高一期末数学复习题
- 格式:doc
- 大小:255.50 KB
- 文档页数:3
高一数学期末试卷带答案考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1. 已知则p 是q 成立的( )......A .充分不必要条件B .必要不充分条件 ......C .充要条件D .既不充分也不必要条件 2.y=的单调减区间为( )C .D .3.设是等差数列的前n 项和,若S 7=35,则a 4=()A .8B .7C .6D .54.等差数列{}中,=-5,它的前11项的平均值是5,若从中抽取1项,余下10项的平均值是4,则抽取的是( ) A . B . C . D .5.已知函数,则取最小值时对应的的值为( )A .B .C .0D .16.在中,若则角C 的度数是( ).A .120°B .60°C .60或120°D .45° 7.设函数,若>1,则a 的取值范围是( )A .(-1,1)B .C .D .8.函数是 ( )A .上是增函数B .上是减函数C .上是减函数D .上是减函数9.已知函数在区间上的最小值是-2,则的最小值等于( ) A . B . C .2 D .310.已知的平面直观图A 1B 1C 1是边长为2的正三角形,则原的面积是( ) A .B .C .D .11.如图,已知三棱锥则二面角的大小为( )A .B .C .D .12.如图,该程序框图所输出的结果是( )A .32B .62C .63D .6413.若圆x 2 +y 2 −2x −4y =0的圆心到直线x −y +a =0的距离为,则a 的值为(__)A.−2或2 B . 或 C.2或0 D .−2或0 14.下列说法正确的有( )(1)和都是等差数列,则为等差数列(2)是等差数列,则为等差数列(3)若为等比数列,其中,则为等差数列;若为等差数列,则为等比数列.(4)若为等比数列,则,都为等比数列.A.1个 B.2个 C.3个 D.4个15.中,已知,则的形状为()A.正三角形B.等腰三角形C.直角三角形D.等腰直角三角形16.已知:定义在R上的奇函数满足,则的值是()A. B. C. D.17.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()A. B. C. D.18.(2014•咸阳二模)若正实数a,b满足a+b=1,则()A.有最大值4B.ab有最小值C.有最大值D.a2+b2有最小值19.已知函数,若x1∈(1,2),x2∈(2,+∞),则()A.f(x1)<0,f(x2)<0B.f(x1)<0,f(x2)>0C.f(x1)>0,f(x2)<0D.f(x1)>0,f(x2)>020.函数的定义域为,的解集为,的解集为,则下列结论正确的是()A.B.C.D.二、填空题21.不等式的解集为R,则实数的取值范围是 .22.计算23.角的终边经过点,则=____________________.24.(2010•北京)如图,⊙O的弦ED ,CB 的延长线交于点A.若BD⊥AE ,AB=4,BC=2,AD=3,则DE= ;CE= .25.球O的一个小圆O/的面积为25,O到此小圆截面的距离是12,则这个球的表面积为。
高一数学期末试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.若角的终边上有一点,则的值是( ). A .B .C .D .2.设向量,,,,,若,则的最小值是( ) A .B .C .D .3.已知集合,则=A .B .C .D .4.已知lg2≈0.3010,且a = 2×8×5的位数是M ,则M 为( ). A .20 B .19 C .21 D .225.在中,已知向量,则的面积等于( ) A . B .C .D .6.已知,若不等式对任意恒成立,则实数的取值范围是( )A .B .C .D .7.若函数在区间上是减函数,则实数的取值范围是( ) A .B .C .D .8.某校现有高一学生210人,高二学生270人,高三学生300人,学校学生会用分层抽样的方法从这三个年级的学生中随机抽取数名学生进行问卷调查.如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为( ) A .10 B .9C.8D.79.在△ABC中,三边长AB=7,BC=5,AC=6,则的值为()A.19 B.-14 C.-18 D.-1910.已知函数的一部分图象如图所示,如果,则()A. B. C. D.11.已知函数设表示中的较大值,表示中的较小值,记的最小值为的最大值为,则( )A. B. C.16 D.-1612.若,则下列不等式成立的是()A. B. C. D.13.已知下列说法正确的是(A.B.C.D.14.设f:x→y=2x是A→B的映射,已知集合B={0,1,2,3,4},则A满足()A.A={1,2,4,8,16}B.A={0,1,2,log23}C.A{0,1,2,log23}D.不存在满足条件的集合15.已知函数,且,则等于()A. B. C. D.16.已知数列满足()A. B. C. D.17.已知满足,则直线必过定点( ) A .B .C .D .18.满足M {a 1, a 2, a 3, a 4},且M ∩{a 1 ,a 2, a 3}={ a 1,a 2}的集合M 的个数是( )A .1B .2C .3D .419.一名射击运动员射击10次,命中环数如下,则该运动员命中环数的标准差为( )10 10 10 9 10 8 8 10 10 8 A .B .C .D .20.下列函数中,既是偶函数又在单调递增的函数是( ) A .B .C .D .二、填空题 21.已知都是定义域内的非奇非偶函数,而是偶函数,写出满足条件的一组函数,______________;________________; 22.求满足>的x 的取值集合是 .23.已知幂函数满足,则24.25.函数的定义域是 .26.二面角α﹣l ﹣β的平面角为120°,在面α内,AB ⊥l 于B ,AB=2在平面β内,CD ⊥l 于D ,CD=3,BD=1,M 是棱l 上的一个动点,则AM+CM 的最小值为 .27.根据任意角的三角函数定义,将正弦、余弦、正切函数在弧度制下的值在各象限的符号(用“+”或“-”)填入括号(填错任何一个将不给分)。
高一数学期末试卷带答案解析考试范围:xxx;考试时间:xxx分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知向量()A.(8,1) B. C. D.2.若函数在给定区间上,存在正数,使得对于任意,有,且,则称为上的级类增函数,则以下命题正确的是()A.函数是(1,+∞)上的1级类增函数B.函数是(1,+∞)上的1级类增函数C.若函数为[1,+∞)上的级类增函数,则实数的取值范围为D.若函数为上的级类增函数,则实数的最小值为23.下列说法中正确的是()A.事件A,B中至少有一个发生的概率一定比A,B中恰有一个发生的概率大B.事件A,B同时发生的概率一定比事件A,B恰有一个发生的概率小C.互斥事件一定是对立事件,对立事件不一定是互斥事件D.互斥事件不一定是对立事件,对立事件一定是互斥事件4.已知函数在区间上有零点,则实数的取值范围为( )A. B. C. D.5.函数是()A.周期为的奇函数B.周期为的偶函数C.周期为的奇函数D.周期为的偶函数6.两个等差数列和,其前项和分别为,且则等于()A. B. C. D.7.在中,,,其的面积等于,则等于()A. B.1 C. D.8.已知角的终边过点且,则的值为()A.- B. C.- D.9.直线与圆的位置关系是()A.相离 B.相交 C.相切 D.不确定10.对于,,下列命题中,正确命题的个数是()①若,则;②若,则;③若,则;④若,则A. B. C. D.11.函数的定义域是:( )A. B. C.∪ D.∪12.函数的零点所在的区间是()A. B. C. D.13.、函数的图象为C:①图象C关于直线对称;②函数在区间内是增函数;③由y=3sin2x的图象向右平移个单位长度可以得到图象C;以上三个论断中,正确论断的个数是()A.0 B.1个 C.2个 D.3个14.(2009•安徽)i是虚数单位,i(1+i)等于()A.1+i B.﹣1﹣i C.1﹣i D.﹣1+i15.下列说法中,正确的是()A.任何一个集合必有两个子集B.若C.任何集合必有一个真子集D.若为全集,16.若函数的零点所在的区间为()A. B. C. D.17..一等腰三角形的周长是20,底边长是关于腰长的函数,则它的解析式为A.B.C.D.18.给定两个长度均为的平面向量和,它们的夹角为,点在以为圆心的圆弧上运动,如图所示,若+,其中,,则的最大值是()A. B. C. D.19.已知等比数列的公比为正数,且·=2,=1,则= ()A. B. C. D.220.若,,则的元素个数为()A.0 B.1 C.2 D.3二、填空题21.一个三位数字的密码键,每位上的数字都在到这十个数字中任选,某人忘记后一个号码,那么此人开锁时,在对好前两位数码后,随意拨动最后一个数字恰好能开锁的概率为____________22.已知等差数列的前项和为,若,且,,三点共线(该直线不过点),则=_____________.23.在锐角△ABC中,角A、B所对的边长分别为、,若2asinB=b,则角A等于________.24.将函数f(x)=sin(wx+j)(w>0)的图象向左平移个单位,若所得的图象与原图象重合,则w的最小值是_________.25.若|a+b|=|a-b|,则a与b的夹角为_______________.26. .27.设A、B两点在河的两岸,一测量者在A的同侧所在的河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,算出A、B两点的距离为 m.28.已知一个容量为80的样本,把它分为6组,第三组到第六组的频数分别为10,12,14,20,第一组的频率为0.2,那么第一组的频数是________;第二组的频率是_______。
