换,因而能有效的从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier变换不能解决的许多困难问题,从而小波变化被誉为“数学显微镜”,它是调和分析发展史上里程碑式的进展。
分析方法
小波分析的应用是与小波分析的理论研究紧密地结合在一起地。
现在,它已经在科技信息产业领域取得了令人瞩目的成就。
电子信息技术是六大高新技术中重要的一个领域,它的重要方面是图像和信号处理。
现今,信号处理已经成为当代科学技术工作的重要部分,信号处理的目的就是:准确的分析、诊断、编码压缩和量化、快速传递或存储、精确地重构(或恢复)。
从数学地角度来看,信
号与图像处理可以统一看作是信号处理(图像可以看作是二维信号),在小波分析地许多分析的许多应用中,都可以归结为信号处理问题。
现在,对于其性质随时间是稳定不变的信号,处理的理想工具仍然是傅立叶分析。
但是在实际应用中的绝大多数信号是非稳定的,而特别适用于非稳定信号的工具就是小波分析。
发展现状
小波分析是当前数学中一个迅速发展的新领域,它同时具有理论深刻和应用十分广泛的双重意义。
小波分析是当前应用数学和工程学科中一个迅速发展的新领域,经过近10年的探索研究,重要的数学形式化体系已经建立,理论基础更加扎实。
与Fourier 变换相比,小波变换是空间(时间)和频率的局部变换,因而能有效地从信号中提取信息。
通过伸缩和平移等运算功能可对函数或信号进行多尺度的细化分析,解决了Fourier变换不能解决的许多困难问题。
小波变换联系了应用数学、物理学、计算机科学、信号与信息处理、图像处理、地震勘探等多个学科。
数学家认为,小波分析是一个新的数学分支,它是泛函分析、Fourier分析、样调分析、数值分析的完美结晶;信号和信息处理专家认为,小波分析是时间—尺度分析和多分辨分析的一种新技术,它在信号分析、语音合成、图像识别、计算机视觉、数据压缩、地震勘探、大气与海洋波分析等方面的研究都取得了有科学意义和应用价值的成果。
应用领域
事实上小波分析的应用领域十分广泛,它包括:数学领域的许多学科;信号分析、图像处理;量子力学、理论物理;军事电子对抗与武器的智能化;计算机分类与识别;音乐与语言的人工合成;医学成像与诊断;地震勘探数据处理;大型机械的故障诊断等方面;例如,在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等。
在信号分析方面的滤波、去噪声、压缩、传递等。
在图像处理方面的图像压缩、分类、识别与诊断,去污等。
在医学成像方面的减少B超、CT、核磁共振成像的时间,提高分辨率等。
(1)小波分析用于信号与图像压缩是小波分析应用的一个重要方面。
它的特点是压缩比高,压缩速度快,压缩后能保持信号与图像的特征不变,且在传递中可以抗干扰。
基于小波分析的压缩方法很多,比较成功的有小波包最好基方法,小波域纹理模型方法,小波变换零树压缩,小波变换向量压缩等。
(2)小波在信号分析中的应用也十分广泛。
它可以用于边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘检测等。
(3)在工程技术等方面的应用。
包括计算机视觉、计算机图形学、曲线设计、湍流、远程宇宙的研究与生物医学方面。