高一数学期末考试试题及答案doc一、选择题(每题5分,共50分)1. 下列哪个选项是二次函数的图像?A. 直线B. 抛物线C. 圆D. 椭圆答案:B2. 函数f(x)=2x^2-4x+3的零点是:A. x=1B. x=2C. x=3D. x=-1答案:A3. 集合{1,2,3}与集合{2,3,4}的交集是:A. {1,2,3}B. {2,3}C. {3,4}D. {1,2,3,4}答案:B4. 如果一个角是直角三角形的一个锐角的两倍,那么这个角是:A. 30°B. 45°C. 60°D. 90°答案:C5. 函数y=x^3-3x^2+4x-2在x=1处的导数值是:A. 0B. 1C. 2D. -1答案:B6. 以下哪个是等差数列的通项公式?A. a_n = a_1 + (n-1)dB. a_n = a_1 + n(n-1)/2C. a_n = a_1 + n^2D. a_n = a_1 + n答案:A7. 圆的面积公式是:A. A = πrB. A = πr^2C. A = 2πrD. A = 4πr^2答案:B8. 以下哪个选项是复数的模?A. |z| = √(a^2 + b^2)B. |z| = a + biC. |z| = a - biD. |z| = a * bi答案:A9. 以下哪个选项是向量的点积?A. a·b = |a||b|cosθB. a·b = |a||b|sinθC. a·b = |a||b|tanθD. a·b = |a||b|secθ答案:A10. 以下哪个选项是三角恒等式?A. sin^2x + cos^2x = 1B. sin^2x - cos^2x = 1C. sin^2x - cos^2x = 0D. sin^2x + cos^2x = 0答案:A二、填空题(每题5分,共30分)1. 如果一个等差数列的前三项分别是2,5,8,那么它的公差是______。
一、单选题1.已知集合,,则集合A ,B 的关系是( ) {}N A x y x =∈{}4,3,2,1B =A . B . C .D .B A ⊆A B =B A ∈A B ⊆【答案】A【分析】计算得到,据此得到集合的关系.{}0,1,2,3,4A =【详解】,,故错误; {}{N}0,1,2,3,4A xy x ==∈=∣{}4,3,2,1B =A B =集合中元素都是集合元素,故正确;B A B A ⊆是两个集合,不能用“”表示它们之间的关系,故错误;A B ,∈B A ∈集合中元素存在不属于集合的元素,故错误. A B A B ⊆故选:A2.函数的定义域为( )()()2ln 2f x x x =-A . B . (,0)(2,)-∞+∞ (,0][2,)-∞⋃+∞C . D .()0,2[]0,2【答案】C【分析】根据对数型函数的定义域运算求解. 【详解】令,解得,220x x ->02x <<故函数的定义域为.()()2ln 2f x x x =-()0,2故选:C.3.命题“,”的否定形式是( ) 2x ∀>240x -≠A ., B ., 2x ∃>240x -≠2x ∀≤240x -=C ., D .,2x ∃>240x -=2x ∃≤240x -=【答案】C【分析】根据全称命题的否定形式可直接得到结果.【详解】由全称命题的否定可知:原命题的否定为,. 2x ∃>240x -=故选:C.4.已知,,,则( ) 0.13a =30.3b =0.2log 3c =A . B .C .D .a b c <<c b a <<b a c <<c<a<b 【答案】B【分析】根据指数函数和对数函数单调性,结合临界值即可判断出结果.0,1【详解】,.3000.10.20.2log 3log 100.30.3133<=<<==< c b a ∴<<故选:B.5.某市四区夜市地摊的摊位数和食品摊位比例分别如图、图所示,为提升夜市消费品质,现用12分层抽样的方法抽取的摊位进行调查分析,则抽取的样本容量与区被抽取的食品摊位数分别6%A 为( )A .,B .,C .,D .,21024210272522425227【答案】D【分析】根据分层抽样原则,结合统计图表直接计算即可.【详解】根据分层抽样原则知:抽取的样本容量为;()1000800100014006%252+++⨯=区抽取的食品摊位数为.A 10006%0.4527⨯⨯=故选:D.6.小刚参与一种答题游戏,需要解答A ,B ,C 三道题.已知他答对这三道题的概率分别为a ,a ,,且各题答对与否互不影响,若他恰好能答对两道题的概率为,则他三道题都答错的概率为1214( ) A . B .C .D .12131415【答案】C【分析】记小刚解答A ,B ,C 三道题正确分别为事件D ,E ,F ,并利用D ,E ,F 构造相应的事件,根据概率加法公式与乘法公式求解相应事件的概率.【详解】记小刚解答A ,B ,C 三道题正确分别为事件D ,E ,F ,且D ,E ,F 相互独立, 且. ()()()1,2P D P E a P F ===恰好能答对两道题为事件,且两两互斥, DEF DEF DEF ++DEF DEF DEF ,,所以()()()()P DEF DEF DEF P DEF P DEF P DEF ++=++()()()()()()()()()P D P E P F P D P E P F P D P E P F =++,()()11111112224a a a a a a ⎛⎫=⨯⨯-+⨯-⨯+-⨯⨯= ⎪⎝⎭整理得,他三道题都答错为事件,()2112a -=DEF 故.()()()()()()22111111224P DEF P D P E P F a a ⎛⎫==--=-= ⎪⎝⎭故选:C.7.定义在上的奇函数满足:对任意的,,有,且R ()f x ()12,0,x x ∈+∞12x x <()()21f x f x >,则不等式的解集是( ) ()10f =()0f x >A . B . ()1,1-()()1,01,-⋃+∞C . D .()(),10,1-∞-⋃()(),11,-∞-⋃+∞【答案】B【分析】根据单调性定义和奇函数性质可确定的单调性,结合可得不等式()f x ()()110f f -=-=的解集.【详解】对任意的,,有, ()12,0,x x ∈+∞12x x <()()21f x f x >在上单调递增,又定义域为,, ()f x \()0,∞+()f x R ()10f =在上单调递增,且,;()f x \(),0∞-()()110f f -=-=()00f =则当或时,, 10x -<<1x >()0f x >即不等式的解集为. ()0f x >()()1,01,-⋃+∞故选:B.8.已知函数,若函数有七个不同的零点,()11,02ln ,0x x f x x x +⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩()()()()24433g x f x t f x t =-+⎤⎦+⎡⎣则实数t 的取值范围是( ) A .B .C .D .1,12⎡⎤⎢⎥⎣⎦10,2⎛⎫ ⎪⎝⎭1,2⎡⎫+∞⎪⎢⎣⎭{}10,12⎛⎫⋃ ⎪⎝⎭【答案】D【分析】先以为整体分析可得:和共有7个不同的根,再结合的图象()f x ()34f x =()f x t =()f x 分析求解.【详解】令,解得或, ()()()()244330g x f x t f x t =-+⎦+⎤⎣=⎡()34f x =()f x t =作出函数的图象,如图所示,()y f x =与有4个交点,即方程有4个不相等的实根,()y f x =34y =()34f x =由题意可得:方程有3个不相等的实根,即与有3个交点, ()f x t =()y f x =y t =故实数t 的取值范围是.{}10,12⎛⎫⋃ ⎪⎝⎭故选:D.【点睛】方法点睛:应用函数思想确定方程解的个数的两种方法(1)转化为两熟悉的函数图象的交点个数问题、数形结合、构建不等式(方程)求解. (2)分离参数、转化为求函数的值域问题求解.二、多选题9.下列说法正确的是( ) A .的最小值为 B .无最小值 ()4f x x x=+4()4f x x x=+C .的最大值为D .无最大值()()3f x x x =-94()()3f x x x =-【答案】BC【分析】结合基本不等式和二次函数性质依次判断各个选项即可.【详解】对于AB ,当时,(当且仅当时取等号); 0x >44x x +≥=2x =当时,(当且仅当时取等号), 0x <()444x x x x ⎡⎤⎛⎫+=--+-≤-=- ⎪⎢⎥⎝⎭⎣⎦2x =-的值域为,无最小值,A 错误,B 正确; ()4f x x x∴=+(][),44,-∞-⋃+∞对于CD ,,()()22393324f x x x x x x ⎛⎫=-=-+=--+ ⎪⎝⎭当时,取得最大值,最大值为,C 正确,D 错误. ∴32x =()f x 94故选:BC.10.下列函数中,既是偶函数,又在上单调递减的是( ) (0,)+∞A . B .C .D .y x =||e x y =-12log y x =13y x -=【答案】BC【分析】A 选项不满足单调性;D 不满足奇偶性,B 、C 选项均为偶函数且在上单调递减正(0,)+∞确.【详解】在上单调递增,A 选项错误;y x =()0,∞+,故为偶函数,当时为单调递减函数,B()e ,)()e (xxf x f x f x =--==-||e x y =-()0,x ∈+∞e x y =-选项正确;,故为偶函数,当时为单调递1122()()log ,log ()g g g x x x x x =-==12log y x =()0,x ∈+∞12log y x =减函数,C 选项正确;是奇函数,D 选项错误. 13y x -=故选:BC11.如图,已知正方体顶点处有一质点Q ,点Q 每次会随机地沿一条棱向相邻的1111ABCD A B C D -某个顶点移动,且向每个顶点移动的概率相同,从一个顶点沿一条棱移动到相邻顶点称为移动一次,若质点Q 的初始位置位于点A 处,记点Q 移动n 次后仍在底面ABCD 上的概率为,则下列n P 说法正确的是( )A .B . 123P =259P =C .D .点Q 移动4次后恰好位于点的概率为012133n n P P +=+1C 【答案】ABD【分析】根据题意找出在下或上底面时,随机移动一次仍在原底面及另一底面的概率即可逐步分Q 析计算确定各选项的正误.【详解】依题意,每一个顶点由3个相邻的点,其中两个在同一底面.所以当点在下底面时,随机移动一次仍在下底面的概率为:, Q 23在上底面时,随机移动一次回到下底面的概率为:,13所以,故A 选项正确; 123P =对于B :,故B 选项正确;22211533339P =⨯+⨯=对于C :,故C 选项错误; ()1211113333n n n n P P P P +=+-=+对于D :点由点移动到点处至少需要3次, Q A 1C 任意折返都需要2次移动,所以移动4次后不可能 到达点,所以点Q 移动4次后恰好位于点的概率为0. 1C 1C 故D 选项正确; 故选:ABD.12.已知实数a ,b 满足,,则( ) 22a a +=22log 1b b +=A . B . C . D .22a b +=102a <<122a b->5384b <<【答案】ACD【分析】构建,根据单调性结合零点存在性定理可得,再利用指对数互()22xf x x =+-13,24a ⎛⎫∈ ⎪⎝⎭化结合不等式性质、函数单调性分析判断. 【详解】对B :∵,则,22a a +=220a a +-=构建,则在上单调递增,且,()22xf x x =+-()f x R 3413350,202244f f ⎛⎫⎛⎫=<=-> ⎪ ⎪⎝⎭⎝⎭故在上有且仅有一个零点,B 错误;()f x R 13,24a ⎛⎫∈ ⎪⎝⎭对A :∵,则, 22log 1b b +=222log 20b b +-=令,则,即,22log t b =22t b =220t t +-=∴,即,故,A 正确; 2lo 2g a t b ==22a b =22a b +=对D :∵,则,D 正确; 22a b +=253,284a b -⎛⎫=∈ ⎪⎝⎭对C :∵,且在上单调递增, 23211224a a ab a ---=-=>->-2x y =R ∴,C 正确. 11222a b-->=故选:ACD.【点睛】方法点睛:判断函数零点个数的方法:(1)直接求零点:令f (x )=0,则方程解的个数即为零点的个数.(2)零点存在性定理:利用该定理不仅要求函数在[a ,b ]上是连续的曲线,且f (a )·f (b )<0,还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)数形结合:对于给定的函数不能直接求解或画出图形,常会通过分解转化为两个函数图象,然后数形结合,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.三、填空题13.已知一元二次方程的两根分别为和,则______. 22340x x +-=1x 2x 1211x x +=【答案】## 340.75【分析】利用韦达定理可直接求得结果.【详解】由韦达定理知:,,. 1232x x +=-122x x =-1212121134x x x x x x +∴+==故答案为:. 3414.已知函数(且)的图象恒过定点M ,则点M 的坐标为______.1log (2)3a y x =-+0a >1a ≠【答案】13,3⎛⎫⎪⎝⎭【分析】函数存在参数,当时所求出的横纵坐标即是定点坐标. log (2)0a x -=【详解】令,解得,此时,故定点坐标为. log (2)0a x -=3x =13y =13,3M ⎛⎫ ⎪⎝⎭故答案为:13,3⎛⎫⎪⎝⎭15.将一组正数,,,…,的平均数和方差分别记为与,若,1x 2x 3x 10x x 2s 10214500i i x ==∑250s =,则______. x =【答案】20【分析】列出方差公式,代入数据,即可求解.【详解】由题意得,()10221110i i s x x ==-∑, 102211105010i i x x =⎛⎫=-= ⎪⎝⎭∑代入数据得,, ()214500105010x -=解得.20x =故答案为:2016.已知两条直线:和:,直线,分别与函数的图象相交1l 1y m =+2l ()221y m m =+>-1l 2l 2x y =于点A ,B ,点A ,B 在x 轴上的投影分别为C ,D ,当m 变化时,的最小值为______. CD【答案】()2log 2-【分析】分别求出直线,与函数的图象交点的横坐标,再根据对数运算与基本不等式求1l 2l 2x y =最值.【详解】由与函数相交得,解得,所以,1y m =+2x y =21x m =+()2log 1x m =+()()2log 1,0C m +同理可得,()()22log 2,0D m +所以,()()222222log 2log 1log 1m CD m m m +=+-+=+令,()2231211m g m m m m +==++-++因为, 所以,当且仅当时取最小值. 1m >-()31221g m m m =++-≥-+1m =所以 ()()22min log 2log 2CD ==所以的最小值为. CD ()2log 2-故答案为:()2log 2【点睛】利用基本不等式求最值时要注意成立的条件,一正二定三相等,遇到非正可通过提取负号转化为正的;没有定值时可对式子变形得到积定或和定再用基本不等式;取不到等号时可借助于函数的单调性求最值.四、解答题17.设全集,已知集合,. U =R {}11A x a x a =-+≤≤+401x B xx -⎧⎫=>⎨⎬-⎩⎭(1)若,求;3a =A B ⋃(2)若,求实数a 的取值范围. A B ⋂=∅【答案】(1)或;{1x x <}2x ≥(2). 23a ≤≤【分析】(1)由已知解出集合A ,B ,根据并集的运算即可得出答案; (2)若,根据集合间关系列出不等式,即可求出实数a 的取值范围. A B ⋂=∅【详解】(1)当,, 3a ={}24A x x =≤≤由得,所以或, 401x x ->-(4)(1)0x x -->{1B x x =<}4x >或;{1A B x x ∴⋃=<}2x ≥(2)已知, {}11A x a x a =-+≤≤+由(1)知或, {1B x x =<}4x >因为,且, A B ⋂=∅B ≠∅∴且, 11a -+≥14a +≤解得,23a ≤≤所以实数a 的取值范围为.23a ≤≤18.已知函数.()22f x x ax a =-+(1)若的解集为,求实数的取值范围; ()0f x ≥R a (2)当时,解关于的不等式. 3a ≠-x ()()43f x a a x >-+【答案】(1) []0,1(2)答案见解析【分析】(1)由一元二次不等式在上恒成立可得,由此可解得结果;R 0∆≤(2)将所求不等式化为,分别在和的情况下解不等式即可. ()()30x x a +->3a >-3a <-【详解】(1)由题意知:在上恒成立,,解得:, 220x ax a -+≥R 2440a a ∴∆=-≤01a ≤≤即实数的取值范围为.a []0,1(2)由得:;()()43f x a a x >-+()()()23330x a x a x x a +--=+->当时,的解为或; 3a >-()()30x x a +->3x <-x a >当时,的解为或;3a <-()()30x x a +->x a <3x >-综上所述:当时,不等式的解集为;当时,不等式的解集为3a >-()(),3,a -∞-+∞ 3a <-.()(),3,a -∞-+∞ 19.受疫情影响年下半年多地又陆续开启“线上教学模式”.某机构经过调查发现学生的上课2022注意力指数与听课时间(单位:)之间满足如下关系:()f t t min ,其中,且.已知在区间上的最大()()224,016log 889,1645a mt mt n t f t t t ⎧-++≤<⎪=⎨-+≤≤⎪⎩0m >0a >1a ≠()y f t =[)0,16值为,最小值为,且的图象过点. 8870()y f t =()16,86(1)试求的函数关系式;()y f t =(2)若注意力指数大于等于时听课效果最佳,则教师在什么时间段内安排核心内容,能使学生听85课效果最佳?请说明理由.【答案】(1) ()()2121370,0168log 889,1645t t t f t t t ⎧-++≤<⎪=⎨-+≤≤⎪⎩(2)教师在内安排核心内容,能使学生听课效果最佳1224t ⎡⎤∈-⎣⎦【分析】(1)根据二次函数最值和函数所过点可构造不等式求得的值,由此可得; ,,m n a ()f x (2)分别在和的情况下,由可解不等式求得结果.016t ≤<1645t ≤≤()85f t ≥【详解】(1)当时,,[)0,16t ∈()()()222412144f t m t t n m t m n =--+=--++,解得:; ()()()()max min 1214488070f t f m n f t f n ⎧==+=⎪∴⎨===⎪⎩1870m n ⎧=⎪⎨⎪=⎩又,,解得:, ()16log 88986a f =+=log 83a ∴=-12a =.()()2121370,0168log 889,1645t t t f t t t ⎧-++≤<⎪∴=⎨-+≤≤⎪⎩(2)当时,令,解得:;16t ≤<21370858t t -++≥1216t -≤<当时,令,解得:;1645t ≤≤()12log 88985t -+≥1624t ≤≤教师在内安排核心内容,能使学生听课效果最佳.∴1224t ⎡⎤∈-⎣⎦20.已知函数,函数. ()()33log log 39x f x x =⋅()1425x x g x +=-+(1)求函数的最小值;()f x (2)若存在实数,使不等式成立,求实数x 的取值范围.[]1,2m Î-()()0f x g m -≥【答案】(1) 94-(2)或 109x <≤27x ≥【分析】(1)将化为关于的二次函数后求最小值;()f x 3log x (2)由题意知,求得后再解关于的二次不等式即可.min ()()f x g m ≥min ()g m 3log x 【详解】(1) ()()3333()log log (3)log 2log 19x f x x x x =⋅=-+ ()233log log 2x x =--, 2319log 24x ⎛⎫=-- ⎪⎝⎭∴显然当即, , 31log 2x =x =min 9()4f x =-∴的最小值为. ()f x 94-(2)因为存在实数,使不等式成立,[]1,2m Î-()()0f x g m -≥所以, 又,min ()()f x g m ≥()()21421524x x x g x +=-+-=+所以,()()2124m g m -=+又,显然当时,,[]1,2m Î-0m =()()02min 2414g m -=+=所以有,即,可得, ()4f x ≥()233log log 24x x --≥()()33log 2log 30x x +-≥所以或,解得 或. 3log 2x ≤-3log 3x ≥109x <≤27x ≥故实数x 的取值范围为或. 109x <≤27x ≥21.某中学为了解高一年级数学文化知识竞赛的得分情况,从参赛的1000名学生中随机抽取了50名学生的成绩进行分析.经统计,这50名学生的成绩全部介于55分和95分之间,将数据按照如下方式分成八组:第一组,第二组,…,第八组,下图是按上述分组方法得[)55,60[)60,65[]90,95到的频率分布直方图的一部分.已知第一组和第八组人数相同,第七组的人数为3人.(1)求第六组的频率;若比赛成绩由高到低的前15%为优秀等级,试估计该校参赛的高一年级1000名学生的成绩中优秀等级的最低分数(精确到0.1);(2)若从样本中成绩属于第六组和第八组的所有学生中随机抽取两名学生,记他们的成绩分别为x ,y ,从下面两个条件中选一个,求事件E 的概率.()P E ①事件E :;[]0,5x y -∈②事件E :.(]5,15x y -∈注:如果①②都做,只按第①个计分.【答案】(1)0.08;81.8(2)选①:;选②: 715815【分析】(1)根据频率之和为1计算第六组的频率;先判断优秀等级的最低分数所在区间,再根据不低于此分数所占的频率为0.12求得此分数.(2)分别求出第六组和第八组的人数,列举出随机抽取两名学生的所有情况,再求出事件E 所包含事件的个数的概率,根据古典概型求解.【详解】(1)第七组的频率为, 30.0650=所以第六组的频率为,()10.0650.00820.0160.0420.060.08--⨯++⨯+=第八组的频率为0.04,第七、八两组的频率之和为0.10,第六、七、八组的频率之和为0.18,设优秀等级的最低分数为,则,m 8085m <<由,解得, 850.040.060.080.155m -++⨯=81.8m ≈故估计该校参赛的高一年级1000名学生的成绩中优秀等级的最低分数.81.8(2)第六组的人数为4人,设为,,第八组的人数为2人,设为, [80,85),a b ,c d [90,95],A B 随机抽取两名学生,则有共15种情况,,,,,,,,,,,,,,,ab ac ad bc bd cd aA bA cA dA aB bB cB dB AB选①:因事件发生当且仅当随机抽取的两名学生在同一组,[]:0,5E x y -∈所以事件包含的基本事件为共7种情况,E ,,,,,,ab ac ad bc bd cd AB 故. 7()15P E =选②:因事件发生当且仅当随机抽取的两名学生不在同一组,(]:5,15E x y -∈所以事件包含的基本事件为共8种情况,E ,,,,,,,aA bA cA dA aB bB cB dB 故. 8()15P E =22.已知函数的定义域为D ,对于给定的正整数k ,若存在,使得函数满足:()f x [],a b D ⊆()f x 函数在上是单调函数且的最小值为ka ,最大值为kb ,则称函数是“倍缩函()f x [],a b ()f x ()f x 数”,区间是函数的“k 倍值区间”.[],a b ()f x (1)判断函数是否是“倍缩函数”?(只需直接写出结果)()3f x x =(2)证明:函数存在“2倍值区间”;()ln 3g x x =+(3)设函数,,若函数存在“k 倍值区间”,求k 的值. ()2841x h x x =+10,2x ⎡⎤∈⎢⎣⎦()h x 【答案】(1)是,理由见详解(2)证明见详解(3){}4,5,6,7k ∈【分析】(1)取,结合题意分析说明;1,1,1k a b ==-=(2)根据题意分析可得至少有两个不相等的实根,构建函数结合零点存在性定理分析ln 32x x +=证明;(3)先根据单调性的定义证明在上单调递增,根据题意分析可得在内()h x 10,2⎡⎤⎢⎥⎣⎦2841x kx x =+10,2⎡⎤⎢⎥⎣⎦至少有两个不相等的实根,根据函数零点分析运算即可得结果.【详解】(1)取,1,1,1k a b ==-=∵在上单调递增,()3f x x =[]1,1-∴在上的最小值为,最大值为,且, ()3f x x =[]1,1-()1f -()1f ()()()1111,1111f f -=-=⨯-==⨯故函数是“倍缩函数”.()3f x x =(2)取,2k =∵函数在上单调递增,()ln 3g x x =+[],a b 若函数存在“2倍值区间”,等价于存在,使得成立, ()ln 3g x x =+0a b <<ln 32ln 32a a b b+=⎧⎨+=⎩等价于至少有两个不相等的实根,ln 32x x +=等价于至少有两个零点,()ln 23G x x x =-+∵,且在定义内连续不断, ()()()332e 0,110,2ln 210e G G G -=-<=>=-<()G x ∴在区间内均存在零点,()G x ()()3e ,1,1,2-故函数存在“2倍值区间”.()ln 3g x x =+(3)对,且,则, 121,0,2x x ⎡⎤∀∈⎢⎥⎣⎦12x x <()()()()()()12121212222212128148841414141x x x x x x h x h x x x x x ---=-=++++∵,则, 12102x x ≤<≤221212120,140,410,410x x x x x x -<->+>+>∴,即,()()120h x h x -<()()12h x h x <故函数在上单调递增, ()h x 10,2⎡⎤⎢⎥⎣⎦若函数存在“k 倍值区间”,即存在,使得成立, ()h x *10,2a b k ≤<≤∈N 22841841a ka ab kb b ⎧=⎪⎪+⎨⎪=⎪+⎩即在内至少有两个不相等的实根, 2841x kx x =+10,2⎡⎤⎢⎥⎣⎦∵是方程的根,则在内有实根, 0x =2841x kx x =+2841k x =+10,2⎛⎤ ⎥⎝⎦若,则,即,且, 10,2x ⎛⎤∈ ⎥⎝⎦[)284,841x ∈+[)4,8k ∈*k ∈N ∴,即.4,5,6,7k ={}4,5,6,7k ∈【点睛】方法点睛:利用函数零点求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.。
2022-2023学年江苏省扬州市高一上学期期末复习数学试题(一)一、单选题1.设集合{}12A x x =<<,{}B x x a =>,若A B ⊆,则a 的范围是( ) A .2a ≥ B .1a ≤C .1a ≥D .2a ≤【答案】B【分析】结合数轴分析即可.【详解】由数轴可得,若A B ⊆,则1a ≤. 故选:B.2.命题p :x ∃∈R ,210x bx ++≤是假命题,则实数b 的值可能是( )A .74-B .32-C .2D .52【答案】B【分析】根据特称命题与全称命题的真假可知:x ∀∈R ,210x bx ++>,利用判别式小于即可求解. 【详解】因为命题p :x ∃∈R ,210x bx ++≤是假命题,所以命题:x ∀∈R ,210x bx ++>是真命题,也即对x ∀∈R ,210x bx ++>恒成立, 则有240b ∆=-<,解得:22b -<<,根据选项的值,可判断选项B 符合, 故选:B . 3.函数 21x y x =-的图象大致为( )A .B .C .D .【答案】B【分析】本题首先根据判断函数的奇偶性排除A,D ,再根据01x <<,对应0y <,排除C ,进而选出正确答案B .【详解】由函数 21x y x =-, 可得1x ≠±,故函数的定义域为()()()1111∞∞--⋃-⋃+,,,, 又 ()()()2211xxf x f x x x --===---, 所以21x y x =-是偶函数, 其图象关于y 轴对称, 因此 A,D 错误; 当 01x <<时,221001x x y x -<=<-,, 所以C 错误.故选: B4.已知322323233,,log 322a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系是( ) A .a b c << B .b a c << C .c b a << D .c a b <<【答案】D【分析】构造指数函数,结合单调性分析即可.【详解】23xy ⎛⎫= ⎪⎝⎭在R 上单调递减,3222333012a ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝<=⎭<∴,, ∴01a <<;32xy ⎛⎫= ⎪⎝⎭在R 上单调递增,23033222013b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝>=⎭<∴,, ∴1b >; 223332log log 123c ==-=- ∴c a b << 故选:D5.中国共产党第二十次全国代表大会于2022年10月16日在北京召开,这次会议是我们党带领全国人民全面建设社会主义现代化国家,向第二个百年奋斗目标进军新征程的重要时刻召开的一次十分重要的代表大会,相信中国共产党一定会继续带领中国人民实现经济发展和社会进步.假设在2022年以后,我国每年的GDP (国内生产总值)比上一年平均增加8%,那么最有可能实现GDP 翻两番的目标的年份为(参考数据:lg 20.3010=,lg30.4771=)( ) A .2032 B .2035 C .2038 D .2040【答案】D【分析】由题意,建立方程,根据对数运算性质,可得答案.【详解】设2022年我国GDP (国内生产总值)为a ,在2022年以后,每年的GDP (国内生产总值)比上一年平均增加8%,则经过n 年以后的GDP (国内生产总值)为()18%na +, 由题意,经过n 年以后的GDP (国内生产总值)实现翻两番的目标,则()18%4na a +=, 所以lg 420.301020.301027lg1.083lg32lg5lg 25n ⨯⨯===-20.301020.301020.30100.6020183lg 32(1lg 2)3lg 32lg 2230.477120.301020.0333⨯⨯⨯===≈--+-⨯+⨯-=,所以到2040年GDP 基本实现翻两番的目标. 故选:D.6.将函数sin y x =的图像C 向左平移6π个单位长度得到曲线1C ,然后再使曲线1C 上各点的横坐标变为原来的13得到曲线2C ,最后再把曲线2C 上各点的纵坐标变为原来的2倍得到曲线3C ,则曲线3C 对应的函数是( )A .2sin 36y x π⎛⎫=- ⎪⎝⎭B .2sin36y x π⎛⎫=- ⎪⎝⎭C .2sin 36y x π⎛⎫=+ ⎪⎝⎭D .2sin36y x π⎛⎫=+ ⎪⎝⎭【答案】C【分析】利用图像变换方式计算即可.【详解】由题得1C :sin 6y x π⎛⎫=+ ⎪⎝⎭,所以2C :sin 36y x π⎛⎫=+ ⎪⎝⎭,得到3C :2sin 36y x π⎛⎫=+ ⎪⎝⎭故选:C7.已知0x >,0y >,且满足20x y xy +-=,则92x y+的最大值为( ) A .9 B .6 C .4 D .1【答案】D【分析】由题可得211x y+=,利用基本不等式可得29x y +≥ ,进而即得.【详解】因为20x y xy +-=,0x >,0y >,所以211x y+=,所以()212222559y x x y x x y y x y ⎛⎫+=+ ⎪⎝+++≥⎭==, 当且仅当22y xx y=,即3x y ==时等号成立, 所以912x y≤+,即92x y +的最大值为1.故选:D.8.已知22log log 1a b +=且21922m m a b+≥-恒成立,则实数m 的取值范围为( ) A .(][),13,-∞-⋃∞ B .(][),31,-∞-⋃∞ C .[]1,3- D .[]3,1-【答案】C【分析】利用对数运算可得出2ab =且a 、b 均为正数,利用基本不等式求出192a b+的最小值,可得出关于实数m 的不等式,解之即可.【详解】因为()222log log log 1a b ab +==,则2ab =且a 、b 均为正数,由基本不等式可得1932a b +≥,当且仅当2192ab a b =⎧⎪⎨=⎪⎩时,即当136a b ⎧=⎪⎨⎪=⎩时,等号成立, 所以,192a b+的最小值为3,所以,223m m -≤,即2230m m -≤-,解得13m -≤≤. 故选:C.二、多选题9.函数()y f x =图像关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,有同学据此推出以下结论,其中正确的是( )A .函数()y f x =的图像关于点(,)P a b 成中心对称的图形的充要条件是()y f x a b =+-为奇函数B .函数32()3f x x x =-的图像的对称中心为1,2C .函数()y f x =的图像关于x a =成轴对称的充要条件是函数()y f x a =-是偶函数D .函数32()|32|g x x x =-+的图像关于直线1x =对称 【答案】ABD【分析】根据函数奇偶性的定义,以及函数对称性的概念对选项进行逐一判断,即可得到结果. 【详解】对于A ,函数()y f x =的图像关于点(,)P a b 成中心对称的图形,则有()()2f a x f a x b ++-=函数()y f x a b =+-为奇函数,则有()()0f x a b f x a b -+-++-=, 即有()()2f a x f a x b ++-=所以函数(=)y f x 的图像关于点(,)P a b 成中心对称的图形的充要条件是 为()y f x a b =+-为奇函数,A 正确;对于B,32()3f x x x =-,则323(1)2(1)3(1)23f x x x x x ++=+-++=-因为33y x x =-为奇函数,结合A 选项可知函数32()=-3f x x x 关于点(1,2)-对称,B 正确; 对于C ,函数()y f x =的图像关于x a =成轴对称的充要条件是()()f a x f a x =-+, 即函数()y f x a =+是偶函数,因此C 不正确; 对于D ,32()|-3+2|g x x x =,则323(1)|(1)3(1)2||3|g x x x x x +=+-++=-, 则33(1)|3||3|(1)g x x x x x g x -+=-+=-=+, 所以32()|-3+2|g x x x =关于=1x 对称,D 正确 故选:ABD.10.下列结论中正确的是( )A .若一元二次不等式220ax bx ++>的解集是11,23⎛⎫- ⎪⎝⎭,则a b +的值是14-B .若集合*1N lg 2A x x ⎧⎫=∈≤⎨⎬⎩⎭∣,{}142x B x-=>∣,则集合A B ⋂的子集个数为4 C .函数()21f x x x =++的最小值为1 D .函数()21xf x =-与函数()f x 【答案】AB【分析】对于A :12-和13为方程220ax bx ++=的两根且0a <,即可得到方程组,解得即可判断A ;根据对数函数、指数函数的性质求出集合A 、B ,从而求出集合A B ⋂,即可判断B ;当1x <-时()0f x <,即可判断C ;求出两函数的定义域,化简函数解析式,即可判断D.【详解】解:对于A :因为一元二次不等式220ax bx ++>的解集是11,23⎛⎫- ⎪⎝⎭,所以12-和13为方程220ax bx ++=的两根且0a <,所以112311223b a a⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,解得122a b =-⎧⎨=-⎩,所以14a b +=-,故A 正确;对于B:{{}**1N lg N 1,2,32A x x x x ⎧⎫=∈≤=∈<≤=⎨⎬⎩⎭∣∣0,{}{}12234222|2x x B x x x x --⎧⎫=>=>=>⎨⎬⎩⎭∣∣, 所以{}2,3A B ⋂=,即A B ⋂中含有2个元素,则A B ⋂的子集有224=个,故B 正确; 对于C :()21f x x x =++,当1x <-时10x +<,()0f x <,故C 错误; 对于D :()21,02112,0x xxx f x x ⎧-≥=-=⎨-<⎩, 令()2210x -≥,解得x ∈R,所以函数()f x =R ,函数()21xf x =-的定义域为R ,虽然两函数的定义域相同,但是解析式不相同,故不是同一函数,即D 错误; 故选:AB11.已知函数()()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭.当()()122f x f x =时,12min 2x x π-=,012f π⎛⎫-= ⎪⎝⎭,则下列结论正确的是( ) A .6x π=是函数()f x 的一个零点B .函数()f x 的最小正周期为2π C .函数()1y f x =+的图象的一个对称中心为,03π⎛-⎫⎪⎝⎭D .()f x 的图象向右平移2π个单位长度可以得到函数2y x =的图象 【答案】AB【分析】根据三角函数的图象与性质,求得函数的解析式())6f x x π=-,再结合三角函数的图象与性质,逐项判定,即可求解.【详解】由题意,函数()()f x x ωϕ+,可得()()min max f x f x == 因为()()122f x f x =,可得()()122f x f x =, 又由12min 2x x π-=,所以函数()f x 的最小正周期为2T π=,所以24Tπω==,所以()()4f x x ϕ+,又因为012f π⎛⎫-= ⎪⎝⎭()]012πϕ⨯-+=,即cos()13πϕ-+=,由2πϕ<,所以6πϕ=-,即())6f x x π=-,对于A 中,当6x π=时,可得()cos()062f ππ==,所以6x π=是函数()f x 的一个零点,所以A 正确;又由函数的最小正周期为2T π=,所以B 正确;由()1)16y f x x π=+=-+,所以对称中心的纵坐标为1,所以C 不正确;将函数())6f x x π=-的图象向右平移2π个单位长度,可得())]2))2666f x x x x πππππ=--=---,所以D 不正确. 故选:AB.12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]3.54-=-,[]2.12=,已知函数()2e 11e 2x x f x =-+,()()g x f x =⎡⎤⎣⎦,则下列叙述正确的是( ) A .()g x 是偶函数B .()f x 在R 上是增函数C .()f x 的值域是1,2⎛⎫-+∞ ⎪⎝⎭D .()g x 的值域是{}1,0,1-【答案】BD【分析】依题意可得()2321e xf x =-+,再根据指数函数的性质判断函数的单调性与值域,距离判断B 、D ,再根据高斯函数的定义求出()g x 的解析式,即可判断A 、D.【详解】解:因为()()22e 2e 111321e 21e 21e 21122e2x x x x x x f x =-=-=--=-+-++++,定义域为R , 因为1e x y =+在定义域上单调递增,且e 11x y =+>,又2y x=-在()1,+∞上单调递增,所以()2321e xf x =-+在定义域R 上单调递增,故B 正确; 因为1e 1x +>,所以1011e x<<+,所以1101e x -<-<+,则2201e x -<-<+, 则1323221e 2x -<-<+,即()13,22f x ⎛⎫∈- ⎪⎝⎭,故C 错误;令()0f x =,即32021e x -=+,解得ln3x =-,所以当ln3x <-时()1,02f x ⎛⎫∈- ⎪⎝⎭,令()1f x =,即32121ex-=+,解得ln3x =, 所以当ln3ln3x -<<时()()0,1f x ∈,当ln 3x >时()31,2f x ⎛⎫∈ ⎪⎝⎭,所以()()1,ln 30,ln 3ln 31,ln 3x g x f x x x ≥⎧⎪⎡⎤==-≤<⎨⎣⎦⎪-<-⎩, 所以()g x 的值域是{}1,0,1-,故D 正确;显然()()55g g ≠-,即()g x 不是偶函数,故A 错误; 故选:BD三、填空题13.函数223,0()2ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩,方程()f x k =有3个实数解,则k 的取值范围为___________.【答案】(4,3]--【分析】根据给定条件将方程()f x k =的实数解问题转化为函数()y f x =的图象与直线y k =的交点问题,再利用数形结合思想即可作答.【详解】方程()f x k =有3个实数解,等价于函数()y f x =的图象与直线y k =有3个公共点, 因当0x ≤时,()f x 在(,1]-∞-上单调递减,在[1,0]-上单调递增,(1)4,(0)3f f -=-=-, 当0x >时,()f x 单调递增,()f x 取一切实数,在同一坐标系内作出函数()y f x =的图象及直线y k =,如图:由图象可知,当43k -<≤-时,函数()y f x =的图象及直线y k =有3个公共点,方程()f x k =有3个解,所以k 的取值范围为(4,3]--. 故答案为:(4,3]--14.已知()1sin 503α︒-=,且27090α-︒<<-︒,则()sin 40α︒+=______【答案】##【分析】由4090(50)αα︒+=︒-︒-,应用诱导公式,结合已知角的范围及正弦值求cos(50)α︒-,即可得解.【详解】由题设,()sin 40sin[90(50)]cos(50)ααα︒+=︒-︒-=︒-,又27090α-︒<<-︒,即14050320α︒<︒-<︒,且()1sin 503α︒-=,所以14050180α︒<︒-<︒,故cos(50)3α︒-=-. 故答案为:3-15.关于x 不等式0ax b +<的解集为{}3x x >,则关于x 的不等式2045ax bx x +≥--的解集为______.【答案】()[)13,5-∞-,【分析】根据不等式的解集,可得方程的根与参数a 与零的大小关系,利用分式不等式的解法,结合穿根法,可得答案.【详解】由题意,可得方程0ax b +=的解为3x =,且a<0,由不等式2045ax bx x +≥--,等价于()()22450450ax b x x x x ⎧+--≥⎪⎨--≠⎪⎩,整理可得()()()()()510510ax b x x x x ⎧---+≤⎪⎨-+≠⎪⎩,解得()[),13,5-∞-,故答案为:()[)13,5-∞-,.16.已知函数f (x )=221122x a x x x -≥⎧⎪⎨-<⎪⎩(),(), 满足对任意实数12x x ≠,都有1212f x f x x x -<-()()0 成立,则实数a 的取值范围是( ) 【答案】138a ≤【分析】根据分段函数的单调性可得()22012212a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩ ,解不等式组即可. 【详解】根据题意可知,函数为减函数,所以()22012212a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩,解得138a ≤.故答案为:138a ≤【点睛】本题考查了由分段函数的单调性求参数值,考查了基本知识掌握的情况,属于基础题.四、解答题17.在①A B B ⋃=;②“x A ∈“是“x B ∈”的充分不必要条件;③A B ⋂=∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题.问题:已知集合{}{}121,13A x a x a B x x =-≤≤+=-≤≤. (1)当2a =时,求A B ⋃;()RAB(2)若_______,求实数a 的取值范围.【答案】(1){}15A B x x ⋃=-≤≤,{}35R A B x x ⋂=<≤ (2)答案见解析【分析】(1)代入2a =,然后根据交、并、补集进行计算.(2)选①,可知A B ⊆,分A =∅,A ≠∅计算;选②可知A B ,分A =∅,A ≠∅计算即可;选③,分A =∅,A ≠∅计算.【详解】(1)当2a =时,集合{}{}15,13A x x B x x =≤≤=-≤≤, 所以{}15A B x x ⋃=-≤≤;{}35R A B x x ⋂=<≤ (2)若选择①A B B ⋃=,则A B ⊆, 当A =∅时,121a a ->+解得2a <- 当A ≠∅时,又A B ⊆,{|13}B x x =-≤≤,所以12111213a a a a -≤+⎧⎪-≥-⎨⎪+≤⎩,解得01a ≤≤,所以实数a 的取值范围是)([],10,1-∞-⋃.若选择②,“x A ∈“是“x B ∈”的充分不必要条件,则A B , 当A =∅时,121a a ->+解得2a <- 当A ≠∅时,又A B ,{|13}B x x =-≤≤,12111213a a a a -≤+⎧⎪-≥-⎨⎪+<⎩或12111213a a a a -≤+⎧⎪->-⎨⎪+≤⎩解得01a ≤≤, 所以实数a 的取值范围是)([],10,1-∞-⋃. 若选择③,A B ⋂=∅,当A =∅时,121a a ->+解得2a <- 当A ≠∅又A B ⋂=∅则12113211a a a a -≤+⎧⎨->+<-⎩或解得2a <-所以实数a 的取值范围是()(),24,-∞-+∞.18.计算下列各式的值: (1)1222301322( 2.5)3483-⎛⎫⎛⎫⎛⎫---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)7log 2log lg25lg47++ 【答案】(1)12; (2)112.【分析】(1)根据指数幂的运算求解;(2)根据对数的定义及运算求解. 【详解】(1)12232231222301322( 2.5)34833331222-⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=--+⎢⎥⎢⎥ ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎛⎫---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎦ 2339199112242442--+-+⎛⎫=== ⎪⎝⎭. (2)7log 2log lg25lg47++()31111log 27lg 2542322222=+⨯+=⨯++=.19.已知函数()()sin 0,06f x A x A πωω⎛⎫=+>> ⎪⎝⎭同时满足下列两个条件中的两个:①函数()f x 的最大值为2;②函数()f x 图像的相邻两条对称轴之间的距离为2π. (1)求出()f x 的解析式;(2)求方程()10f x +=在区间[],ππ-上所有解的和.【答案】(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2)23π.【分析】(1)由条件可得2A =,最小正周期T π=,由公式可得2ω=,得出答案.(2)由()10f x +=,即得到1sin 262x π⎛⎫+=- ⎪⎝⎭,解出满足条件的所有x 值,从而得到答案.【详解】(1)由函数()f x 的最大值为2,则2A = 由函数()f x 图像的相邻两条对称轴之间的距离为2π,则最小正周期T π=,由2T ππω==,可得2ω= 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭.(2)因为()10f x +=,所以1sin 262x π⎛⎫+=- ⎪⎝⎭,所以()2266x k k πππ+=-+∈Z 或()72266x k k πππ+=+∈Z , 解得()6x k k ππ=-+∈Z 或()2x k k ππ=+∈Z .又因为[],x ππ∈-,所以x 的取值为6π-,56π,2π-,2π, 故方程()10f x +=在区间[],ππ-上所有解得和为23π. 20.某工厂生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()103C x x x =+(万元).当年产量不小于80千件时,10000()511450C x x x=+-(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式; (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?【答案】(1)2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)100千件【分析】(1)根据题意,分080x <<,80x ≥两种情况,分别求出函数解析式,即可求出结果; (2)根据(1)中结果,根据二次函数性质,以及基本不等式,分别求出最值即可,属于常考题型. 【详解】解(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.051000x ⨯万元,依题意得:当080x <<时,2211()(0.051000)102004020033⎛⎫=⨯-+-=-+- ⎪⎝⎭L x x x x x x .当80x ≥时,10000()(0.051000)511450200L x x x x ⎛⎫=⨯-+-- ⎪⎝⎭ 100001250⎛⎫=-+ ⎪⎝⎭x x所以2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)当080x <<时,21()(60)10003L x x =--+.此时,当60x =时,()L x 取得最大值(60)1000L =万元.当80x ≥时,10000()125012502L x x x ⎛⎫=-+≤- ⎪⎝⎭12502001050=-=.此时10000x x=,即100x =时,()L x 取得最大值1050万元. 由于10001050<,答:当年产量为100千件时,该厂在这一商品生产中所获利润最大, 最大利润为1050万元【点睛】本题主要考查分段函数模型的应用,二次函数求最值,以及根据基本不等式求最值的问题,属于常考题型.21.已知函数2()(22)x f x a a a =-- (a >0,a ≠1)是指数函数. (1)求a 的值,判断1()()()F x f x f x =+的奇偶性,并加以证明; (2)解不等式 log (1)log (2)a a x x +<-.【答案】(1)3a =,是偶函数,证明见解析;(2)1|12x x ⎧⎫-<<⎨⎬⎩⎭.【解析】(1)根据2221,0,1a a a a --=>≠,求出a 即可; (2)根据对数函数的单调性解不等式,注意考虑真数恒为正数. 【详解】(1)函数2()(22)x f x a a a =-- (a >0,a ≠1)是指数函数, 所以2221,0,1a a a a --=>≠,解得:3a =, 所以()3x f x =, 1()()33()x x F x f x f x -=+=+,定义域为R ,是偶函数,证明如下: ()33()x x F x F x --=+=所以,1()()()F x f x f x =+是定义在R 上的偶函数; (2)解不等式 log (1)log (2)a a x x +<-,即解不等式 33log (1)log (2)x x +<- 所以012x x <+<-,解得112x -<< 即不等式的解集为1|12x x ⎧⎫-<<⎨⎬⎩⎭【点睛】此题考查根据指数函数定义辨析求解参数的值和函数奇偶性的判断,利用对数函数的单调性解对数型不等式,注意考虑真数为正数.22.已知函数2()2x x b cf x b ⋅-=+,1()log a x g x x b -=+(0a >且1a ≠),()g x 的定义域关于原点对称,(0)0f =.(1)求b 的值,判断函数()g x 的奇偶性并说明理由; (2)求函数()f x 的值域;(3)若关于x 的方程2[()](1)()20m f x m f x ---=有解,求实数m 的取值范围. 【答案】(1)1b =,()g x 为奇函数 (2)()1,1-(3)(3,3,2⎛⎫-∞--+∞ ⎪⎝⎭【分析】(1)根据()g x 的定义域关于原点对称可得1b =,再求解可得()()0g x g x -+=判断即可; (2)根据指数函数的范围逐步分析即可;(3)参变分离,令()()21,3t f x =-∈,将题意转换为求()()222tm t t =---在()1,3t ∈上的值域,再根据基本不等式,结合分式函数的范围求解即可. 【详解】(1)由题意,1()log ax g x x b-=+的定义域10x x b ->+,即()()10x x b -+>的解集关于原点对称,根据二次函数的性质可得1x =与x b =-关于原点对称,故1b =. 此时1()log 1ax g x x -=+,定义域关于原点对称,11()log log 11a a x x g x x x --+-==-+-,因为1111()()log log log log 101111aa a a x x x x g x g x x x x x -+-+⎛⎫-+=+=⨯== ⎪+-+-⎝⎭. 故()()g x g x -=-,()g x 为奇函数.(2)由(1)2()21x x c f x -=+,又(0)0f =,故002121c -=+,解得1c =,故212()12121x x x f x -==-++,因为211x +>,故20221x<<+,故211121x -<-<+,即()f x 的值域为()1,1- (3)由(2)()f x 的值域为()1,1-,故关于x 的方程2[()](1)()20m f x m f x ---=有解,即()()()22f x m f x f x -=-在()()()1,00,1f x ∈-⋃上有解.令()()()21,22,3t f x =-∈⋃,即求()()212223tm t t t t==---+-在()()1,22,3t ∈⋃上的值域即可.因为2333t t +-≥=,当且仅当t =时取等号,且21301+-=,223333+-=,故)2233,00,3t t ⎛⎫⎡+-∈⋃ ⎪⎣⎝⎭,故13,223m t t∞∞⎛⎛⎫=∈-⋃+ ⎪ ⎝⎭⎝+-,即m的值域为(3,3,2⎛⎫-∞--+∞ ⎪⎝⎭,即实数m 的取值范围为(3,3,2⎛⎫-∞--+∞ ⎪⎝⎭.。
期末复习资料之一 必修1 复习题一、选择题1、 下列函数中,在区间()0,+∞不是增函数的是( ) A.xy 2= B. x y lg = C. 3x y = D. 1y x=2、函数y =log 2x +3(x≥1)的值域是( )A.[)+∞,2B.(3,+∞)C.[)+∞,3D.(-∞,+∞)3、若{|2},{|xM y y P y y ====,则M∩P ( )A.{|1}y y >B. {|1}y y ≥C. {|0}y y >D. {|0}y y ≥ 4、对数式2log (5)a b a -=-中,实数a 的取值范围是( )A.a>5,或a<2B.2<a<5C.2<a<3,或3<a<5D.3<a<45、 已知xax f -=)( )10(≠>a a 且,且)3()2(->-f f ,则a 的取值范围是( )A. 0>aB. 1>aC. 1<aD. 10<<a6、函数y =(a 2-1)x在(-∞,+∞)上是减函数,则a 的取值范围是( ) A.|a |>1 B.|a |>2C.a>2D.1<|a |<26、函数)1(log 221-=x y 的定义域为( )A 、[)(]2,11,2 -- B 、)2,1()1,2( -- C 、[)(]2,11,2 -- D 、)2,1()1,2( --8、值域是(0,+∞)的函数是( )A 、125xy -=B 、113xy -⎛⎫= ⎪⎝⎭C、yD9、函数|log |)(21x x f =的单调递增区间是A 、]21,0( B 、]1,0( C 、(0,+∞) D 、),1[+∞10、图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d 的关系是( )A 、0<a<b<1<d<cB 、0<b<a<1<c<dC 、0<d<c<1<a<bD 、0<c<d<1<a<b11、函数f(x)=log 31(5-4x-x 2)的单调减区间为( )A.(-∞,-2)B.[-2,+∞]C.(-5,-2)D.[-2,1]12、a=log 0.50.6,b=log 20.5,c=log 35,则( )A.a <b <cB.b <a <cC.a <c <bD.c <a <b13、已知)2(log ax y a -=在[0,1]上是x 的减函数,则a 的取值范围是( )A.(0,1)B.(1,2)C.(0,2)D.[2,+∞]14、设函数1lg )1()(+=x x f x f ,则f(10)值为( )A .1 B.-1 C.10 D.101 二、填空题 15、函数)1(log 21-=x y 的定义域为 16、.函数y =2||1x -的值域为________ 17、将(61)0,2,log 221,log 0.523由小到大排顺序:x18. 设函数()()()()4242xx f x x f x ⎧≥⎪=⎨<+⎪⎩,则()2log 3f =19、计算机的成本不断降低,如果每隔5年计算机的价格降低31,现在价格为8100元的计算机,15年后的价格可降为20、函数),2[log +∞=在x y a 上恒有|y|>1,则a 的取值范围是 。
高一数学第一学期期末测试题本试卷共4页,20题,满分为150分钟,考试用时120分钟。
一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{13,4,5,7,9}=A ,B {3,5,7,8,10}=,那么=AB ( )A 、{13,4,5,7,8,9},B 、{1,4,8,9}C 、{3,5,7}D 、{3,5,7,8} 2.cos()6π-的值是( )A B . C .12 D .12- 3.函数)1ln()(-=x x f 的定义域是( )A . ),1(+∞B .),1[+∞C . ),0(+∞D .),0[+∞ 4.函数cos y x =的一个单调递增区间为 ( ) A .,22ππ⎛⎫-⎪⎝⎭ B .()0,π C .3,22ππ⎛⎫⎪⎝⎭D .(),2ππ 5.函数tan(2)4y x π=+的最小正周期为( )A .4π B .2πC .πD .2π 6.函数2()ln f x x x=-的零点所在的大致区间是 ( ) A .(1,2) B .(,3)e C .(2,)e D .(,)e +∞7.已知0.30.2a=,0.2log 3b =,0.2log 4c =,则( )A. a>b>cB. a>c>bC. b>c>aD. c>b>a 8.若函数23()(23)m f x m x-=+是幂函数,则m 的值为( )A 、1-B 、0C 、1D 、2 9.若1tan()47πα+=,则tan α=( )A 、34 B 、43C 、34-D 、43-10.函数22cos 14y x π⎛⎫=-- ⎪⎝⎭是( ) A.最小正周期为π的奇函数 B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数二、填空题:本大题共4小题,每小题5分,满分20分.11.已知函数()()()2log 030x x x f x x >⎧⎪=⎨⎪⎩,则()0f f =⎡⎤⎣⎦ . 12.已知3tan =α,则ααααsin 3cos 5cos 2sin 4+-= ;13.若cos α=﹣,且α∈(π,),则tan α= .14.设{1,2,3,4,5,6},B {1,2,7,8},A ==定义A 与B 的差集为{|},A B x x A x B A A B -=∈∉--,且则()三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.(满分12分)(1)4253sin cos tan()364πππ-(2)22lg 4lg 25ln 2e -+-+16.(满分12分)已知函数()2sin 23f x x π⎛⎫=+⎪⎝⎭)(R x ∈ (1)求()f x 的振幅和初相;(2)该函数图象可由)(sin R x x y ∈=的图象经过怎样的平移和伸缩变换得到?17.(本题满分14分) 已知函数()sin 2cos 21f x x x =+-(1)把函数化为()sin(),(0,0)f x A x B A ωϕω=++>>的形式,并求()f x 的最小正周期;(2)求函数()f x 的最大值及()f x 取得最大值时x 的集合; 18.(满分14分)()2sin(),(0,0,),()62.1(0)228730(),(),sin 35617f x x A x R f x f ABC A B C f A f B C πωωπωππ=->>∈+=+=-已知函数且的最小正周期是()求和的值;()已知锐角的三个内角分别为,,,若求的值。
高一下学期期末考试数学试题第Ⅰ卷 选择题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}A |2,x x x R =≤∈,集合B 为函数y lg(1)x =-的定义域,则B A I ( ) A .(1,2) B .[1,2] C .[1,2) D .(1,2]2.已知20.5log a =,0.52b =,20.5c =,则a ,b ,c 的大小关系为( )A .a b c <<B .c b a <<C .a c b <<D .c b a <<3.一个单位有职工800人,其中高级职称160人,中级职称300人,初级职称240人,其余人员100人,为了解职工收入情况,现采取分层抽样的方法抽取容量为40的样本,则从上述各层中依次抽取的人数分别为( )A .15,24,15,19B .9,12,12,7C .8,15,12,5D .8,16,10,6 4.已知某程序框图如图所示,若输入实数x 为3,则输出的实数x 为( )A .15B .31 C.42 D .63 5.为了得到函数4sin(2)5y x π=+,x R ∈的图像,只需把函数2sin()5y x π=+,x R ∈的图像上所有的点( )A .横坐标伸长到原来的2倍,纵坐标伸长到原来的2倍.B .纵坐标缩短到原来的12倍,横坐标伸长到原来的2倍.C .纵坐标缩短到原来的12倍,横坐标缩短到原来的12倍. D .横坐标缩短到原来的12倍,纵坐标伸长到原来的2倍.6.函数()1ln f x x x=-的零点所在的区间是( )A .(0,1)B .(1,2) C.(2,3) D .(3,4)7.下面茎叶图记录了在某项体育比赛中,九位裁判为一名选手打出的分数情况,则去掉一个最高分和最低分后,所剩数据的方差为( )A .327 B .5 C.307D .4 8.已知函数()222cos 2sin 1f x x x =-+,则( )A .()f x 的最正周期为2π,最大值为3.B .()f x 的最正周期为2π,最大值为1. C.()f x 的最正周期为π,最大值为3. D .()f x 的最正周期为π,最大值为1.9.平面向量a r 与b r 的夹角为23π,(3,0)a =r ,||2b =r ,则|2|a b +=r r ( )A C.7 D .3 10.已知函数2log (),0()(5),0x x f x f x x -<⎧=⎨-≥⎩,则()2018f 等于( )A .1-B .2 C.()f x D .111.设点E 、F 分别为直角ABC ∆的斜边BC 上的三等分点,已知3AB =,6AC =,则AE AF ⋅u u u r u u u r( )A .10B .9 C. 8 D .712.气象学院用32万元买了一台天文观测仪,已知这台观测仪从启动的第一天连续使用,第n 天的维修保养费为446(n )n N *+∈元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( )A .300天B .400天 C.600天 D .800天第Ⅱ卷 非选择题二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上) 13.已知θ为锐角且4tan 3θ=,则sin()2πθ-= . 14.A 是圆上固定的一点,在圆上其他位置任取一点B ,连接A 、B 两点,它是一条弦,它的长度不小于半径的概率为 .15.若变量x ,y 满足2425()00x y x y f x x y +≤⎧⎪+≤⎪=⎨≥⎪⎪≥⎩,则32z x y =+的最大值是 .16.关于x 的不等式232x ax >+(a为实数)的解集为,则乘积ab 的值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 在ABC ∆中,角A ,B C ,所对应的边分别为a ,b ,c ,且5a =,3A π=,cos B =(1)求b 的值; (2)求sin C 的值.18. 已知数列{}n a 中,前n 项和和n S 满足22n S n n =+,n N *∈.(1)求数列{}n a 的通项公式; (2)设12n n n b a a +=,求数列{}n b 的前n 项和n T . 19. 如图,在ABC ∆中,点P 在BC 边上,AC AP >,60PAC ∠=︒,PC =10AP AC +=.(1)求sin ACP ∠的值;(2)若APB ∆的面积是,求AB 的长.20. 已知等差数列{}n a 的首项13a =,公差0d >.且1a 、2a 、3a 分别是等比数列{}n b 的第2、3、4项. (1)求数列{}n a 与{}n b 的通项公式;(2)设数列{}n c 满足2 (n 1)(n 2)n n na c ab =⎧=⎨⋅≥⎩,求122018c c c +++L 的值(结果保留指数形式).21.为响应党中央“扶贫攻坚”的号召,某单位知道一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2018年种植的一批试验紫甘薯在不同温度时6组死亡株数:经计算:615705i i i x y ==∑,6214140ii x ==∑,62110464i i y ==∑≈0.00174.其中i x ,i y 分别为试验数据中的温度和死亡株数,1,2,3,4,5,6.i =(1)y 与x 是否有较强的线性相关性?请计算相关系数r (精确到0.01)说明.(2)求y 与x 的回归方程ˆˆˆ+a y bx =(ˆb 和ˆa 都精确到0.01);(3)用(2)中的线性回归模型预测温度为35C ︒时该批紫甘薯死亡株数(结果取整数). 附:对于一组数据11(,v )u ,22(,v )u ,L L ,(,v )n n u ,①线性相关系数ni i u v nu vr -=∑,通常情况下当|r |大于0.8时,认为两个变量具有很强的线性相关性.②其回归直线ˆˆv u αβ=+的斜率和截距的最小二乘估计分别为: 1221ˆni i i nii u v nu vunu β==-=-∑∑,ˆˆˆav u β=-;22.已知函数()2lg(a)1f x x =+-,a R ∈. (1)若函数()f x 是奇函数,求实数a 的值;(2)在在(1)的条件下,判断函数()y f x =与函数lg(2)xy =的图像公共点各数,并说明理由;(3)当[1,2)x ∈时,函数lg(2)x y =的图像始终在函数lg(42)xy =-的图象上方,求实数a 的取值范围.答案一、选择题答案9. 【解析】方法1: (1,b =-,2(1,a b +=±,|2|13a b +=。
高一期末数学复习题3
班级___________姓名___________成绩___________
一、选择题(每小题5分,共60分)
1、函数x y 2sin 22=是 ( ) A 、最小正周期为π的偶函数 B 、最小正周期为π的奇函数
C 、最小正周期为2
π
的偶函数
D 、最小正周期为2
π
的奇函数
2、若函数()2
2cos 1
-=
x x f 的最大值为M ,最小值为N ,则 ( )
A 、03=-N M
B 、03=+N M
C 、03=-N M
D 、03=+N M
3、若()x f 为奇函数,()x g 为偶函数,且()x f +()x g =1sin 3cos 4+-x x ,则()x f 等于 ( )
A 、x sin 3
B 、x sin 6
C 、x sin 3-
D 、x sin 6-
4、下列命题:①不相等的向量,则一定不平行;②向量a 与b 平行,则a 与b 方向相同或相反;③有向线段就是向量,向量就是有向线段;④非零向量a
,
其中假命题的个数为 ( ) A 、1 B 、2 C 、3 D 、4
5、若,5,3e CD e AB -===则四边形ABCD 是 ( ) A 、平行四边形 B 、菱形
C 、等腰梯形
D 、不等腰梯形
6、化简下列各式
,)1CA BC AB ++,)2CD BD AC AB -+-AD OD OA +-)3MP MN QP NQ -++)4结果为
的个数 ( )
A 、1
B 、2
C 、3
D 、4
7、若,8
1cos sin =αα且,4
0π
α<<则=+ααcos sin ( )
A 、
2
13+ B 、
2
13- C 、
2
5 D 、
4
5
8、已知,2cot =α()5
2tan -=-βα,则()=-αβ2tan ( )
A 、
4
1 B 、12
1-
C 、8
1 D 、8
1-
9、要得到函数⎪⎭
⎫
⎝
⎛+=63sin πx y 的图像,只须将函数x y 3sin =的图像 ( )
A 、向右平移6π
个单位 B 、向左平移
6π
个单位 C 、向右平移18
π个单位 D 、向左平移
18
π个单位
10、函数x y 3cos log
sin θ
=(其中⎪⎭
⎫
⎝⎛∈2,0πϑ)是增函数,则x
的取值范围( )
A 、[]()Z k k k ∈+πππ2,2
B 、()Z k k k ∈⎥⎦
⎤
⎢⎣⎡-πππ32
,
332 C 、[]()Z k k k ∈-πππ2,2 D 、()Z k k k ∈⎥⎦
⎤
⎢⎣⎡+
33
2,
3
2
πππ 11、在ABC ∆中,,30,4,30===C b a 则CA BC ∙等于 ( )
A 、36
B 、36-
C 、33
D 、33- 12、已知两点()(),0,3,6,121P P --则点⎪⎭
⎫
⎝⎛
-
y P ,37
分有线段21P P 所成的比λ与y 值分别为
( )
A 、84
1--
和 B 、
8
41和 C 、42
1和 D 、4
2
1--
和
二、填空题(每小题4分,共16分) 13、(),2cos cos x x f =那么()=015sin f
.
14、锐角三角形三边分别为,2,1,++x x x 且最大内角不超过,1200则x 的取值范围是
.
15、ABC ∆中,若三内角C B A ,,成等差数列,三边c b a ,,成等比数列,且1=a ,则=c
.
16、已知y x ,都是锐角,7
1tan ,3
1tan ,=
=y x 则 =+y x 2
.
三、解答题(共74分) 17、(12分)已知,336cos =⎪⎭⎫ ⎝⎛-απ
求⎪
⎭⎫ ⎝
⎛
-+⎪⎭⎫ ⎝⎛+6sin 65cos 2πααπ的值.
18、(14分)若向量a 的始点为(),4,2-A 终点()1,2B 求:
⑴向量a 的模长;⑵与a 平行的单位向量e 的坐标;⑶与a 垂直的单位向量m 的坐标.
19、(12分)已知函数b a x a x a y ++-=2cos sin 22的定义域为,2
,0⎥⎦
⎤
⎢⎣
⎡
π值域[]1,5-.求常
数b a ,的值.
20、(14分)ABC ∆是,∆Rt ,900=C 内角C B A ,,所对边为c b a ,,.求:
⑴若CD 是斜边AB 上的中线,用向量法证明AB
CD 21=
;
⑵若E 为CD 中点,连结AE 并延长AE 交BC 于,F 求AF 的长度(用b a ,表示). 21、(12分)我炮兵阵地位于地面A 处,两观察所分别位于地面点C 和D 处,已知
,75,45,60000
=∠=∠=ADC ACD m CD 且目标出现在地面B 处时,测得
00
15
,30=∠=∠BDC BCD .求:炮兵阵地到目标的距离.
22、(10分)二次函数()(),,2R c b c bx x x f ∈++=不论βα,为何实数()0sin ≥αf 且
()0cos 2≤+βf .
⑴求证1-=+c b ;⑵求证3≥c ⑶若函数()αsin f 的最大值是,8求c b ,.。